Model codes 2
Specifications and performance 4
Control options

- Pressure & Flow (Load Sense) Compensator ... 5
- Pressure Compensator ... 6
- Torque Control ... 7
- Remote Pressure Control (RPC) ... 8
- Electronic Displacement Control (EDC) ... 9
- EH Inverse Proportional Pressure Control (IPPC) 10
- Electronic Destroke (Cold Start) Valve .. 11

Performance

- ADY074 .. 12
- ADY098 .. 14

Pump Installation

- ADY074 C-Mount – side-ported ... 16
- ADY074 C-Mount – rear-ported ... 17
- ADY074 -2/4 bolt C mount - side-ported ... 18
- ADY074 -2/4 bolt C mount - rear-ported ... 19
- ADY074 Thru-drive SAE A option .. 20
- ADY074 Thru-drive SAE B option .. 21
- ADY074 Thru-drive SAE C option .. 22
- ADY098 C-mount – side-ported ... 23
- ADY098 C-mount – rear-ported ... 24
- ADY098 -2/4 bolt C mount - side-ported ... 25
- ADY098 -2/4 bolt C mount - rear-ported ... 26
- ADY098 Thru-drive SAE A option .. 27
- ADY098 Thru-drive SAE B option .. 28
- ADY098 Thru-drive SAE C option .. 29

Control Installation

- Pressure & Flow (Load Sense) Compensator ... 30
- Pressure Compensator ... 30
- Electronic Displacement Control (EDC) ... 32
- External manual stroke adjustment .. 32
- EH Inverse Proportional Pressure Control (IPPC) 33
- Electronic Destroke (Cold Start) Valve .. 34

Input shaft options 35
Center of gravity 37
Installation and start-up 38
Introduction

620 Series Mobile Piston Pump

The Eaton® X20 portfolio of open-circuit piston pumps is built to maximize machine performance and productivity. With sophisticated controls that enhance system efficiency and a compact design that delivers incredible power, the X20 portfolio empowers mobile machine operators to do more work in less time using less fuel.

Sophisticated controls that improve performance while optimizing efficiency.

Excellent pressure responsiveness – The X20 portfolio delivers the fastest response and recovery times in the open-circuit piston segment, helping customers get the job done faster.

Low standby pressure – The X20 portfolio can maintain low margin pressure (~150 psi) with exceptional stability, reducing heat generation and helping to eliminate wasted energy.

Stable fan drive functionality – Eaton’s fan drive control reaches desired speed more quickly and remains stable once there, reducing energy-wasting oscillation.

Advanced electronic controls – The cold start and fan drive controls are Pro-FX Ready, meaning they can be easily configured with pre-programmed development tools and controlled electronically for maximum flexibility and precision.

Winning load sense combination – X20 works in conjunction with Eaton’s CLS Load Sense Sectional Mobile Valve, providing OEMs one resource for their machine’s load sense needs.

Compact design that enables greater flexibility and cost savings.

Simplified pump architecture – The X20 pump has 25% fewer components than traditional pumps, reducing the number of leak points and simplifying maintenance.

Compact package size – The X20 portfolio’s small size satisfies Tier 4 requirements and provides more flexibility when designing the engine compartment.

More horsepower – The compact rotating group delivers a remarkable amount of horsepower, improving productivity without using more fuel.

One-piece housing – Single-piece pump housing removes leak points and makes maintenance faster and easier versus more complicated multi-piece housings.

Multiple options that make it easy to specify exactly what you need.

Variety of control options – Including pressure control, load sense, cold start, torque control, remote pressure control, inverse proportional pressure control, proportional pressure control, electronic displacement control, and swash sensor feedback, giving you more ways to design more efficient, productive machines.

Several displacement options – With seven displacement options, there’s an X20 pump to fit virtually any mobile application need.

Eaton’s 620 Series is currently available in 74cc (4.54 in³/r) and 98cc (5.98 in³/r) displacements. It is rated at 310 bar and is capable of generating over 100 kW (134 hp), making it the ideal pump for an array of different mobile and stationary applications. The 620 design also incorporates many new advances in product reliability. Once equipment is in the field, failures can prove to be extremely expensive by causing costly downtime. The 620 blends Eaton’s long tradition in providing quality pumps with the latest design and technology methods to ensure long lasting product reliability. The result is a very simple design with 25% fewer parts and a B-10 bearing life rated to over 80,000 hours at 2,000 psi far exceeding the requirements for most applications.

Variety of mounting options – The X20 series portfolio is available with SAE mounting flange configurations, can be side- or rear-ported, and offers multiple drain ports to help overcome any installation challenges.

Exceptional quality that provides remarkable reliability.

Unique control piston design – Single-acting control piston with special coating helps minimize friction, increasing operating life.

Bronze piston shoes – Bronze piston shoes are robust against contamination should particles enter the fluid, enhancing system performance and component service life.

High-load bearings – Larger, more durable bearings resist wear and deliver industry-leading bearing life.

3-year manufacturer’s warranty – Eaton’s warranty terms provide peace of mind for three full years, helping you get through your warranty period with complete confidence.

Global network of Eaton-certified experts for end-to-end support.

More partners in more regions – Growing network of Eaton distributors around the world ensures there’s local service and support anywhere you need it.

World-class system design and assembly – Our expert distribution partners can help with everything from specifying to prototyping and assembly to commissioning, so you can focus on other areas of your business.

Eaton-standardized practices and processes – Eaton employs a unique system of tools and processes, known as the Eaton Business System, to ensure quality development and delivery of the X20 product. These tools and process include such known methods as Design for Six Sigma, Lean Manufacturing and ISO certification.
Model codes

620 Series Mobile Piston Pump

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADY</td>
<td>Pump series</td>
</tr>
<tr>
<td>098</td>
<td>620 series open circuit piston pump</td>
</tr>
</tbody>
</table>

Pump displacement

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>074</td>
<td>74.4 cm³/r [4.54 in³/r]</td>
</tr>
<tr>
<td>098</td>
<td>98.0 cm³/r [5.98 in³/r]</td>
</tr>
</tbody>
</table>

Input shaft rotation

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>Right hand</td>
</tr>
<tr>
<td>L</td>
<td>Left hand</td>
</tr>
</tbody>
</table>

Front mount and shaft

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>05</td>
<td>4 Bolt C, 31.8 mm (1.25) Dia. keyed shaft</td>
</tr>
<tr>
<td>06</td>
<td>4 Bolt C, 14 Tooth 12/24 spline</td>
</tr>
<tr>
<td>07</td>
<td>4 Bolt C, 38.1 (1.50 in) Dia straight keyed</td>
</tr>
<tr>
<td>08</td>
<td>4 Bolt C, 17 tooth 12/24 spline</td>
</tr>
<tr>
<td>10</td>
<td>4 Bolt C, 31.8 mm (1.25 in) Dia. tapered keyed shaft</td>
</tr>
<tr>
<td>12</td>
<td>2/4 Bolt C, 14 Tooth 12/24 spline</td>
</tr>
</tbody>
</table>

Main ports size & location

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AA</td>
<td>098 rear ports, suction 2.5” (code 61), pressure 1” (code 61)</td>
</tr>
<tr>
<td>AB</td>
<td>098 side ports suction - 2.5” (code 61); pressure - 1” (code 61)</td>
</tr>
<tr>
<td>AC</td>
<td>098 rear ports, suction 2.5” (code 61), with M12 threads, pressure 1” (code 61) with M10 threads</td>
</tr>
<tr>
<td>AD</td>
<td>098 side ports suction - 2.5” (code 61) with M12 threads; pressure - 1” (code 61) with M10 threads</td>
</tr>
<tr>
<td>AF</td>
<td>074 side ports suction - 2” (code 61); pressure - 1” (code 61)</td>
</tr>
<tr>
<td>AG</td>
<td>074 rear port, suction 2” (code 61) with M12 threads; pressure - 1” (code 61) with M10 threads</td>
</tr>
<tr>
<td>AH</td>
<td>074 side ports suction - 2” (code 61) with M12 threads; pressure - 1” (code 61) with M10 threads</td>
</tr>
<tr>
<td>AJ</td>
<td>074 rear ports, suction 2” (code 61), pressure 1” (code 61)</td>
</tr>
</tbody>
</table>

Case drain ports

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.3125 - 12 SAE O-ring - top</td>
</tr>
<tr>
<td>2</td>
<td>1.3125 - 12 SAE O-ring - bottom</td>
</tr>
<tr>
<td>3</td>
<td>M33 x 2.0 O-ring - top</td>
</tr>
<tr>
<td>4</td>
<td>M33 x 2.0 O-ring - bottom</td>
</tr>
</tbody>
</table>

Diagnostic pressure ports not available on thru-drive units

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>No diagnostic pressure ports</td>
</tr>
<tr>
<td>1</td>
<td>.5625 - 18 SAE O-ring - plugged (rear ports only)</td>
</tr>
<tr>
<td>2</td>
<td>M14 plugged (both rear and side)</td>
</tr>
</tbody>
</table>

Controller type

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AA</td>
<td>Pressure flow compensator with .4375 - 20 SAE O-ring load sense port</td>
</tr>
<tr>
<td>AB</td>
<td>Pressure flow compensator with M12 metric O-ring load sense port</td>
</tr>
<tr>
<td>AC</td>
<td>Pressure compensator only</td>
</tr>
<tr>
<td>AH</td>
<td>Pressure & flow compensator with torque control & .4375-20 SAE O-ring load sense port (left side)</td>
</tr>
<tr>
<td>AP</td>
<td>Remote pressure control M12 metric o-ring port, left side</td>
</tr>
<tr>
<td>AT</td>
<td>Pressure and flow compensator with electronic displacement control - EP type</td>
</tr>
<tr>
<td>AV</td>
<td>EH Inverse proportional pressure control</td>
</tr>
<tr>
<td>AW</td>
<td>Remote pressure control with .4375-20 SAE O-ring port, left side</td>
</tr>
<tr>
<td>AJ</td>
<td>Pressure and flow compensator with electronic displacement control - EPD type</td>
</tr>
</tbody>
</table>

Pressure compensator setting*

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>02</td>
<td>76 - 83 bar (1100 - 1200 psi)</td>
</tr>
<tr>
<td>17</td>
<td>159 - 166 bar (2300 - 2400 psi)</td>
</tr>
<tr>
<td>26</td>
<td>196 - 203 bar (2850 - 2950 psi)</td>
</tr>
<tr>
<td>34</td>
<td>234 - 241 bar (3400 - 3500 psi)</td>
</tr>
<tr>
<td>43</td>
<td>276 - 283 bar (4000 - 4100 psi)</td>
</tr>
</tbody>
</table>

Flow compensator/ remote pressure control setting*

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>No flow compensator setting</td>
</tr>
<tr>
<td>15</td>
<td>13 - 15 bar (189 - 218 psi)</td>
</tr>
<tr>
<td>32</td>
<td>19 - 21 bar (276 - 305 psi)</td>
</tr>
<tr>
<td>30</td>
<td>29 - 31 bar (421 - 450 psi)</td>
</tr>
</tbody>
</table>

Torque control setting*

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>No torque control</td>
</tr>
<tr>
<td>AB</td>
<td>51 Nm [450 in-lb] (74cc)</td>
</tr>
<tr>
<td>AE</td>
<td>85 Nm [750 in-lb] (74, 98cc)</td>
</tr>
<tr>
<td>AW</td>
<td>243 Nm [2150 in-lb] (74, 98cc)</td>
</tr>
<tr>
<td>BM</td>
<td>401 Nm [3550 in-lb] (98cc)</td>
</tr>
</tbody>
</table>

* Additional settings available by request

- Recommend RPC pressure settings 10-21 bar (140-350 psi)
Model codes

620 Series Mobile Piston Pump

<table>
<thead>
<tr>
<th>Model codes</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control special features</td>
<td></td>
</tr>
<tr>
<td>00 –</td>
<td>No control special features</td>
</tr>
<tr>
<td>0A –</td>
<td>Bleed down orifice</td>
</tr>
<tr>
<td>0B –</td>
<td>24V electronic destroke (cold start) valve w/150 connector metri pack</td>
</tr>
<tr>
<td>0C –</td>
<td>24V electronic destroke (cold start) valve w/150 connector metri pack and bleed down orifice</td>
</tr>
<tr>
<td>0S –</td>
<td>12V DC solenoid AMP Jr connector (used with EH inverse proportional pressure control)</td>
</tr>
<tr>
<td>0T –</td>
<td>24V DC solenoid AMP Jr connector (used with EH inverse proportional pressure control)</td>
</tr>
<tr>
<td>0U –</td>
<td>12V DC solenoid deutsch connector (used with EH inverse proportional pressure control)</td>
</tr>
<tr>
<td>0V –</td>
<td>24V DC solenoid deutsch connector (used with EH inverse proportional pressure control)</td>
</tr>
<tr>
<td>Maximum displacement option</td>
<td></td>
</tr>
<tr>
<td>01 –</td>
<td>Standard displacement (as given in code title)</td>
</tr>
<tr>
<td>02 –</td>
<td>External manual stroke adjustment set at max</td>
</tr>
<tr>
<td>Auxiliary (rear) mount & output shaft</td>
<td></td>
</tr>
<tr>
<td>00 –</td>
<td>No auxiliary mounting features</td>
</tr>
<tr>
<td>AA –</td>
<td>SAE A 2 Bolt, 9T 16/32 spline</td>
</tr>
<tr>
<td>AB –</td>
<td>SAE 2 Bolt, 11T 16/32 spline</td>
</tr>
<tr>
<td>AC –</td>
<td>SAE B 2/4 Bolt, 13T 16/32 spline</td>
</tr>
<tr>
<td>AD –</td>
<td>SAE B 2/4 Bolt, 15T 16/32 spline</td>
</tr>
<tr>
<td>AE –</td>
<td>SAE C 2/4 Bolt, 14T 12/24 spline</td>
</tr>
<tr>
<td>AF –</td>
<td>SAE C 2/4 Bolt, 17T 12/24 spline (98cc only)</td>
</tr>
<tr>
<td>AG –</td>
<td>Auxiliary mount ready with cover plate</td>
</tr>
<tr>
<td>Shaft seal</td>
<td></td>
</tr>
<tr>
<td>1 –</td>
<td>Viton shaft seal</td>
</tr>
<tr>
<td>3 –</td>
<td>Nitrile</td>
</tr>
<tr>
<td>Pump special features</td>
<td></td>
</tr>
<tr>
<td>00 –</td>
<td>No special features</td>
</tr>
<tr>
<td>AA –</td>
<td>Auxiliary mounting cover plate</td>
</tr>
<tr>
<td>AB –</td>
<td>Swash position sensor</td>
</tr>
<tr>
<td>Paint</td>
<td></td>
</tr>
<tr>
<td>00 –</td>
<td>No paint</td>
</tr>
<tr>
<td>0B –</td>
<td>Black</td>
</tr>
<tr>
<td>CD –</td>
<td>Blue primer</td>
</tr>
<tr>
<td>Identification/packaging</td>
<td></td>
</tr>
<tr>
<td>00 –</td>
<td>Standard Eaton identification box packaging</td>
</tr>
<tr>
<td>Design level</td>
<td></td>
</tr>
<tr>
<td>B –</td>
<td>Second design</td>
</tr>
</tbody>
</table>

Additional settings available by request
Specifications and performance

620 Series Mobile Piston Pump

General performance specifications

<table>
<thead>
<tr>
<th></th>
<th>Units</th>
<th>ADY074</th>
<th>ADY098</th>
</tr>
</thead>
<tbody>
<tr>
<td>Displacement</td>
<td>cc/r (in³/r)</td>
<td>74.4 (4.54)</td>
<td>98.0 (5.98)</td>
</tr>
<tr>
<td>Mounting (SAE)</td>
<td></td>
<td>4 Bolt C, 2/4 Bolt C</td>
<td></td>
</tr>
<tr>
<td>Pressure</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Continuous</td>
<td>bar (psi)</td>
<td>310 (4495)</td>
<td>280 (4060)</td>
</tr>
<tr>
<td>Intermittent³</td>
<td></td>
<td>346 (5020)</td>
<td>320 (4800)</td>
</tr>
<tr>
<td>Peak⁴</td>
<td></td>
<td>373 (5410)</td>
<td>350 (5000)</td>
</tr>
<tr>
<td>Speed⁴</td>
<td>rpm</td>
<td>2400</td>
<td>2200</td>
</tr>
<tr>
<td>Max</td>
<td></td>
<td>2880</td>
<td>2640</td>
</tr>
<tr>
<td>Min</td>
<td></td>
<td>600</td>
<td>600</td>
</tr>
<tr>
<td>Power</td>
<td>kW (hp)</td>
<td>92.3 (123.7)</td>
<td>100.6 (134.9)</td>
</tr>
<tr>
<td>Standby</td>
<td></td>
<td>2.1 (2.8)</td>
<td>2.6 (3.5)</td>
</tr>
<tr>
<td>Torque</td>
<td>Nm (lb-ft)</td>
<td>367.3 (270.9)</td>
<td>436.7 (322.1)</td>
</tr>
<tr>
<td>Weight¹</td>
<td>kg (lbf)</td>
<td>43.5 (96.1)</td>
<td>45.9 (101.3)</td>
</tr>
<tr>
<td>Bearing life⁶</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>At 140 bar (2030 psi)</td>
<td>B10 Hours</td>
<td>129,200</td>
<td>81,400</td>
</tr>
<tr>
<td>At 210 bar (3045 psi)</td>
<td></td>
<td>32,900</td>
<td>21,400</td>
</tr>
<tr>
<td>At 280 bar (4060 psi)</td>
<td></td>
<td>12,100</td>
<td>7,900</td>
</tr>
<tr>
<td>At 310 bar (4495 psi)</td>
<td></td>
<td>8,600</td>
<td></td>
</tr>
<tr>
<td>Mass moment of inertia</td>
<td>kg·m²</td>
<td>0.0089</td>
<td>0.0118</td>
</tr>
<tr>
<td></td>
<td>(lbf·ft²)</td>
<td>(0.211)</td>
<td>(0.279)</td>
</tr>
</tbody>
</table>

1. Standard SAE C non-through drive.
2. The 620 is capable of running at higher pressures than shown. In order to not void the warranty, you must provide duty cycle information and receive written approval.
3. Less than 10% of duty cycle.
4. Momentary system pressure spikes only.
5. Ratings based on Flange ports. Rated speed at 1 bar absolute (0 in Hg vac) inlet pressure and 100% displacement. For Max Speed see inlet pressure vs. speed charts.
6. Bearing life ratings at rated speed – 1 bar abs (0 psig) inlet. Will vary based on thrust and side loads. For additional information, contact EATON engineering.

Inlet pressure, case pressure, and operating temperature requirements

<table>
<thead>
<tr>
<th>Inlet pressure</th>
<th>Case pressure</th>
<th>Operating temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inlet pressure</td>
<td>Rated</td>
<td>Minimum</td>
</tr>
<tr>
<td>bar abs (psi)</td>
<td>bar abs (in. Hg)</td>
<td>bar abs (psig)</td>
</tr>
<tr>
<td>1.0 (0)</td>
<td>0.95 (5)</td>
<td>4.4 (50)</td>
</tr>
</tbody>
</table>

Hydraulic fluids

<table>
<thead>
<tr>
<th>Fluid</th>
<th>Recommended operating viscosity range cSt (SUS)</th>
<th>Maximum continuous cSt (SUS)</th>
<th>Maximum viscosity at startup cSt (SUS)</th>
<th>Minimum viscosity @ max. temperature of 93°C (200°F) cSt (SUS)</th>
<th>Minimum intermittent cSt (SUS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use antitrust hydraulic oil, or automotive type crankcase oil (designations SC, SD, SE or SF) per SAE J183 FEB89</td>
<td>16 to 40 (80 to 188)</td>
<td>430 (1192)</td>
<td>2100 (9720)</td>
<td>10 (59)</td>
<td>6 (46)</td>
</tr>
</tbody>
</table>

For more information, see Eaton publication 579. For operation on other alternative or environmentally friendly fluids, please contact your Eaton representative.
Control options

Pressure & Flow (Load Sense) Compensator

The pump will provide flow & pressure matching of pump output to system load demand, maximizing efficiency and improving load metering characteristics of any directional control valve installed between the pump and the load. Load sensing ensures that the pump always provides only the amount of flow needed by the load. The pump operating pressure adjusts to the load pressure plus a pressure differential required for the load sense margin. When the system is not demanding flow, the load sense control will operate in low pressure zero flow, energy saving stand-by mode. The differential pressure is the difference between the pressure inlet and service port of a proportionally controlled directional valve, or a load sensing directional control valve. See the model code for differential pressure settings for load sensing. If the load pressure exceeds the system pressure setting, the pressure compensator reduces pump displacement. The load sensing line must be as short as possible and can also be used for remote pressure control or unloading of the pump. For remote pressure control purposes, it is recommended that you contact your Eaton Representative for the correct configuration of the control.

Warning:

1. When adjusting the pressure limiter, install a 0 to 350 bar (0 to 5000 psi) gage in the outlet gage port and limit the pressure setting to the continuous rated pressure for the pump displacement. It is possible to adjust the pressure compensator beyond the rated pressure of the pump. Doing so, may void the warranty of the pump.
2. EATON recommends use of relief valve in all systems.

Pressure limit settings

The pressure compensator uses two springs to cover the full pressure range of the X20 pumps.

Spring 1 = < 140 bar (2050 psi)
Spring 2 = 145 - 280 bar (2100 - 4060 psi)
Spring 3 = 310 bar (4496 psi for 74cc pump)

Flow Compensator (Load Sense) settings

There are two springs used to cover the load sense adjustment range of this control. Available load sense range is

Spring 1 = < 20 bar (290 psi)
Spring 2 = 21 - 42 bar (300-609 psi)

Dynamic response per SAE J745 (using swash plate position)

<table>
<thead>
<tr>
<th></th>
<th>Response (off stroke)</th>
<th>Recovery (on stroke)</th>
<th>Load sense recovery</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>msec</td>
<td>msec</td>
<td>msec</td>
</tr>
<tr>
<td>ADY074</td>
<td>13</td>
<td>47</td>
<td>84</td>
</tr>
<tr>
<td>ADY098</td>
<td>24</td>
<td>68</td>
<td>34</td>
</tr>
</tbody>
</table>
The pump will provide a continuously modulated flow to meet changing load demands at a pre-adjusted compensator pressure. At pressures below the compensator setting, the pump will operate at maximum displacement. See model code position #16, 17 for compensator pressure ranges.

Warning:

1. When adjusting the pressure limiter, install a 0 to 350 bar (0 to 5000 psi) gage in the outlet gage port and limit the pressure setting to the continuous rated pressure for the pump displacement. It is possible to adjust the pressure compensator beyond the rated pressure of the pump. Doing so, may void the warranty of the pump.
2. EATON recommends use of relief valve in all systems.

Pressure limit settings

The pressure compensator uses two springs to cover the full pressure range of the X20 pumps.

Spring 1 = < 140 bar (2050 psi)

Spring 2 = 145 - 280 bar (2100 - 4060 psi)

310 bar (4496 psi for 74 cc pump)

Dynamic response per SAE J745 (using swash plate position)

<table>
<thead>
<tr>
<th></th>
<th>Response (off stroke)</th>
<th>Recovery (on stroke)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADY074</td>
<td>30</td>
<td>90</td>
</tr>
<tr>
<td>ADY098</td>
<td>30</td>
<td>70</td>
</tr>
</tbody>
</table>

K inlet gage port

F case drain

B Inlet

K outlet gage port

C Outlet

To load

Pressure cut-off characteristics of pressure compensator control @ 49°C (120°F), static conditions.
Control options

Torque Control

The Torque Control limits the torque input to the pump preventing the engine from stalling while also optimizing the use of the engine power.

When combined with Pressure Compensator Control and/or Load Sense, it will allow the pump to remain inside the power envelope of the Pressure Flow curve. When the combination of pump flow and outlet pressure moves outside the envelop the pump displacement will automatically be reduced.

This maximum setting is easily calculated using the following steps:

- Select the 620 pump displacement you intend to use
- Identify the available engine horsepower (HP) and speed (rpm)
- Calculate the torque limit required by the system using the equations shown
- Select the MAX torque setting from the table shown

Torque (in-lbs) = Horsepower (HP) x 63025 / Engine RPM

Torque (Nm) = Horsepower (KW) x 9550 / Engine RPM

<table>
<thead>
<tr>
<th>Code</th>
<th>Torque Nm [lb-in]</th>
<th>74 cc</th>
<th>98 cc</th>
</tr>
</thead>
<tbody>
<tr>
<td>AB</td>
<td>51 [450]</td>
<td>✅</td>
<td></td>
</tr>
<tr>
<td>AC</td>
<td>62 [550]</td>
<td>✅</td>
<td></td>
</tr>
<tr>
<td>AD</td>
<td>73 [650]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AE</td>
<td>85 [750]</td>
<td>✅</td>
<td>✅</td>
</tr>
<tr>
<td>AF</td>
<td>96 [850]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AG</td>
<td>107 [950]</td>
<td>✅</td>
<td></td>
</tr>
<tr>
<td>AH</td>
<td>119 [1050]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AJ</td>
<td>130 [1150]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AK</td>
<td>141 [1250]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AL</td>
<td>153 [1350]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AM</td>
<td>164 [1450]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AN</td>
<td>175 [1550]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AP</td>
<td>186 [1650]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AR</td>
<td>198 [1750]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AT</td>
<td>209 [1850]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AU</td>
<td>220 [1950]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AW</td>
<td>243 [2150]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AZ</td>
<td>266 [2250]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BB</td>
<td>288 [2550]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BD</td>
<td>311 [2750]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BF</td>
<td>333 [2950]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BH</td>
<td>356 [3150]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BK</td>
<td>379 [3350]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BM</td>
<td>401 [3550]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BN</td>
<td>286.5 [2536]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP</td>
<td>184.4 [1632]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BR</td>
<td>303 [2682]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Torque curve 620 74cc pressure Vs. torque at 2400 RPM

Torque curve 620 74cc pressure Vs. flow curve at 2400 RPM

Torque curve 620 98cc pressure Vs. torque at 2200 RPM

(Torque curve 620 98cc pump) pressure Vs. flow curve at 2200 RPM
Remote relief valve is to be connected to pilot port “J” through necessary external piping. Standard differential pressure of 20 bar is set at RPC spool. The required outlet pressure (below 280 bar) can be set by adjusting remote relief valve setting. Once pressure reaches preset value, flow across remote relief valve starts, this results in RPC spool movement due to pressure imbalance. This will de-stroke the pump to maintain the set pressure.

Secondary fixed pressure compensator is provided to limit the max pressure setting as a fail safe measure.

Note

- Flow Compensator is not available with RPC.
- When selecting this option in the model code, a pressure setting value must be identified in the flow compensator field. Select a range of 10-24 bar (140-350 psi), default is 20. The setting selected is the RPC differential pressure.
- Remote relief valve is not included in supply scope of the pump.

Control options

Remote Pressure Control (RPC)

- **Delta pressure setting at control valve - bar (psi):** 14 - 24 (200 - 350)
- **Control fluid consumption - lpm (gpm):** 4.5 (1.2) max.
- **Recommended flow rating of remote relief valve - lpm (gpm):** 3 – 5 (0.8 – 1.32)
- **Recommended Eaton Relief Valve part number:** RV5-10-S-0-50

![Remote Pressure Control (RPC) Diagram](image-url)
Control options

Electronic Displacement Control (EDC)

Pump displacement can be controlled infinitely, as per the current signal provided to the solenoid control valve. The integrated pump control makes use of an external current signal to vary the pump displacement. This control has an proportional characteristic i.e. with increasing current signal, the displacement increases proportionately.

This control is with manual override. Based on fail safe condition there are two types:

- **Min type (EP):** Return to min displacement in case of power loss.
- **Max type (EPD):** Return to max displacement in case of power loss

Warning:

1. When adjusting the pressure limiter, install a 0 to 350 bar (0 to 5000 psi) gage in the outlet gage port and limit the pressure setting to the continuous rated pressure for the pump displacement. It is possible to adjust the pressure compensator beyond the rated pressure of the pump. Doing so, may void the warranty of the pump.
2. EATON recommends use of relief valve in all systems.

Pressure limit settings

The EDC can operate between 20 bar (290 psi) and 280 bar (4060 psi).

Electrical data

<table>
<thead>
<tr>
<th>Control type</th>
<th>Supply current (mA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EP</td>
<td>12V: 0, 24V: 0</td>
</tr>
<tr>
<td>EPD</td>
<td>12V: 480, 24V: 240</td>
</tr>
</tbody>
</table>

Gage outlet (Opt)

- **Load sense (Opt)**
- **Bleed down (Opt)**

Type of Control

- **PWM Frequency:**
 - 250 Hz

Dither Frequency

- **Dither Amplitude:**
 - 300 mA

Duty Cycle

- **Insulation material:**
 - Class H, 180 deg C

Protection Class

- **Connector:**
 - Deutsch

Operating Temperature

- -40 deg C; 85 deg C

This control has manual override. Hysteresis less than 5%. For cold start function,

Recommended

- **250 Hz**
- **Current**
- **Type of Control**
- **PWM Frequency**
- **Dither Frequency**
- **Dither Amplitude**
- **Duty Cycle**
- **Insulation material**
- **Protection Class**
- **Connector**
- **Operating Temperature**

Current (mA)

- **Displacement (%)**
 - 0 to 100
 - 0 to 12V
 - 0 to 24V

Voltage

- 12 V DC
- 24 V DC

- **Max Current:**
 - 1500 mA
- **R20, Resistance(ohm):**
 - 5.19 +/- 0.52%
- **Type of Control:**
 - Current
- **Recommended:**
 - 250 Hz
- **Dither Frequency:**
 - 75 Hz
- **Dither Amplitude:**
 - 300 mA
- **Duty Cycle:**
 - 100%
- **Insulation material:**
 - Class H, 180 deg C
- **Protection Class:**
 - IP69K
- **Connector:**
 - Deutsch
- **Operating Temperature:**
 - -40 deg C; 85 deg C

Current (mA)

- **Displacement (%)**
 - 0 to 100
 - 0 to 12V
 - 0 to 24V

Voltage

- 12 V DC
- 24 V DC

- **Max Current:**
 - 750 mA
- **R20, Resistance(ohm):**
 - 20.8 +/- 2.08%
The EH Inverse Proportional Pressure control allows for stepless variation of the max pump output pressure, as per the current signal provided to the control valve solenoid.

The integrated pump control makes use of an external current signal to vary the pump output pressure.

This control has an inverse proportional characteristic i.e. with increasing current signal, the max output pressure is proportionately reduced.

Warning:

1. When adjusting the pressure limiter, install a 0 to 350 bar (0 to 5000 psi) gage in the outlet gage port and limit the pressure setting to the continuous rated pressure for the pump displacement. It is possible to adjust the pressure compensator beyond the rated pressure of the pump. Doing so, may void the warranty of the pump.
2. EATON recommends use of relief valve in all systems.

Pressure limit settings

The EH IPPC covers pressure range of the X20 pumps. The Minimum is 110 bar and max pressure can be set from 140 bar (2050 psi) to 280 bar (4060 psi).

Electrical data

<table>
<thead>
<tr>
<th>Voltage</th>
<th>12 V</th>
<th>24 V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max Current</td>
<td>1500 mA</td>
<td>750 mA</td>
</tr>
<tr>
<td>R20, Resistance</td>
<td>5.3 +/- 5%</td>
<td>21.2 +/- 5%</td>
</tr>
<tr>
<td>Type of Control</td>
<td>Current</td>
<td>Current</td>
</tr>
<tr>
<td>Recommended PWM Frequency</td>
<td>100 Hz</td>
<td>100 Hz</td>
</tr>
<tr>
<td>Duty Cycle</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>Insulation material</td>
<td>Class H, 180 deg C</td>
<td>Class H, 180 deg C</td>
</tr>
<tr>
<td>Protection Class</td>
<td>IP6K6/IP69K</td>
<td>IP6K6/IP69K</td>
</tr>
<tr>
<td>Connector</td>
<td>AMP Junior Power</td>
<td>AMP Junior Power</td>
</tr>
<tr>
<td>Timer/ Deutsch</td>
<td>Timer/ Deutsch</td>
<td>Timer/ Deutsch</td>
</tr>
<tr>
<td>Connector DT04-2P</td>
<td>Connector DT04-2P</td>
<td></td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>-30 deg C, 105 deg C</td>
<td>-30 deg C, 105 deg C</td>
</tr>
</tbody>
</table>

Typ. Current vs pressure characteristics of IPPC at 1800 rpm at various max pressure settings at 49 deg C (120deg F), static conditions.
Control options

Electronic Destroke (Cold Start) Valve

The Electronic Destroke Valve reduces pump start-up torque by directing outlet pressure to the control piston.

It is primarily used in cold weather applications and includes a 12 or 24 VDC directional control valve mounted between the pump housing and compensator.

Refer model code position 22,23 - control special features for available connector options
Performance

ADY074

Delivery and case flow versus speed @ 49°C (120°F)

Input torque and case flow vs. speed @ stand-by and 49°C (120°F)

Inlet pressure vs. Speed @ 49°C (120°F)

Input torque and case flow vs. speed @ Cut-off and 49°C (120°F)
Overall efficiency versus speed @ 49°C (120°F), full flow, and 1.0 bar (0 psi) inlet

- Efficiency (%)
- Input speed (rpm)
- 600 900 1200 1500 1800 2100

Input power versus speed @ 49°C (120°F), full flow, and 1.0 bar (0 psi) inlet

- Input power, kW (HP)
- Input speed (rpm)
- 600 1200 1800 2400

Input torque versus speed @ 49°C (120°F), full flow, and 1.0 bar (0 psi) inlet

- Input torque, Nm (in-lb)
- Input speed (rpm)
Performance

ADYO98

Delivery and case flow versus speed @ 49°C (120°F)

- Graph showing delivery and case flow vs. shaft speed at 49°C (120°F).

Input torque and case flow stand-by @ 49°C (120°F)

- Graph showing input torque and case flow vs. shaft speed at 49°C (120°F).

Input torque and case flow cut-off @ 49°C (120°F)

- Graph showing input torque and case flow cut-off vs. input speed at 49°C (120°F).

Inlet pressure versus speed @ 49°C (120°F)

- Graph showing inlet pressure vs. shaft speed at 49°C (120°F).
ADY074 C-Mount /side-ported with load sense and pressure compensator control

74cc side ported RH rotation

For compensator configuration see separate compensator installation drawing

Pressure port

Case drain bottom

Top case drain

Optional diagnostic Suction port

Optional diagnostic Pressure port

View A-A

LH rotation
Pump installation

ADY074 C-Mount /rear-ported with load sense and pressure compensator control

74cc rear ported RH rotation

For shaft configuration see separate shaft installation drawing

For compensator configuration see separate compensator installation drawing

Optional case drain

Suction port

Pressure port

Optional diagnostic pressure port

A

Bottom case drain

View A-A

LH Rotation

Optional diagnostic suction port

Pressure port

Suction port
Pump installation

ADY074 - 2/4 bolt C mount - side-ported

Top case drain

For shaft configuration see separate shaft installation drawing

For compensator configuration see separate compensator installation drawing

Optional diagnostic suction port

Optional diagnostic pressure port

Pressure port

2/4-Bolt C-Mounting flange per SAE J744-127-4

Bottom case drain

View A-A

LH Rotation
Pump installation

ADY074 -2/4 bolt C mount - rear-ported

View A-A

LH Rotation

For shaft configuration
See separate shaft installation drawing

For compensator configuration
See separate compensator installation drawing

Top case drain

Pressure port

Optional diagnostic pressure port

Suction port

Optional diagnostic suction port

Suction port

Pressure port

Bottom case drain

LH Rotation

Suction Port

Pressure port

Suction Port

Suction port

Pressure port

Suction port

Pressure port
Pump installation

ADY074 thru-drive SAE A

74cc thru drive SAE-A

Groove to accept an AS 568A size 152 o-ring

SAE- A thru-drive cover plate installation

Output shaft installation 9T spline

- Maximum torque 58 Nm [513 in-lbf]

- Ø16.54 [.651] 9 Tooth 30° flat root side fit 16/32 class 6 per ANSI B92.1-1996
- Accepts 9 tooth 16/32 pitch
- Flat root side fit involute spline per SAE J744-16-4
- Additional unit driven by this spline must not require more than 58 Nm (513 in-lbf) of torque

Output shaft installation 11T spline

- Maximum torque 124 Nm [1100 in-lbf]

- Flat root side fit involute spline accepts 11 tooth 16/32 pitch
- Per SAE J744-16-4
- Additional unit driven by this spline must not require more than 124 Nm (1100 in-lbf) of torque
Pump installation

ADY074 thru-drive SAE B

74cc thru drive SAE-B

Groove to accept an AS 568A size 1520 - ring

6 X .500-13 UNC-2B

Ø101.7 [4.00]

118 [4.65]

89.8 [3.535]

146 [5.748]

175.2 [6.90]

For output shaft configuration see separate shaft installation drawing

SAE - B thru drive cover plate installation

Output shaft installation 13T spline

Maximum torque 209 Nm [1850 in-lbf]

Output shaft installation 15T spline

Maximum torque 338 Nm [2987 in-lbf]

Output shaft installation 13T spline

Maximum torque 209 Nm [1850 in-lbf]

Output shaft installation 15T spline

Maximum torque 338 Nm [2987 in-lbf]
74cc thru drive SAE-C

Groove to accept an AS 568A size 159 O-ring

4x 1/2 - 13 UNC - 2B thru

For output shaft configuration see separate shaft installation drawing

SAE-C Thru drive cover plate installation

Output shaft installation 14T spline

Maximum torque 407 Nm [3600 in-lbf]

Ø32.08 [1.2630] 14 tooth 30° flat root side fit 12/24 class 6 per ASA B5-15-1960

Accepts 14 Tooth 12/24 pitch flat root side fit involute spline Per SAE J744-32-4

Additional unit driven by this spline must not require more than 407 Nm (3600 in-lbf) of torque
Pump installation

ADY098 C-Mount / side-ported with load sense and pressure compensator control

98cc side ported
For compensator configuration see separate compensator installation drawing

View A-A

LH rotation
Pump installation

ADY098 C-Mount /rear-ported with load sense and pressure compensator control

98cc Rear ported RH rotation

For shaft configuration see separate shaft installation drawing

For compensator configuration see separate compensator installation drawing

Suction port

Pressure port

Optional diagnostic port

Top case drain

Bottom case drain

View A-A

LH rotation

Pressure port

Suction port
Pump installation

ADY098 - 2/4 bolt C mount - side-ported

Top case drain

For shaft configuration see separate shaft installation drawing

Optional diagnostic suction port

For compensator configuration see separate compensator installation drawing

2/4-Bolt C-Mounting flange per SAE J744-127-4

92.5 [3.64] (Case drain)

2X Ø17.5 [.69]

4X Ø15.0 [.59]

4X 56.7 [2.23]

89.7 [3.53]

93.0 [3.66] (Case drain)

92.5 [3.64]

98.7 [3.87]

99.4 [3.91]

99.3 [3.91]

1270 [5.00]

2X 304.7 [12.00]

248.9 [9.80]

135.9 [5.35]

144.2 [5.68]

50.0 [1.97]

39.0 [1.54]

60.0 [2.36]

Optional diagnostic pressure port

Bottom case drain

View A-A

LH Rotation

Suction port

Pressure port

Suction Port
Pump installation

ADY098 - 2/4 bolt C mount - rear-ported

Top case drain

For shaft configuration see separate shaft installation drawing

For compensator configuration see separate compensator installation drawing

2/4-Bolt C-mounting flange Per SAE J744-127-4

Suction port

Pressure port

Optional diagnostic pressure port

Optional diagnostic suction port

Bottom case drain

View A-A

View A-A LH Rotation
Pump installation

ADY098 thru-drive SAE A

98cc thru drive SAE-A

Groove to accept an AS 568A size 152 O-ring

SAE-A thru-drive cover plate installation

Optional mounting position

Output shaft installation 9T spline

Maximum torque 58 Nm [513 in-lbf]

Output shaft installation 11T spline

Maximum torque 124 Nm [1100 in-lbf]

Additional unit driven by this spline must not require more than 58 Nm (513 in-lbf) of torque.

Additional unit driven by this spline must not require more than 124 Nm (1100 in-lbf) of torque.
98cc thru drive SAE-B

Groove to accept an A5 568A SIZE 155 O-ring

For output shaft configuration see separate output shaft installation drawing

SAE-B thru drive cover plate installation

Output shaft installation 13T spline
Maximum torque 209 Nm [1850 in-lbf]

Output shaft installation 15T spline
Maximum torque 338 Nm [2987 in-lbf]
Pump installation

ADY098 thru-drive SAE C

98cc thru drive SAE-C

For output shaft configuration see separate output shaft installation drawing

SAE-C thru drive cover plate installation

Output shaft installation 14T spline

Maximum torque 553 Nm [4890 in-lbf]

Output shaft installation 17T spline

Maximum torque 553 Nm [4890 in-lbf]
Control installation

Pressure & Flow (Load Sense) Compensator

Pressure Compensator Control
Control installation

Pressure & Flow (Load Sense) Compensator

Load sense port

95.90 [3.8] 74.79 [2.9]

82.45 [3.25] 72.1 [2.84]

190.4 [7.50]

196.70 [7.7]

213.7 [8.47]

With double shaft seal

95.90 [3.8]
Electronic Displacement Control (EDC)

Maximum stroke limiter

Max displacement is reduced by approximately 5 to 6% per clockwise turn

Compensator / control not shown for clarity

Load sense port

Deutsch connector
Control installation

EH Inverse Proportional Pressure Control (IPPC)

![Diagram of EH Inverse Proportional Pressure Control](image)

- **Amp connector**
- **Deutsch connector**

Dimensions:
- 208.1 [8.19]
- 124.2 [4.89]
- 188.4 [7.42]
- 129.8 [5.11]
- 81.8 [3.22]
Electronic Destroke (Cold Start) Valve

Control installation

Optional connectors

Deusch option

Metri-Pack 280 option

Metri-Pack 150 option
Input shaft options

05 Code
Maximum torque
450 Nm [3980 in-lbf]

- Key width
 7.94\(+.03\ - .01\)
 \([.313\ - .000]\)

06 Code
Maximum torque
640 Nm [5660 in-lbf]

- Key width
 9.53\(+.03\ - .00\)
 \([.375\ - .000]\)

07 Code
Maximum torque
765 Nm [6770 in-lbf]

- Key width
 14 tooth 30° flat root side fit 12/24 per ANSI B92.1a-1976 Class 6

08 Code
Maximum torque
765 Nm [7665 in-lbf]

- Key width
 17 tooth 30° flat root side fit 12/24 per ANSI B92.1a-1976 Class 6
10 Code
Maximum torque
640 Nm [5660 in-lbf]

Section B-B

125:1000 [1.500:12]

8.00 [.315]

65.19 [2.567]

34.93 [1.375]

6.1 [.24]

4.6 [.18]

22.26 [.876]

Ø 64.0 [2.52]

750-16 UNF-2A

7.950±.013 [.3130±.0005]

3.81 [.150]

Input shaft options
Center of gravity

Examples: Calculation L_2

Tandem ADY098 Thru-drive with ADY098 Side ported

\[L_2 = L_t + L_{cg} \]

318.1 mm + 139.7 mm = 457.8 mm (18.0 in)

Tandem pump applications

Eaton recommends that tandem pump applications be provided with additional support to limit overhung loading of the mounting flange. The thru-drive alternate attachment points on the rear flange may be used with a customer designed support.
Warning: Care should be taken that mechanical and hydraulic resonances are avoided in the application of the pump. Such resonances can seriously compromise the life and/or safe operation of the pump.

Drive data

Mounting attitude should be horizontal using the appropriate case drain ports to ensure that the case remains full of fluid at all times. Consult your local Eaton Representative if a different arrangement is required.

In those cases where geometric tolerances of mounting are critical, or where specific tolerance ranges are required and not specified, consult Eaton Engineering for specific limits.

Direction of shaft rotation, viewed from the prime mover end, must be as indicated in the model designation on the pump—either right hand (clockwise) or left hand (counterclockwise).

Direct coaxial drive through a flexible coupling is recommended. If drives imposing radial shaft loads are considered, please consult your Eaton Representative.

Start-up procedure

Make sure the reservoir and circuit are clean and free of dirt/debris prior to filling with hydraulic fluid.

Fill the reservoir with filtered oil and fill to a level sufficient enough to prevent vortexing at the suction connection to pump inlet. It is good practice to clean the system by flushing and filtering, using an external slave pump.

Caution: Before the pump is started, fill the case through the uppermost drain port with hydraulic fluid of the type to be used. The case drain line must be connected directly to the reservoir and must terminate below the oil level. Once the pump is started, it should prime within a few seconds. If the pump does not prime, check to make sure that there are no restrictions between the reservoir and the inlet to the pump, and that the pump is being rotated in the proper direction, and that there are no air leaks in the inlet line and connections. Also check to make sure that trapped air can escape at the pump outlet.

After the pump is primed, tighten the loose outlet connections, then operate for five to ten minutes (unloaded) to remove all trapped air from the circuit.

If the reservoir has a sight gage, make sure the fluid is clear—not milky.

Fluid cleanliness

The 620 Series pumps are rated in anti-wear petroleum fluids with a contamination level of 21/18/13 per ISO 4406. Operation in fluids with levels more contaminated than this is not recommended. Fluids other than petroleum, severe service cycles, or temperature extremes are cause for adjustment of these codes. Please contact your Eaton Representative for specific duty cycle recommendation.

Eaton 620 Series pumps, as with any variable displacement piston pumps, will operate with apparent satisfaction in fluids up to the rating specified here. Experience has shown however, that pump and hydraulic system life is not optimized with high fluid contamination levels (high ISO cleanliness codes).

Proper fluid condition is essential for long and satisfactory life of hydraulic components and systems. Hydraulic fluid must have the correct balance of cleanliness, materials, and additives for protection against wear of components, elevated viscosity and inclusion of air.

Essential information on the correct methods for treating hydraulic fluid is included in Eaton publication 561—“Eaton Guide to Systemic Contamination Control”—available from your local Eaton distributor. In this publication, filtration and cleanliness levels for extending the life of axial piston pumps and other system components are listed. Included is an excellent discussion of the selection of products needed to control fluid condition.