Danger and Warnings

DANGER

HAZARDOUS VOLTAGE WILL CAUSE SEVERE INJURY OR DEATH. WORKING ON OR NEAR ENERGIZED CIRCUITS POSES A SERIOUS RISK OF ELECTRICAL SHOCK. DE-ENERGIZE ALL CIRCUITS BEFORE INSTALLING OR SERVICING THIS EQUIPMENT AND FOLLOW ALL PRESCRIBED SAFETY PROCEDURES.

IMPORTANT

THESE PROCEDURES DO NOT CLAIM TO COVER ALL POSSIBLE DETAILS OR VARIATIONS ENCOUNTERED WITH THE ELEVATOR CONTROL SWITCH ELEVATOR DISCONNECT. NOR DO THEY PROVIDE FOR ALL POSSIBLE CONDITIONS THAT MAY BE ENCOUNTERED. IF FURTHER INFORMATION IS DESIRED OR NEEDED TO ADDRESS ANY PARTICULAR ISSUE NOT COVERED IN THIS DOCUMENT, CONTACT YOUR EATON REPRESENTATIVE. THE INFORMATION IN THIS DOCUMENT DOES NOT RELIEVE THE USER FROM EXERCISING GOOD JUDGMENT, NOR FROM USING SOUND SAFETY PRACTICES.

THE CONTENTS OF THIS INSTRUCTION LEAFLET ARE NOT PART OF, NOR DO THEY MODIFY, ANY PRIOR OR EXISTING AGREEMENT, COMMITMENT OR RELATIONSHIP. THE EATON TERMS AND CONDITIONS OF SALE CONSTITUTE THE ENTIRE OBLIGATION OF EATON. THE WARRANTY IN THE TERMS AND CONDITIONS OF SALE IS THE SOLE WARRANTY OF EATON. ANY STATEMENTS IN THIS DOCUMENT DO NOT CREATE NEW WARRANTIES OR MODIFY ANY EXISTING WARRANTY.

IMPORTANT

FOR THE PURPOSE OF THIS INSTRUCTION LEAFLET, A QUALIFIED PERSON:

(A) IS FAMILIAR WITH THE SUBJECT EQUIPMENT AND THE HAZARDS INVOLVED WITH THEIR APPLICATION, USE, ADMINISTRATION, AND MAINTENANCE.

(B) IS TRAINED AND AUTHORIZED TO DE-ENERGIZE, CLEAR, GROUND, AND TAG CIRCUITS AND EQUIPMENT IN ACCORDANCE WITH ESTABLISHED SAFETY PRACTICES.

(C) IS TRAINED IN THE PROPER CARE AND USE OF PERSONAL PROTECTIVE EQUIPMENT SUCH AS RUBBER GLOVES, HARD HAT, SAFETY GLASSES OR FACE SHIELDS, ARC-FLASH CLOTHING, ETC., IN ACCORDANCE WITH ESTABLISHED SAFETY PRACTICES.

(D) IS TRAINED TO RENDER FIRST AID.

(E) HAS RECEIVED SAFETY TRAINING TO RECOGNIZE AND AVOID THE HAZARDS INVOLVED.

(F) HAS THE SKILLS AND KNOWLEDGE PERTAINING TO THE CONSTRUCTION AND operation OF THIS EQUIPMENT AND ITS INSTALLATION.

Signal Words

The signal words “DANGER,” “WARNING,” “CAUTION” and “NOTICE” (along with their assigned symbol) throughout this manual indicate the degree of hazard the user may encounter.

These symbols and words are defined as:

DANGER

DANGER: Indicates a hazardous situation which, if not avoided, will result in death or serious injury.

WARNING

WARNING: Indicates a hazardous situation which, if not avoided, could result in death or serious injury.

CAUTION

CAUTION: Indicates a hazardous situation which, if not avoided, could result in minor or moderate injury.

NOTICE

NOTICE: Indicates a hazardous situation which, if not avoided, could result in property damage.

Safety Concerns

The following are important safety precautions that Elevator Control Switch elevator disconnect users should observe at all times. This summary is not comprehensive. It is assumed the Elevator Control Switch elevator disconnect user will follow standard safety precautions for working in an electrical environment. For more information on safety precautions and procedures, consult the following sources:

Web Sites:

Overview
The Eaton Elevator Control ES disconnect switch is designed for single cable or hydraulic elevator application to interrupt the incoming AC power upon receiving a signal from the Fire Alarm Control Panel (FACP).

The Elevator Control Switch numbering system assures you get all the right components, with the right ratings, and properly assembled. The unit comes completely assembled for quick installation, eliminating the labor and time needed to assemble individual components. It is also easy to meet Code requirements for selective coordination in a fully fused system. The Eaton Elevator Control ES Switch utilizes Class J fuses that easily coordinate with any upstream fuse by simply using a 2.1 lineside-to-loadsde fuse ratio.

The Eaton Elevator Control ES Switch meets prevailing ANSI/ASME, NEC® and NFPA 72 requirements in a UL 98 Listed (enclosed switch) and UL 50 Listed (enclosure) unit. It comes in a standard NEMA 1 enclosure or optional NEMA 3R, 4, or 12 enclosures. It is available in 30, 60, 100, 200 or 400 amp configurations, for 208, 240, 480, or 600 Vac, 3 or 4 wire systems with a UL 98 Listed 200kA assembly short-circuit current rating (SCCR).

Standard Features
• 30-400 amp 600 Vac 3-phase fused power switch
• 200 kA RMS assembly short-circuit current rating
• Shunt trip 120 V
• Control power terminal block
• Ground lug per NEC®
• Class J fuse mounting only (Class J fuses not included)

Optional Features
• Key to test switch
• Pilot light – “ON”
• Mechanically interlocked auxiliary contact for hydraulic elevators with battery backup (5 amp 120 Vac rated)

Agency Information
• UL 98 Enclosed and Dead Front Switch - Guide 96NK3917, File E182262
• NEMA 1, UL 50, listed enclosure cUL per Canadian Standards C22.1
• CAN/CSA C22.2, No. 4 Enclosed Switch

Catalog Number System
The following catalog numbering system defines an Elevator Control Switch construction.

Prefix
ES = Elevator Control Switch

Ampere Rating
1 = 30 A
2 = 60 A
3 = 100 A
4 = 200 A

Control Transformer
T2 = 208 Volt
T3 = 240 Volt
T1 = 480 Volt
T4 = 600 Volt

Fire Safety Interface Relay
R2 = 24 Vdc Coil
R1 = 120 Vac Coil

Pilot Light ON
G = Green
R = Red
W = White

Fire Alarm Voltage Monitoring Relay (To Monitor Shunt Trip Voltage)
F1 = Single-Pole
F3 = Three-Pole

Neutral Lug
N = Isolated Full Capacity

Auxiliary Contacts 1NO/1NC
B = Main Switch

Enclosure Options (NEMA 1 Standard With No Suffix Designation Required)
3 = NEMA 3R
D = NEMA 12
P = NEMA 4 Painted Steel

© 100 VA with Primary and Secondary fusing (120 V Secondary)

Figure 1. Eaton Elevator Control Switch Selector.
Other Options

Optional features include contact closure, i.e. battery lowering/door opening system. The B option offers support for the states of Arizona, Oregon, and Texas requirements to prevent “nuisance” fire alarms by over-riding the “Control Power not Available” signal when the Eaton Elevator Control ES disconnect is manually (intentionally) turned off, and distinctive signaling for ON-OFF-TRIPPED conditions (Option B).

All Eaton Elevator Control elevator disconnect switches are UL-Listed and designed for safe access by qualified personnel. When maintenance or shutdown service is required, no energized parts are exposed inside the enclosure when the disconnect switch is manually turned to the OFF position. For proper maintenance safety precautions, always turn off incoming power to the Eaton Elevator Control ES elevator switch when possible. When servicing any live electrical equipment, always wear appropriate personal protective equipment.

DANGER

ELECTRICAL SHOCK HAZARD. ELECTRICAL EQUIPMENT MAY CONTAIN HAZARDOUS VOLTAGES. THESE CAN CAUSE ELECTRICAL SHOCK, BURN OR DEATH. ONLY QUALIFIED PERSONNEL SHOULD PERFORM PROCEDURES INVOLVING ELECTRICAL EQUIPMENT. ALWAYS PROPERLY GROUND EQUIPMENT AND LOCKOUT ELECTRIC POWER (DE-ENERGIZE) BEFORE ACCESSING ELECTRICAL EQUIPMENT AND ENCLOSURES. ALL DEADFRONTS AND OTHER SHIELDING MUST BE IN PLACE BEFORE ENERGIZING THIS DISCONNECT SWITCH. TAKE NOTE OF AND FOLLOW ALL SAFETY INSTRUCTIONS IN THIS INSTRUCTION LEAFLET.

Shunt-Trip Operation

The disconnecting means is a shunt-trip operated switch. The control power source for the shunt-trip operator is a 120 Vac supply originating in the Eaton Elevator Control ES switch. Current to the shunt-trip device is switched by an isolation relay, which is in turn controlled by the FACP.

The control signal may be either 24 Vdc from the FACP (Option R2) or a “dry” contact closure in the FACP (Option R1). In the case of a “dry” contact closure, the sensing voltage is 120 Vac originating in the Eaton Elevator Control ES switch.

A key test switch (Option K) is included for testing the shunt-trip circuit.

Supervisory Indication

Additionally, an optional separate relay can be specified to monitor the 120 Vac control power source in the Eaton Elevator Control ES switch. This relay (Option F1 or F3) is used to provide supervisory indication of “Control Power Available” as required by NFPA 72 Section 6.15.4.4.

Table 1. Transformer Fuse Table

<table>
<thead>
<tr>
<th>ECS Voltage/ Transformer Voltage</th>
<th>Primary Fuse (amps)</th>
<th>Secondary Fuse (amps)</th>
</tr>
</thead>
<tbody>
<tr>
<td>208/120</td>
<td>FNG-R-2</td>
<td>FNM-1 1/4</td>
</tr>
<tr>
<td>240/120</td>
<td>FNG-R-2</td>
<td>FNM-1 1/4</td>
</tr>
<tr>
<td>480/120</td>
<td>FNG-R-1</td>
<td>FNM-1 1/4</td>
</tr>
<tr>
<td>600/120</td>
<td>FNG-R-1</td>
<td>FNM-1 1/4</td>
</tr>
</tbody>
</table>

Table 2. Lug Torque Specifications

<table>
<thead>
<tr>
<th>Catalog</th>
<th>Ampacity</th>
<th>Main Lugs (Line)</th>
<th>Wire Size Range</th>
<th>Wire Size</th>
<th>Torque</th>
<th>Wire Size Range</th>
<th>Wire Size</th>
<th>Torque</th>
<th>Wire Size Range</th>
<th>Torque</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Prefix</td>
<td>Wire Size Range</td>
<td>in lb</td>
<td></td>
<td>Wire Size Range</td>
<td>in lb</td>
<td></td>
<td>Wire Size Range</td>
<td>in lb</td>
</tr>
<tr>
<td>ES1</td>
<td>30 Amp</td>
<td>14 - 1/0</td>
<td>14 - 10 AWG</td>
<td>35</td>
<td></td>
<td>14 - 10 AWG</td>
<td>35</td>
<td></td>
<td>14 - 10 AWG</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8 AWG</td>
<td>40</td>
<td></td>
<td>8 AWG</td>
<td>40</td>
<td></td>
<td>8 AWG</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6 - 4 AWG</td>
<td>45</td>
<td></td>
<td>6 AWG</td>
<td>45</td>
<td></td>
<td>6 AWG</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3 - 4/0</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ES2</td>
<td>60 Amp</td>
<td>14 - 1/0</td>
<td>14 - 10 AWG</td>
<td>35</td>
<td></td>
<td>14 - 10 AWG</td>
<td>35</td>
<td></td>
<td>14 - 10 AWG</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8 AWG</td>
<td>40</td>
<td></td>
<td>8 AWG</td>
<td>40</td>
<td></td>
<td>8 AWG</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6 - 4 AWG</td>
<td>45</td>
<td></td>
<td>6 AWG</td>
<td>45</td>
<td></td>
<td>6 AWG</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3 - 4/0</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ES3</td>
<td>100 Amp</td>
<td>14 - 1/0</td>
<td>14 - 1/0</td>
<td>50</td>
<td></td>
<td>14 - 1/0</td>
<td>50</td>
<td></td>
<td>14 - 1/0</td>
<td>50</td>
</tr>
<tr>
<td>ES4</td>
<td>200 Amp</td>
<td>4 - 4/0 (3/16 hex recess)</td>
<td>4 - 300 kcmil (5/16 hex recess)</td>
<td>275</td>
<td></td>
<td>6 - 250 kcmil</td>
<td>275</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ES5</td>
<td>400 Amp</td>
<td>(2) 2 - 500 kcmil</td>
<td>(2) 1/0 - 300 kcmil or (1) 750 kcmil</td>
<td>375</td>
<td></td>
<td>(2) 1/0 - 300 kcmil or (1) 750 kcmil</td>
<td>500</td>
<td></td>
<td>(2) 1/0 - 300 kcmil or (1) 750 kcmil</td>
<td>500</td>
</tr>
</tbody>
</table>
Typical Control with Wiring Options for Fire Safety Interface

<table>
<thead>
<tr>
<th>OPTIONS R1 & F3</th>
</tr>
</thead>
<tbody>
<tr>
<td>TYPICAL CONTROL WITH WIRING OPTIONS FOR FIRE SAFETY INTERFACE</td>
</tr>
</tbody>
</table>

Auxiliary Switch Logic

<table>
<thead>
<tr>
<th>Main Switch Position</th>
<th>Option A</th>
<th>Option B</th>
<th>Option A *</th>
</tr>
</thead>
<tbody>
<tr>
<td>Closed</td>
<td>NO</td>
<td>NC</td>
<td>NO</td>
</tr>
<tr>
<td>Tripped</td>
<td>C</td>
<td>C</td>
<td>O</td>
</tr>
<tr>
<td>Open</td>
<td>C</td>
<td>O</td>
<td>C</td>
</tr>
</tbody>
</table>

* Auxiliary Switch Logic when blue wire with “+” marker is removed from NC terminal.

Where local authorities having jurisdiction permit, field removal of the blue wire identified by “+” marker will change the option A switch logic. Removal has the effect of disabling the battery lowering device when the switch is in the tripped position. Field installer must ensure this meets all local codes before removal.

LEGEND:
- FACP - FIRE ALARM CONTROL PANEL
- NOFA - NORMALLY OPEN FIRE ALARM CONTACTS SUPPLIED FROM THE FIRE ALARM SYSTEM TO INITIATE THE SHUNT TRIP
- SHUNT TRIP - SOLENOID FOR REMOTE TRIP OF SWITCH, WHICH IS ACTIVATED BY THE CLOSING OF THE FIRE ALARM CONTACTS OR KEY TEST SWITCH.
- OPTION R1 - FIRE ALARM INTERFACE RELAY THAT IS OPERATED AT 120VAC FROM SECONDARY OF TRANSFORMER. NO ADDITIONAL POWER NEEDED.
- CR - CONTROL RELAY USED TO ISOLATE THE NOFA CONTACTS FROM THE DUTY OF THE SHUNT TRIP.
- FR - FIRE ALARM VOLTAGE MONITORING RELAY USED TO MONITOR THE STATUS OF CONTROL VOLTAGE FROM A REMOTE LOCATION (i.e. FIRE ALARM CONTROL PANEL).
- PL - PILOT LIGHT TO VISUALLY INDICATE PRESENCE OF VOLTAGE ON OUTSIDE OF SWITCH ENCLOSURE.
- CPT - CONTROL POWER TRANSFORMER USED TO STEP DOWN LINE VOLTAGE TO 120VAC TO POWER SHUNT TRIP COIL.
- SW AUX - OPTION A OR B, NORMALLY CLOSED CONTACT WHEN SWITCH IS CLOSED. OPENS AS POWER SWITCH OPENS.
- KEY TEST - KEY-TO-TEST SWITCH USED TO OPERATE SHUNT TRIP FROM THE OUTSIDE OF SWITCH ENCLOSURE. CAN BE USED FOR TROUBLE-SHOOTING AND INSPECTION.
- MECHANICALLY INTERLOCKED AUXILIARY CONTACT - CONTACT USED TO DISABLE BATTERY LOWERING DEVICE.
- TERMINAL BLOCK CONNECTION POINT.
- • - PRE-WIRED CONNECTION POINT.

Figure 2. Options R1 and F3.
Typical Control with Wiring Options for Fire Safety Interface (Cont.)

OPTION R2
TYPICAL CONTROL WITH WIRING OPTIONS FOR FIRE SAFETY INTERFACE

WHERE LOCAL AUTHORITIES HAVING JURISDICTION PERMIT, FIELD REMOVAL OF THE BLUE WIRE IDENTIFIED BY ** MARKER WILL CHANGE THE OPTION A SWITCH LOGIC. SEE THE AUXILIARY SWITCH LOGIC TABLE, REMOVAL HAS THE EFFECT OF DISABLING THE BATTERY LOWERING DEVICE WHEN THE SWITCH IS IN THE TRIPPED POSITION. FIELD INSTALLER MUST ENSURE THIS MEETS ALL LOCAL CODES BEFORE REMOVAL.

LEGEND:
- FACP - FIRE ALARM CONTROL PANEL
- NOF/A - NORMALLY OPEN FIRE ALARM CONTROL INPUT
- NOF/A - NORMALLY OPEN FIRE ALARM CONTACTS SUPPLIED FROM THE FIRE ALARM SYSTEM TO INITIATE THE SHUNT TRIP
- SHUNT TRIP - SOLID STATE RELAY TO OPERATE THE SHUNT TRIP CONTACTS FROM THE FIRE ALARM CONTACTS OR KEY TEST SWITCH
- OPTION A - FIRE ALARM INTERFACE RELAY THAT IS OPERATED AT 120VAC FROM SECONDARY OF TRANSFORMER. NO ADDITIONAL POWER NEEDED
- CR - CONTROL RELAY USED TO ISOLATE THE NOF/A CONTACTS FROM THE DUTY OF THE SHUNT TRIP
- PR - FIRE ALARM VOLTAGE MONITORING RELAY USED TO MONITOR THE STATUS OF CONTROL VOLTAGE FROM A REMOTE LOCATION (i.e., FIRE ALARM CONTROL PANEL)
- PL - PILOT LIGHT TO VISUALLY INDICATE PRESENCE OF VOLTAGE ON OUTSIDE OF SWITCH ENCLOSURE
- CPT - CONTROL POWER TRANSFORMER USED TO STEP DOWN LINE VOLTAGE TO 120VAC TO POWER SHUNT TRIP COIL.
- SW AUX - OPTION A OR B, NORMALLY CLOSED CONTACT WHEN SWITCH IS CLOSED, OPENS AS POWER SWITCH OPENS
- KEY TEST - KEY-TO-TEST SWITCH USED TO OPERATE SHUNT TRIP FROM THE OUTSIDE OF SWITCH ENCLOSURE, CAN BE USED FOR TROUBLE-SHOOTING AND INSPECTION
- MECHANICALLY INTERLOCKED AUXILIARY CONTACT - CONTACT USED TO DISABLE BATTERY LOWERING DEVICE
- TERMINAL BLOCK CONNECTION POINT
- PRE-WIRED CONNECTION POINTS

NOTE: TERMINAL 1 IS NOT PRESENT WHEN OPTION K IS ABSENT.

Figure 3. Option R2
Figure 4. Options R1 and F1
Typical Control with Wiring Options for Fire Safety Interface (Cont.)

OPTION R2 & F1

WHERE LOCAL AUTHORITIES HAVING JURISDICTION PERMIT, FIELD REMOVAL OF THE BLUE WIRE IDENTIFIED BY *+* MARKER WILL CHANGE THE OPTION A SWITCH LOGIC, SEE THE AUXILIARY SWITCH LOGIC TABLE, REMOVAL HAS THE EFFECT OF DISABLING THE BATTERY LOWERING DEVICE WHEN THE SWITCH IS IN THE TRIPPED POSITION.

FIELD INSTALLER MUST ENSURE THIS MEETS ALL LOCAL CODES BEFORE REMOVAL.

LEGEND:
- AAFS - FIRE Alarm Control Panel
- NOFA - NORMALLY OPEN FIRE ALARM CONTROL INPUT
- NOF - NORMALLY OPEN FIRE ALARM CONTACTS SUPPLIED FROM THE FIRE ALARM SYSTEM TO INITIATE THE SHUNT TRIP
- SHUNT TRIP - SIGNAL FOR REMOTE TRIP OF SWITCH WHICH IS ACTIVATED BY THE CLOSING OF THE FIRE ALARM CONTACTS OR KEY TEST SWITCH
- OPTION A - FIRE ALARM INTERFACE RELAY THAT IS OPERATED AT 120VAC FROM SECONDARY OF TRANSFORMER, NO ADDITIONAL POWER NEEDED
- OR - CONTROL RELAY USED TO ISOLATE THE NOFA CONTACTS FROM THE DUTY OF THE SHUNT TRIP
- M - FIRE ALARM VOLTAGE MONITORING RELAY USED TO MONITOR THE STATUS OF CONTROL VOLTAGE FROM A REMOTE LOCATION (i.e., FIRE ALARM CONTROL PANEL)
- PL - PILOT LIGHT TO VISUALLY INDICATE PRESENCE OF VOLTAGE ON OUTSIDE OF SWITCH ENCLOSURE
- CPT - CONTROL POWER TRANSFORMER USED TO STEP DOWN LINE VOLTAGE TO 120VAC TO POWER SHUNT TRIP COIL
- SW AUX - OPTION A OR B, NORMALLY CLOSED CONTACT WHEN SWITCH IS CLOSED, OPENS AS POWER SWITCH OPENS
- KEY TEST - KEY-TO-TEST SWITCH USED TO OPERATE SHUNT TRIP FROM THE OUTSIDE OF SWITCH ENCLOSURE, CAN BE USED FOR TROUBLE-SHOOTTING AND INSPECTION
- MECHANICALLY INTERLOCKED AUXILIARY CONTACT - CONTACT USED TO DISABLE BATTERY LOWERING DEVICE
- TERMINAL - CONNECTION POINT
- PRE-WIRED CONNECTION POINTS

NOTE: TERMINAL 1 IS NOT PRESENT WHEN OPTION K IS ABSENT.
Figure 6. Option F3.

Figure 6. Option F3.

OPTION F3: FIRE ALARM VOLTAGE MONITORING RELAY

VOLTAGE MONITORING

- **NC FR**
- **COM FR**
- **NO FR**
- **NC OUT**
- **NO IN**
- **TO 120V**
- **TO OR POINT A**

NOTE: CONTACTS FOR FR ARE SHOWN IN DE-ENERGIZED POSITION.

OPTION A: BATTERY LOWERING MECHANICALLY INTERLOCKED AUXILIARY CONTACT A

BATTERY LOWERING

- **NC**
- **COM**
- **NO**

TO CONNECT THE BATTERY LOWERING FOR HYDRAULIC ELEVATORS, CONNECT TO POINTS NC AND COM.

NOTE: MECHANICALLY INTERLOCKED AUXILIARY CONTACTS ARE SHOWN FOR THE MAIN SWITCH IN CLOSED POSITION.

REQUIRED FOR HYDRAULIC ELEVATORS WITH AUTO RECALL AND LOWERING TO MEET NEC 2005 SECTION 620.5(c)

OPTION B CONTACTS

MECHANICALLY INTERLOCKED AUXILIARY CONTACT

- **NC B**
- **COM B**
- **NO B**

NOTE: WHEN OPTION B IS PRESENT, OPTION A IS ALSO PRESENT.

SHOWN WITH MAIN SWITCH IN CLOSED POSITION

LEGEND:

- **FACP** - FIRE ALARM CONTROL PANEL
- **NOFAI** - NORMALLY OPEN FIRE ALARM CONTROL INPUT
- **NOFA** - NORMALLY OPEN FIRE ALARM CONTACTS SUPPLIED FROM THE FIRE ALARM SYSTEM TO INITIATE THE SHUNT TRIP
- **SHUNT TRIP** - SOLID NOID FOR REMOTE TRIP OF SWITCH, WHICH IS ACTIVATED BY THE CLOSING OF THE FIRE ALARM CONTACTS OR KEY TEST SWITCH
- **OPTION R1** - FIRE ALARM INTERFACE RELAY THAT IS OPERATED AT 120VAC FROM SECONDARY OF TRANSFORMER, NO ADDITIONAL POWER NEEDED
- **CR** - CONTROL RELAY USED TO ISOLATE THE N.O.F.A. CONTACTS FROM THE DUTY OF THE SHUNT TRIP
- **FR** - FIRE ALARM VOLTAGE MONITORING RELAY USED TO MONITOR THE STATUS OF CONTROL VOLTAGE FROM A REMOTE LOCATION (i.e. FIRE ALARM CONTROL PANEL)
- **PL** - PILOT LIGHT TO VISUALLY INDICATE PRESENCE OF VOLTAGE ON OUTSIDE OF SWITCH ENCLOSURE
- **CPT** - CONTROL POWER TRANSFORMER USED TO STEP DOWN LINE VOLTAGE TO 120VAC TO POWER SHUNT TRIP COIL
- **SW AUX** - OPTION A OR B, NORMALLY CLOSED CONTACT WHEN SWITCH IS CLOSED, OPENS AS POWER SWITCH OPENS
- **KEY TEST** - KEY-TO-TEST SWITCH USED TO OPERATE SHUNT TRIP FROM THE OUTSIDE OF SWITCH ENCLOSURE, CAN BE USED FOR TROUBLE-SHOOTING AND INSPECTION
- **TERMINAL BLOCK CONNECTION POINT**
- **PRE-WIRED CONNECTION POINTS**
Figure 7. Option F1
Figure 8. Voltage Monitoring with B-Contact Option.
Figure 9. Common Wiring Scheme for AZ, TX, and OR Applications. Elevator Control Option B Detail.
Technical Data TD00801003E
Effective November 2011

Elevator Control ES Switch

Frequently Asked Questions

For more information or if you have additional questions, please contact EatonCare. 877-ETN-CARE (877-386-2273).

1. What UL-Listings and Agency Standards does the Eaton Elevator Control ES have?
 - NFPA-70 (NEC)® 2008 Edition - Section 620.51(A)-(C), 620.62, 620.91(C)
 - ANSI/ASME A17.1-2007 - Section 2.8.3.3.2 NFPA-72 2007 Edition
 - Section 6.16.4.4

All work shall be performed in accordance with the latest edition of applicable standards, codes, and laws.

2. What kind of fuses does Eaton recommend?

LPJ_SP or LPJ_SPI (indication version) dual-element, time-delay Class J fuses. The panel's holders only accept this class of fuse. The fuses are current limiting for good short-circuit and motor overload protection, and minimizing are flash hazards. For general fuse sizing the NEC® Article 430.52 allows sizing time-delay fuses used in motor branch circuits to be sized for up to 175% of the motor full load amps.

3. How does the Mechanical Auxiliary Contact Option (Option A) work?

The “A” Option is a set of auxiliary contacts that are mechanically interlocked to the main switch. The contacts are used to enable or disable the Battery Lowering Device (BLD) for maintenance per NFPA code. It is important to note that these contacts can differentiate between manually turned OFF or shunted OFF (see table below). The most common contact is the “NC,” normally closed.

Table 3.

<table>
<thead>
<tr>
<th>Auxiliary Switch Logic</th>
<th>Main Switch Position</th>
<th>Option A</th>
<th>Option B</th>
<th>Option A *</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NO</td>
<td>NC</td>
<td>NO</td>
<td>NC</td>
</tr>
<tr>
<td>Closed</td>
<td>O</td>
<td>C</td>
<td>O</td>
<td>C</td>
</tr>
<tr>
<td>Tripped</td>
<td>C</td>
<td>C</td>
<td>O</td>
<td>C</td>
</tr>
<tr>
<td>Open</td>
<td>C</td>
<td>O</td>
<td>C</td>
<td>O</td>
</tr>
</tbody>
</table>

* Auxiliary Switch Logic when blue wire with “+” marker is removed from NC terminal.

4. How does the Mechanical Auxiliary Contact Option (Option B) work?

The “B” Option provides a second set of auxiliary contacts that are mechanically interlocked to the main switch. These contacts are generally used to monitor the status of the switch. It is important to note that these contacts will follow the state of the external handle (see table below and Figure 5).

Table 4.

<table>
<thead>
<tr>
<th>Main Switch</th>
<th>Contact State</th>
<th>FACP</th>
</tr>
</thead>
<tbody>
<tr>
<td>OFF, Power Avail</td>
<td>Open</td>
<td>Closed</td>
</tr>
<tr>
<td>ON, Power Avail</td>
<td>Closed</td>
<td>Open</td>
</tr>
<tr>
<td>OFF, No Power</td>
<td>Open</td>
<td>Closed</td>
</tr>
<tr>
<td>ON, No Power</td>
<td>Closed</td>
<td>Open</td>
</tr>
</tbody>
</table>
5. How does the Special Wiring Option for maintaining Normal Status Signal to the FACP work?

For Arizona and other areas requiring this feature, internal wiring between the molded case switch's auxiliary contacts and the fire relay's contacts implements a logic circuit that monitors the availability of shunt-trip power. The FR relay closes only if the main switch is ON and the shunt-trip power fails. They will not close if the main switch is manually turned OFF for maintenance, the Series B contact will open, thus preventing a false alarm. (Refer to Table 4 and Figure 5).

6. Does the instantaneous trip feature built into the molded case switch create the potential to strand passengers when used on circuits with hydraulic elevators and auxiliary battery lowering?

No, the Battery Lowering Device (BLD) remains operational under a shunt-trip condition. The shunt-trip mechanism within the switch is utilized, not the instantaneous trip feature of the switch. The proper fuse selection will prevent instantaneous trip. Even in the event of an instantaneous trip condition, the alarm relay will respond the same as when the switch is shunted off. There is no potential for stranding passengers when units are installed with the Mechanical Interlock Auxiliary Contact Option (Option A, battery back-up feature).

7. During a power loss, will the state of the switch change state (F1 or F3 option)?

The Eaton Elevator Control ES switch will not change state. The Eaton Elevator Control ES Voltage Monitoring Relay (F1 or F3 Option) does meet NFPA 72 (National Fire Alarm Code) requiring control circuits to be monitored for presence of voltage. The unit is wired to sense the voltage available to initiate the shunt-trip. It will change state if a power loss occurs. It does not rely on the shunt-trip itself. It will send a signal to the FACP upon power loss.

8. How does the Eaton Elevator Control ES switch decide when the elevator needs to be lowered?

The Eaton Elevator Control ES switch does not make that decision. It provides a signaling means to the fire alarm controller and BLD. The Elevator Control switch receives a signal from the FACP to shunt-trip, which in some cases results in the use of the Battery Lowering Device (BLD).

9. Does the Eaton Elevator Control ES switch require any periodic maintenance?

While no specific maintenance is called for, it is always a good practice to annually inspect the unit for any lose fuse clips or connections, or accumulation of foreign material. See “Maintenance” in this document for more details.

10. How do you hook up the dry contacts for the battery back-up (BLD) option?

This will depend on how the Mechanical Auxiliary Contact (Option A) will be connected. The A Option will follow the truth table noted below. The most common connection will be between NC and COM.

<table>
<thead>
<tr>
<th>Auxiliary Switch Logic</th>
<th>Option A</th>
<th>Option B</th>
<th>Option A *</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main Switch Position</td>
<td>NO</td>
<td>NC</td>
<td>NO</td>
</tr>
<tr>
<td>Closed</td>
<td>O</td>
<td>C</td>
<td>O</td>
</tr>
<tr>
<td>Tripped</td>
<td>C</td>
<td>C</td>
<td>O</td>
</tr>
<tr>
<td>Open</td>
<td>C</td>
<td>O</td>
<td>C</td>
</tr>
</tbody>
</table>

* Auxiliary Switch Logic when blue wire with “+” marker is removed from NC terminal.

Where local authorities having jurisdiction permit, field removal of the blue wire identified by “+” marker will change the Option A switch logic. Removal has the effect of disabling the battery lowering device when the switch is in the tripped position. Field installer must ensure this meets all local codes before removal.

11. Where do you land the shunt-trip control wires on the terminal strip?

For the R1 Option (120Vac), land the wires on Terminals 1 and 3 or NOFAIN and NOFAIN (Normally Open Fire Alarm IN). For the R2 (24Vdc) option, land the positive on Terminal 1 and the closure on Terminal 3, with the return on Terminal 7.

12. Where does the fire alarm get connected for monitoring the status of the switch?

This is commonly referred to as the FR relay and is Option F1 or F3. NCFR/COM FR is the most common. If an end of line (EOL) resistor is used, install it parallel to the wires.

13. If an Eaton Elevator Control ES switch is ordered with a wrong component, can the component be changed in the field?

No. To comply with UL guidelines, product modifications can only be completed by authorized factory personnel. Other modifications will void the Eaton UL listing. One exception is the B-option. It can be ordered and field installed; the part number is ECSBIKT.

14. Can the Eaton Elevator Control ES switch be used as a service entrance switch?

The Eaton Elevator Control ES switch is UL-Listed per UL 98. Yes, it can be used as a service entrance if properly labeled as such and proper ground bond requirements are met.

15. Can the Eaton Elevator Control ES switch be fed in reverse with the line from the bottom and load out the top of the switch?

No, the Eaton Elevator Control ES switch will not properly function.
16. Can the Eaton Elevator Control ES switch be used in an application where no fire alarm exists and can a smoke detector be connected instead?

No, this is not in accordance with the fire code. Commercial smoke detectors must be connected through the FACP.

17. Does the FR Relay (Option F1 or F3) change state during a power loss?

Yes, the FR relay will change state. The FR relay is designed to monitor voltage that is available for the shunt-trip. This is a requirement of NFPA 72.

18. Is the operating handle of the Eaton Elevator Control ES switch lockable in the “OFF” position only?

From the factory the handle can only be locked in the “OFF” position and can accommodate a maximum of three padlocks. Field modification to drill the shroud can allow locking in the “ON” position. Check with your local AHJ for requirements. The switch will shunt trip as usual, even with the handle locked ON.

19. What enclosures are available for the Eaton Elevator Control ES Switch?

All ratings of the Eaton Elevator Control ES switch come standard with a UL (NEMA) Type 1 enclosure. Optional enclosures include UL (NEMA) type 3R, 4, and 12. Consult the factory for other options.

20. Is a CPT always required in an Eaton Elevator Control ES switch?

Yes, to meet NFPA codes, a CPT will be required to supply the 120Vac for shunt-tripping.

21. I lost the keyswitch, can I get another?

Yes. The part number is E22KS2 if the back of the switch says E22. If the back of the switch says M22, the part number is M22-ES-MS1.
These technical data materials are published solely for information purposes and should not be considered all-inclusive. If further information is required, you should consult an authorized Eaton sales representative.

The sale of the product shown in this literature is subject to the terms and conditions outlined in appropriate Eaton selling policies or other contractual agreement between the parties. This literature is not intended to and does not enlarge or add to any such contract. The sole source governing the rights and remedies of any purchaser of this equipment is the contract between the purchaser and Eaton.

NO WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE OR MERCHANTABILITY, OR WARRANTIES ARISING FROM COURSE OF DEALING OR USAGE OF TRADE, ARE MADE REGARDING THE INFORMATION, RECOMMENDATIONS, AND DESCRIPTIONS CONTAINED HEREIN. In no event will Eaton be responsible to the purchaser or user in contract, in tort (including negligence), strict liability or otherwise for any special, indirect, incidental or consequential damage or loss whatsoever, including but not limited to damage or loss of use of equipment, plant or power system, cost of capital, loss of power, additional expenses in the use of existing power facilities, or claims against the purchaser or user by its customers resulting from the use of the information, recommendations and description contained herein.