Key Features, Functions, and Benefits

- Microprocessor-based protection with monitoring and control for medium to large sized generators.
- Complete metering of voltage, currents, power, energy, minimum/maximum and demand functions.
- Complete metering, protection, and control in a single compact case to reduce panel space, wiring and costs.
- Integral test function reduces maintenance time and expense.
- Zone selective interlocking improves coordination and tripping time, and saves money compared to a traditional bus differential scheme.
- Programmable logic control functions for providing customized protection and control solutions.
- Reduce trouble shooting time and maintenance costs—Trip and event recording in non-volatile memory provides detailed information for analysis and system restoration. 6000 cycles of waveform capture aids in post fault analysis (viewable using Powerport-E software).
- Minimum replacement time—Removable terminal blocks ideal in industrial environments.
- Front RS-232 port and Powerport-E software provides local computer access and user-friendly windows based interface for relay programming and all settings are stored in nonvolatile memory. Flash memory is used for the programming and all settings are stored in nonvolatile memory.
- Breaker open/close from relay faceplate or remotely via communications.
- Fast an easy troubleshooting, improved maintenance procedures and increased device security. Provides detailed traceability for system configuration changes.
- Relays self-diagnostics and reporting improves uptime and troubleshooting.
- Breaker trip circuit monitoring improves the reliability of the breaker operation.
- Reduced relay to relay wiring and associated installation cost through high-speed inter-relay communications.
- Embedded IEC61850 protocol with GOOSE messaging capabilities.

General Description

Eaton's EGR-5000 generator protection relay is a multi-functional, microprocessor-based relay for any size generators. It may be used as a primary or backup protection in stand by generators, and cogeneration applications.

The EGR-5000 generator protection relay provides voltage controlled, voltage restrained, and standard directional three phase overcurrent protection, as well as directional phase-residual and independent ground overcurrent protection, and breaker failure. Three phase over/under voltage, voltage unbalance, current unbalance, over/under and rate-of-change frequency, vector surge, power factor, directional VARs, directional power, loss of excitation, overexcitation, phase differential, ground differential, and synch check functions are standard functions.

The EGR-5000 generator relay provides all required protection, control, monitoring and metering for any size generators in a single, compact case. The relay has eight current inputs rated for either 5 amperes or 1 ampere and four voltage inputs. Three of the voltage inputs are to be connected to the 3-phase power voltage for voltage protection and for metering. They can be connected in wye-ground or open delta configuration. The fourth voltage is for independent single-phase undervoltage/overvoltage protection, or 100% ground protection for a high resistance grounded generator.

The maintenance mode password protected soft key, can be used for arc flash mitigation to change to an alternate settings group, set to have instantaneous elements only. The multiple setting groups can also be changed, via communications or a digital input. An integral keypad and display is provided for direct user programming and retrieval of data without the need of a computer. 14 programmable LEDs provide quick indication of relay status.

A front port is provided for direct computer connection. An RS-485 and an Ethernet port in the back are optional for local area networking using. Optional Modbus-RTU, Modbus-TCP, or IEC-61850 protocols are supported.

The EGR-5000 generator protection relay includes programmable logic functions. Logic gates and timers may be defined and arranged for customized applications. Programmable logic control functions make the EGR-5000 very flexible. Flash memory is used for the programming and all settings are stored in nonvolatile memory.

The EGR-5000 generator protection relay has mass memory for data storage and a real-time clock with 1 ms time resolution. The relay will log 300 sequence of event records, 20 detailed trip logs, minimum/maximum values, load profiles, breaker wear information and waveform data.

The EGR-5000 has either eight programmable binary inputs, 2 analog inputs, 2 analog outputs, or sixteen programmable binary inputs. It has 2 normally opened and 6 Form C heavy duty outputs and one form C signal alarm relay. The EGR-5000 can be powered from 19 Vdc to 300 Vdc or 40 Vac to 250 Vac auxiliary power.

Features

Protection Features

- Dual-slope percentage restrained phase current differential (87)
- Unrestrained phase current differential (87H)
- Restricted ground fault/Ground Differential (87GD)
- Unrestrained Restricted ground fault/Ground Differential (87GDH)
- Thermal protection (49/51)
- Phase overcurrent elements:
 - Three instantaneous elements with timers (50P[1], 50P[2], and 50P[3])
 - Three inverse time overcurrent elements (51P[1], 51P[2], and 51P[3])
• 11 standard curves
• Instantaneous or time delay reset
• Voltage Restraint (51P[2], and 51P[3])
• Directional Control (All Elements)

Ground overcurrent elements:
• Two instantaneous measured elements with timers (50X[1], and 50X[2])
• Two instantaneous calculated elements with timers (50R[1], and 50R[2])
• Two inverse time overcurrent measured elements (51X[1], and 51X[2])
• Two inverse time overcurrent calculated elements (51R[1], and 51R[2])
• 11 standard curves
• Instantaneous or time delay reset
• Directional Control (All Elements)

• Breaker failure (50BF).
• Phase unbalance negative sequence overcurrent (46[1], 46[2]).
• Phase voltage unbalance and sequence protection (47[1], 47[2]).
• Main three-phase under/overvoltage (27M[1], 27M[2], 59M[1], 59M[2]).
• Ground fault overvoltage relay (59N[1], 59N[2]).
• Six Frequency elements that can be assigned to: over frequency, under frequency, rate of change, or vector surge (81[1], 81[2], 81[3], 81[4], 81[5], 81[6]).
• Apparent and displacement power factor (55A[1], 55A[2], 55D[1], 55D[2]).
• Forward and Reverse Watts (32[1], 32[2], 32[3]).
• Forward and Reverse Vars (32V[1], 32V[2], 32V[3]).
• Overexcitation, Volts-per-Hertz (24[1], 24[2]).
• 64S, 100% Stator ground fault (27TN/ 59N).
• Generator Unbalance (46G[1], 46G[2]).
• Loss of Excitation (40[1],40[2]).
• Synch Check (25).
• Inadvertent Energization (50/27).
• Lockout (86).
• Loss of Potential-LOP.
• Zone interlocking for bus protection (87B).
• Switch onto fault protection.
• Cold load pickup.

Metering Features
• Generator Hours of Operation.
• Phase Differential Current.
• Ground Differential Current.
• Amperes: Positive, negative and zero sequence.
• Ampere demand.
• Volts: Positive, negative and zero sequence.
• Phase angles.
• Volt-amperes and VA demand.
• Watts and kW demand.
• kWh (forward, reverse, net).
• Vars and kvar demand.
• kvarh (lead, leg and net).
• Power factor.
• Frequency.
• Volts/Hertz.
• 3rd Harmonic Voltage.
• % THD V and I.
• Magnitude THD V and I.
• Minimum/maximum recording.
• Sync Values.
• Trending (load profile over time).
• Temperature with remote URTD module.

Monitoring Features
• Trip coil monitor.
• Breaker wear.
• Oscillography (6000 cycles total).
• Fault data logs (up to 20 events).
• Sequence of events report (up to 300 events).
• Clock (one ms time stamping).

Control Functions
• Breaker open/close.
• Remote open/close.
• Programmable I/O.
• Programmable Logic.
• Programmable LEDs.
• Multiple setting groups.
• Cold load pickup.
• CT supervision.

Communication Features
• Local HMI.
• Password protected.
• Addressable.
• IRIG-B.
• Local communication port.
• Remote communication port:
 • RS-232.
 • RS-485.
• Protocols:
 • Modbus-RTU (Optional).
 • Modbus-TCP (Optional).
 • IEC-61850 (Optional).
• Configuration software.
Protection and Control Functions

The Eaton's EGR-5000 generator protection relay has been designed for maximum user flexibility and simplicity. The EGR-5000 provides comprehensive protection, metering, and monitoring for any size synchronous or induction generators operating at 50 or 60 Hz. The base relay includes all the standard protection and metering functions. Protection features found in the EGR-5000 include:

Phase Differential Protection

This protection provides a method for rapidly detecting internal generator phase-to-phase or phase-to-ground faults. After the detection of this fault the generator is quickly removed from service to limit the extent of the damage. The EGR-5000 uses a dual slope percentage differential scheme; advanced CT saturation algorithms maintain immunity against external disturbances and ensures the fault is internal to the generator before triggering it to trip.

Ground Differential Protection

In low resistance grounded generators, ground protection may be provided by the 87GD differential, depending on the fault level and the differential relay sensitivity. Higher sensitivity and fast operation for ground faults may be obtained by an additional zero-sequence differential.

Directional Overcurrent Protection

The EGR-5000 generation protection relay provides complete 3-phase and ground directional overcurrent protection. There are 14 independent ground overcurrent elements. The ground elements “X” use the independently measured ground (or neutral) current from a separate current-sensing input. The ground elements “R” uses a calculated 3Io residual current obtained from the sum of the 3-phase currents. This calculated current could be used for either the neutral or ground current in a 3-phase, 4-wire system. Each of the phase and ground overcurrent elements can be selected to operate based on fundamental or RMS current.

Phase direction is a function used to supervise all phase current elements (50, 51). A quadrature voltage is compared to a corresponding phase current to establish the direction of the fault. This function is selectable to operate in the forward, reverse or both directions.

Ground direction is used to supervise ground current elements and is accomplished by using ground, negative sequence or residual currents supervised by zero, negative or positive sequence voltages or ground current. This function is selectable to operate in forward, reverse or both directions.

Voltage Restraint Overcurrent

Voltage restraint reduces the overcurrent pickup level (51P[2], 51P[3]), to protect the distribution system components against excessive damage and to prevent the generator and its auxiliaries from exceeding their thermal limitations. This modification of the pickup overcurrent level is compared to the corresponding phase input voltage. The EGR-5000 uses the simple linear model below to determine the effective pickup value.

![Voltage Restraint Coil Pickup Characteristics](image)

Sync-check

The sync-check function is provided for double-ended power source applications. The sync-check monitors voltage magnitude, phase angle and slip frequency between the bus and line. It also incorporates breaker close time, dead bus dead line, dead bus live line and live bus live line features.

Reverse Power

Reverse power provides control for power flowing through a generator. There are three elements to be configured: operate in forward or reverse; or, under or over power conditions. Reverse power is typically applied to prevent generator motoring that can cause damage to the prime mover; while under power is generally applied to load loss and prevent an overspeed condition that could damage the prime mover.

Reverse Vars

Reverse vars can be used to detect loss of excitation in synchronous machines. There are three elements to be configured: operate in forward or reverse; or, under or over vars conditions.

Inverse Time Characteristics

There are 11 User-selectable inverse-time overcurrent curve characteristics.

The user can select from the ANSI, IEC or thermal curve families and can select instantaneous or time delay reset characteristics.

Breaker Failure

The EGR-5000 generator protection relay includes a breaker failure (50BF, 62BF) function that can be initiated from either an internal or external trip signal. This is an independent element that can be used to operate a lockout relay or trip an upstream breaker. The timer must be longer than the breaker operating time and the protective function reset times.
Voltage Protection
The EGR-5000 generator protection relay has four voltage-input circuits. There is a 3-phase set designated as Main Voltage (M) and a single-phase voltage circuit designated as Auxiliary Voltage (A). Both include undervoltage (27) and overvoltage (59) protection. The 3-phase voltage protection can be set to operate on a single-phase, 2 out of 3 phases, or all 3-phase logic. The Main VTs also provide phase voltage unbalance/reversal (47 negative sequence) protection. Each element has an independent threshold set point and adjustable time delay.

100% Ground Stator Protection
In high impedance grounded generators, ground fault protection is provided by the detection of voltage in the neutral of the generator by an overvoltage element (59N) connected to the secondary of the distribution grounding transformer, this overvoltage element has to be desensitized for 3rd harmonic voltages normally present in the generator. Under normal conditions there is no voltage across the secondary of the grounded transformer, when one of the phases goes to ground, voltage appears across the resistor and the overvoltage element operates, indicating a ground conductor. However, the overvoltage element technique described above will protect around 90 percent to 95 percent of the winding. The last 5-10 percent is protected by detecting the decayed of the 3rd harmonic voltage using a undervoltage element (27TN) tuned to the 3rd harmonic voltage. In the EGR-5000 we can provide 100% stator ground protection by measuring the zero sequence voltage through the 4th voltage input, and combining the 59N and 27A elements. The 27A element has to be programmed to operate for 3rd harmonic zero sequence voltages.

Flexible Phase Rotation
The EGR-5000 generator protection relay can be applied on either an A-B-C or A-C-B phase rotation. A user setting permits correct operation and indication of the actual system configuration.

Frequency Protection
Operation of generators at off-nominal frequencies can have extremely detrimental effects on both the generator itself and the associated prime mover, in particular with steam turbine generators operating below normal frequency. The EGR-5000 relay provides 6 frequency elements than can be used to detect under/over frequency, rate of change, and a vector surge (decoupling of two systems) protection on the Main VT inputs. Each element has an independent threshold set point and adjustable time delay.

Inadvertent Energization
If a generator is inadvertently brought on line with the power system, without being up to speed and synchronized, or it is at standstill when the breaker is closed severe damage could occur. The generator will act as an induction motor and very high currents will be induced in the stator and rotor components, resulting in rapid overheating and damage.

Negative Sequence Protection
Negative sequence overcurrent protection prevents the generators from rotor overheating damage. Unbalanced loads, fault conditions or open phasing will produce a negative sequence current to flow. The unbalanced currents induce double system frequency currents in the rotor, which quickly causes rotor overheating. Serious damage will occur to the generator if the unbalance is allowed to persist. The EGR-5000 provides a negative sequence definite time overcurrent element and a negative sequence timed over current tripping element to ensure the generator stays within it’s short time and continuous negative sequence current rated limits.

Overexcitation Protection
Generator overexcitation occurs when the ratio of voltage versus frequency is too high, and the rotor iron saturates due to high flux density. High flux density results in stray flux in components not designed to carry it, which in turn causes overheating and can potentially damage the generator. This protection is provided through a Volts/Hertz function with a programmable inverse time characteristic.

Loss of Excitation
Loss of field protection or loss of excitation is used to avoid unstable operation, potential loss of synchronism, and possible damage to synchronous generators. When a synchronous generator loses its field, the generator can continue to generate power as an induction generator, provided that it can obtain its excitation from the other machines on the system. During this condition, the rotor will quickly overheat due to the slip frequency currents induced in it. Loss of excitation in one machine could jeopardize the operation of other machines beyond their capability, and also the stability of the entire system. The EGR-5000 supports the two typical distance relaying schemes used for detecting the loss excitation. The two schemes differ mainly in that scheme 1 uses a offset mho element and scheme 2 uses a positive offset mho element with directional unit supervision.

Monitoring and Metering

Sequence of Events Records

The EGR-5000 generator protection relay records a maximum of 300 events associated with the relay. An event is classified as a change of state as detected by the relay. These include relay pickups, drop-outs, trips, contact closure, alarms, setting changes and self-diagnostic failures. Each event is date and time stamped to a 1 ms resolution. The events are stored in a FIFO log in chronological order.

Trip Log

The EGR-5000 protection relay will store a maximum of 20 trip records in a FIFO trip log. Each trip record will be date and time stamped to a 1 ms resolution. The trip log record will include information on the type of fault, protection elements that operated, fault location and currents and voltages at the time of the fault.

Waveform Capture

The EGR-5000 distribution protection relay provides waveform-recording capabilities. The relay will record all measured signals along with the binary signals of pickup, trip, logic and contact closures. The EGR5000 relay can record up to 6000 cycles of data. The number of records is proportional to the size of each record; the maximum size per record is 600 cycles. The waveform capture is initiated by up to 8 different triggers; it can also be generated manually through the display or via communications.

Integral User Interface

The front panel user interface has a 128 x 64 pixel LCD display with background illumination for wide angle viewing in all light conditions. 17 programmable LEDs provide quick and easy visual display of power on, mode of operation, alarm and trip indication. Soft keys are provided for operation mode selection, scrolling through data and settings. In addition, the relay settings and test functions are password protected.

Load Profiling/Trending

The EGR-5000 relay automatically records selected quantities into non-volatile memory every 5, 10, 15, 30, or 60 minutes, depending on the trending report setting.

Programmable I/O

The EGR-5000 generator protection relay provides heavy-duty, trip-rated, 2 normally open and 6 Form C contacts. Two isolated inputs can be used for monitoring the trip circuit. One Form C contact is dedicated to the relay failure alarm function and is operated in a normally energized (failsafe) mode. There are up to 16 user-configurable discrete inputs that accept a wet contact and can operate through a wide range of power. Each input and output is user-programmable for maximum application flexibility.

The EGR-5000 also offers two optional analog inputs and two optional analog outputs. The analog inputs are available for providing protection and monitoring of generator bearing vibration. The analog inputs are field programmable to measure transducer signals that operate over a range of 0 to 20 mA, 4 to 20 mA, or 1 to 10V. The two optional analog outputs can be used for signaling the value of measured analog quantities to external process control devices such as PLCs. They can be programmed to operate over a 0 to 20mA, 4-20 mA, or 1 to 10 V range. The analog outputs can be configured to signal a representation of most analog quantities measured by the EGR-5000 including, current, voltages, and RTD temperature.

Figure 4. Scheme 2.

Maintenance Mode

The Maintenance Mode can improve safety by providing a simple and reliable method to reduce fault clearing time and lower incident energy levels at energized panels. The Maintenance Mode allows the user to switch to more sensitive settings via a password protected soft key, communication or via a digital Input while maintenance work is being performed at an energized panel or device. The more sensitive settings provide greater security for maintenance personnel and helps reduce the possibility of injury.
Programmable Logic

The EGR-5000 generator protection relay provides logic gates and timers that the user can customize for special or unique applications. Each gate can be assigned a logic function of either AND, OR, NAND or NOR. Each gate can have a maximum of four input signals and each input signal can be required to be a NOT. Input signals can be external inputs received via the binary inputs or internal values associated with the protection, alarm or metering set points. Each gate has a unique output assignment and designation that can be used as the input to another gate. There are 24 independent timers that have adjustable pickup and dropout delay settings.

![Visual Logic Editor](image)

Figure 5. Visual Logic Editor.

![Drilling](image)

Figure 6. Drilling.
Figure 7. Projection Mount Front and Side Views.

Figure 8. Standard Mount Front and Side Views.
Figure 9. Typical AC Connections.
Figure 10. Typical One-Line Diagram.

Figure 11. Typical Control Diagram.
Communication Software

Eaton provides two types of communication software. The first is PowerPort-E. It runs on a PC or laptop for easy access to a single relay to change set points or configuration and to view metered values and stored data. PowerPort-E is free and can be downloaded from the Eaton Web site at the following URL: http://www.EatonElectrical.com/pr

The second package is Power Xpert Software. Power Xpert Software is a power management software package that is designed for continuous, remote monitoring of many devices. It provides additional functions such as billing, trending and graphics. Contact your local Eaton representative for more information on Power Xpert software.

Standards, Certifications, and Ratings

Climatic Environmental Conditions

<table>
<thead>
<tr>
<th>Condition</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Storage Temperature:</td>
<td>-30°C to +70°C (-22°F to 158°F)</td>
</tr>
<tr>
<td>Operating Temperature:</td>
<td>-20°C to +60°C (-4°F to 140°F)</td>
</tr>
<tr>
<td>Permissible Humidity at Ann. Average:</td>
<td><75% rel. (on 56d up to 95% rel.)</td>
</tr>
<tr>
<td>Permissible Installation Altitude:</td>
<td><2,000 m (6,561.67 ft) above sea level</td>
</tr>
<tr>
<td></td>
<td>If 4,000 m (13,123.35 ft) altitude applies, a changed classification of the operating and test voltages may be necessary.</td>
</tr>
</tbody>
</table>
Degree of Protection EN 60529

<table>
<thead>
<tr>
<th>Component</th>
<th>Protection Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>HMI Front Panel with Seal</td>
<td>IP54</td>
</tr>
<tr>
<td>Rear Side Terminals</td>
<td>IP20</td>
</tr>
</tbody>
</table>

Routine Test

<table>
<thead>
<tr>
<th>Test Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insulation Test acc. to IEC60255-5:</td>
<td>All tests to be carried out against ground and other input and output circuits.</td>
</tr>
<tr>
<td>Aux. Voltage Supply, Digital Inputs, Current Measuring Inputs, Signal Relay Outputs:</td>
<td>2.5 kV (eff.) / 50 Hz</td>
</tr>
<tr>
<td>Voltage Measuring Inputs:</td>
<td>3.0 kV (eff.) / 50 Hz</td>
</tr>
<tr>
<td>All Wire-Bound Communication Interfaces:</td>
<td>1.5 kV DC</td>
</tr>
<tr>
<td>Insulation Test acc to IEC60255-5:</td>
<td>All tests to be carried out against ground and other input and output circuits.</td>
</tr>
</tbody>
</table>

Housing

<table>
<thead>
<tr>
<th>Specification</th>
<th>Measurement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Housing B2: Height / Width</td>
<td>183 mm (7.205 in.) / 212.7 mm (8.374 in.)</td>
</tr>
<tr>
<td>Housing Depth (incl. Terminals):</td>
<td>208 mm (8.189 in.)</td>
</tr>
<tr>
<td>Material, Housing:</td>
<td>Aluminum extruded section</td>
</tr>
<tr>
<td>Material, Front Panel:</td>
<td>Aluminum/Foil front</td>
</tr>
<tr>
<td>Mounting Position:</td>
<td>Horizontal (+45° around the X-axis must be permitted)</td>
</tr>
<tr>
<td>Weight:</td>
<td>Approx. 4.2 kg (9.259 lb)</td>
</tr>
</tbody>
</table>

Current and Ground Current Measurement

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal Currents</td>
<td>1 A / 5 A</td>
</tr>
<tr>
<td>Max. Measuring Range</td>
<td>Up to 40 x In (phase currents)</td>
</tr>
<tr>
<td></td>
<td>Up to 25 x In (ground current standard)</td>
</tr>
<tr>
<td></td>
<td>Up to 2.5 x In (ground current sensitive)</td>
</tr>
<tr>
<td>Continuous Loading Capacity</td>
<td>4 x In / continuously</td>
</tr>
<tr>
<td>Overcurrent Proof</td>
<td></td>
</tr>
<tr>
<td></td>
<td>30 x In / 10 s</td>
</tr>
<tr>
<td></td>
<td>100 x In / 1 s</td>
</tr>
<tr>
<td></td>
<td>250 x In / 10 ms (1 half-wave)</td>
</tr>
<tr>
<td>Power Consumption</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Phase current inputs</td>
</tr>
<tr>
<td></td>
<td>At In = 1A S = 015 mVA</td>
</tr>
<tr>
<td></td>
<td>At In = 5A S = 015 mVA</td>
</tr>
<tr>
<td></td>
<td>Ground current input</td>
</tr>
<tr>
<td></td>
<td>At In = 1A S = 035 mVA</td>
</tr>
<tr>
<td></td>
<td>At In = 5A S = 035 mVA</td>
</tr>
<tr>
<td>Frequency Range</td>
<td>50 Hz / 60 Hz ±10%</td>
</tr>
<tr>
<td>Terminals</td>
<td>Screw-type terminals with integrated short-circuiters (contacts)</td>
</tr>
<tr>
<td>Connection Cross Sections</td>
<td>1 x or 2 x 2.5 mm² (2 x AWG 14) with wire end ferrule</td>
</tr>
<tr>
<td></td>
<td>1 x or 2 x 4.0 mm² (2 x AWG 12) with ring cable sleeve or cable sleeve</td>
</tr>
<tr>
<td></td>
<td>1 x or 2 x 6 mm² (2 x AWG 10) with ring cable sleeve or cable sleeve</td>
</tr>
<tr>
<td></td>
<td>The current measuring board’s terminal blocks may be used as with 2 (double) conductors AWG 10,12,14 otherwise with single conductors only.</td>
</tr>
</tbody>
</table>

Plug-in Connector with Integrated Short-Circuiter (Conventional Current Inputs)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal Current</td>
<td>1 A and 5 A</td>
</tr>
<tr>
<td>Continuous Loading Capacity</td>
<td>4 x In / continuously</td>
</tr>
<tr>
<td>Overcurrent Withstand</td>
<td></td>
</tr>
<tr>
<td></td>
<td>30 x In / 10 s</td>
</tr>
<tr>
<td></td>
<td>100 x In / 1 s</td>
</tr>
<tr>
<td></td>
<td>250 x In / 10 ms (1 half-wave)</td>
</tr>
<tr>
<td>Screws</td>
<td>M4, captive type acc. to VDEW</td>
</tr>
<tr>
<td>Connection Cross Sections</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 x or 2 x 2.5 mm² (2 x AWG 14) with wire end ferrule</td>
</tr>
<tr>
<td></td>
<td>1 x or 2 x 4.0 mm² (2 x AWG 12) with ring cable sleeve or cable sleeve</td>
</tr>
<tr>
<td></td>
<td>1 x or 2 x 6 mm² (2 x AWG 10) with ring cable sleeve or cable sleeve</td>
</tr>
<tr>
<td></td>
<td>The current measuring board’s terminal blocks may be used as with 2 (double) conductors AWG 10,12,14 otherwise with single conductors only.</td>
</tr>
</tbody>
</table>
Voltage and Residual Voltage Measurement

<table>
<thead>
<tr>
<th>Nominal Voltages:</th>
<th>100 V / 110 V / 230 V / 400 V (can be configured)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max. Measuring Range:</td>
<td>2 x nominal voltage</td>
</tr>
<tr>
<td>Continuous Loading Capacity:</td>
<td>2 x nominal voltage (800 Vac)</td>
</tr>
<tr>
<td>Power Consumption:</td>
<td>at (V_n = 100 \text{ V}) (S = 0.1 \text{ mVA})</td>
</tr>
<tr>
<td></td>
<td>at (V_n = 110 \text{ V}) (S = 0.1 \text{ mVA})</td>
</tr>
<tr>
<td></td>
<td>at (V_n = 230 \text{ V}) (S = 0.4 \text{ mVA})</td>
</tr>
<tr>
<td></td>
<td>at (V_n = 400 \text{ V}) (S = 1.0 \text{ mVA})</td>
</tr>
<tr>
<td>Frequency Range:</td>
<td>50 Hz or 60 Hz ±10%</td>
</tr>
<tr>
<td>Terminals:</td>
<td>Screw-type terminals</td>
</tr>
</tbody>
</table>

Frequency Measurement

| Nominal Frequencies: | 50 Hz / 60 Hz |

Voltage Supply

Aux. Voltage:	24 - 270 Vdc / 48 - 230 Vac (-20/+10%)
Buffer Time in Case of Supply Failure:	>= 50 ms at minimal aux. voltage interrupted communication is permitted.
Max. Permissible Making Current:	18 A peak value for <0.25 ms
	12 A peak value for <1 ms

The voltage supply must be protected by a fuse of:
- 2.5 A time-lag miniature fuse 5 x 20 mm (approx. 0.2 x 0.8 in.) according to IEC 60127
- 3.5 A time-lag miniature fuse 6.3 x 32 mm (approx. 0.25 x 1.25 in.) according to UL 248-14

Power Consumption

<table>
<thead>
<tr>
<th>Power Supply Range:</th>
<th>Power consumption in Idle Mode</th>
<th>Max. Power Consumption</th>
</tr>
</thead>
<tbody>
<tr>
<td>24 - 270 Vdc:</td>
<td>Approx. 7 W</td>
<td>Approx. 13 W</td>
</tr>
<tr>
<td>48 - 230 Vac:</td>
<td>Approx. 7 VA</td>
<td>Approx. 13 VA</td>
</tr>
</tbody>
</table>

Display

| Display Type: | LCD with LED background illumination |
| Resolution - Graphics Display: | 128 x 64 pixel |

LED

| LED - Type: | Two colored: red / green |
| Number of LEDs, Housing B2: | 15 |

Front Interface RS232

Baud Rates:	115,200 Baud
Handshake:	RTS and CTS
Connection:	9-pole D-Sub plug

Real Time Clock

| Running Reserve of the Real Time Clock: | 1 year min. |

Digital Inputs

Max. Input Voltage:	300 Vdc / 250 Vac
Input Current:	<4 mA
Reaction Time:	<20 ms
Fallback Time:	<30 ms

(Safe State of the Digital Inputs)

Un = 24 Vdc, 48 Vdc, 60 Vdc, 110 Vac / dc:	Min. 19.2 Vdc / Max. 9.6 Vdc
Un = 48 V / 60Vdc:	Min. 42.6 Vdc / Max. 21.3 Vdc
Un = 110 / 120 Vac / dc:	Min. 88.0 Vdc / 88.0 Vac / Max. 44.0 Vdc / 44.0 Vac
Un = 230 / 240 Vac / dc:	Min. 184 Vdc / 184 Vac / Max. 92 Vdc / 92 Vac

Relay Outputs

Continuous Current:	5 A ac / dc
Max. Make Current:	25 A ac / 25 A dc up to 30 V for 4 s
Max. Breaking Current:	5 A ac up to 250 Vac / 5 A dc up to 30 V (resistive) / 0.3 A dc at 300 V
Max. Switching Voltage:	250 Vac / 250 Vdc
Switching Capacity:	1,250 VA
Contact Type:	Form C or normally open contact
Terminals:	Screw-type terminals
Supervision Contact (SC)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Continuous Current</td>
<td>5 A ac / dc</td>
</tr>
<tr>
<td>Max. Switch-on Current</td>
<td>15 A ac / 15 A dc up to 30 V for 4 s</td>
</tr>
<tr>
<td>Max. Breaking Current</td>
<td>5 A ac up to 250 Vac</td>
</tr>
<tr>
<td></td>
<td>5 A dc up to 30 Vdc</td>
</tr>
<tr>
<td></td>
<td>0.4 A at 125 Vdc</td>
</tr>
<tr>
<td>Contact Type</td>
<td>1 Form C contact</td>
</tr>
<tr>
<td>Terminals</td>
<td>Screw-type terminals</td>
</tr>
</tbody>
</table>

Time Synchronization IRIG-B00X

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal input voltage</td>
<td>5 V</td>
</tr>
<tr>
<td>Connection</td>
<td>Screw-type terminals (twisted pair)</td>
</tr>
</tbody>
</table>

Zone Interlocking

Note: Only for Zone Interlock Tripping Outputs (Zone Interlock, semiconductor output): 5 Vdc, <2mA for connection to electronic inputs only.

<table>
<thead>
<tr>
<th>Zone:</th>
<th>Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zone Out:</td>
<td></td>
</tr>
<tr>
<td>Output voltage (High)</td>
<td>4.75 to 5.25 Vdc</td>
</tr>
<tr>
<td>Output voltage (Low)</td>
<td>0.0 to +0.5 Vdc</td>
</tr>
<tr>
<td>Zone In:</td>
<td></td>
</tr>
<tr>
<td>Nominal input voltage</td>
<td>+5 Vdc</td>
</tr>
<tr>
<td>Max. input voltage</td>
<td>+5.5 Vdc</td>
</tr>
<tr>
<td>Switching threshold ON</td>
<td>min. 4.0 Vdc</td>
</tr>
<tr>
<td>Switching threshold OFF</td>
<td>max. 1.5 Vdc</td>
</tr>
<tr>
<td>Galvanic isolation</td>
<td>2.5 kV ac (to ground and other IO)</td>
</tr>
<tr>
<td>Connection</td>
<td>Screw-type terminals (twisted pair)</td>
</tr>
</tbody>
</table>

RS485

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Master/Slave</td>
<td>Slave</td>
</tr>
<tr>
<td>Connection</td>
<td>6 screw-clamping terminals RM 3.5 mm (138 MIL) (terminating resistors internal)</td>
</tr>
</tbody>
</table>

Note: The RS485 interface is realized via terminals. The communication cable has to be shielded. The shielding has to be fixed at the screw that is marked with the ground symbol (rear side of the device).
EMC Emission Tests

<table>
<thead>
<tr>
<th>Test</th>
<th>Standard/Classification</th>
<th>Limit/Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radio Interference Suppression Test</td>
<td>IEC/CISPR11</td>
<td>Limit value class B</td>
</tr>
<tr>
<td>Radio Interference Radiation Test</td>
<td>IEC/CISPR11</td>
<td>Limit value class B</td>
</tr>
</tbody>
</table>

Environmental Tests

Classification:

<table>
<thead>
<tr>
<th>Classification</th>
<th>IEC Code</th>
<th>Code Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Climates</td>
<td>60068-1</td>
<td>0/055/56</td>
</tr>
<tr>
<td>Classification of ambient conditions (Storage)</td>
<td>60721-3-1</td>
<td>1K5/1B1/1C1/L/151/1M2 but min. -25°C (-13°F)</td>
</tr>
<tr>
<td>Classification of ambient conditions (Transportation)</td>
<td>60721-3-2</td>
<td>2K3/2B1/2C1/2S1/2M2</td>
</tr>
<tr>
<td>Classification of ambient conditions (Stationary use at weather protected locations)</td>
<td>60721-3-3</td>
<td>3K6/3B1/3C1/3S1/3M2 but min. 0°C (32°F) and 3K8H for 2 h</td>
</tr>
</tbody>
</table>

Test Ad: Cold

<table>
<thead>
<tr>
<th>Test</th>
<th>Standard/Classification</th>
<th>Temperature</th>
<th>Test Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test Ad</td>
<td>IEC 60068-2-1</td>
<td>-20°C (-4°F)</td>
<td>16 h</td>
</tr>
</tbody>
</table>

Test Bd: Dry Heat

<table>
<thead>
<tr>
<th>Test</th>
<th>Standard/Classification</th>
<th>Temperature</th>
<th>Relative Humidity</th>
<th>Test Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test Bd</td>
<td>IEC 60068-2-2</td>
<td>55°C (131°F)</td>
<td><50%</td>
<td>72 h</td>
</tr>
</tbody>
</table>

Test Cab: Damp Heat (Steady State)

<table>
<thead>
<tr>
<th>Test</th>
<th>Standard/Classification</th>
<th>Temperature</th>
<th>Relative Humidity</th>
<th>Test Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test Cab</td>
<td>IEC 60068-2-78</td>
<td>40°C (104°F)</td>
<td>93%</td>
<td>96 d</td>
</tr>
</tbody>
</table>

Test Db: Damp Heat (Cyclic)

<table>
<thead>
<tr>
<th>Test</th>
<th>Standard/Classification</th>
<th>Temperature</th>
<th>Relative Humidity</th>
<th>Cycles (12 + 12-hour)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test Db</td>
<td>IEC 60068-2-30</td>
<td>55°C (131°F)</td>
<td>95%</td>
<td>2</td>
</tr>
</tbody>
</table>

Mechanical Tests

Test Fc: Vibration Response Test

<table>
<thead>
<tr>
<th>Test</th>
<th>Standard/Classification</th>
<th>Frequency</th>
<th>Displacement</th>
<th>Acceleration</th>
<th>Number of Cycles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test Fc</td>
<td>IEC 60068-2-6</td>
<td>(10 Hz – 59 Hz)</td>
<td>0.0014 in. (0.035 mm)</td>
<td>0.5 gn</td>
<td>1</td>
</tr>
<tr>
<td>Test Fc</td>
<td>IEC 60255-21-1</td>
<td>(59Hz – 150Hz)</td>
<td></td>
<td>Number of cycles in each axis</td>
<td>1</td>
</tr>
</tbody>
</table>

Test Fc: Vibration Endurance Test

<table>
<thead>
<tr>
<th>Test</th>
<th>Standard/Classification</th>
<th>Frequency</th>
<th>Acceleration</th>
<th>Number of Cycles in each axis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test Fc</td>
<td>IEC 60068-2-6</td>
<td>(10 Hz – 150 Hz)</td>
<td>1.0 gn</td>
<td>20</td>
</tr>
</tbody>
</table>

Test Ea: Shock Test

<table>
<thead>
<tr>
<th>Test</th>
<th>Standard/Classification</th>
<th>Test Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test Ea</td>
<td>IEC 60068-2-27</td>
<td>Shock response test 5 gn, 11 ms, 3 impulses in each direction</td>
</tr>
<tr>
<td>Test Ea</td>
<td>IEC 60255-21-2</td>
<td>Shock resistance test 15 gn, 11 ms, 3 impulses in each direction</td>
</tr>
</tbody>
</table>

Test Eb: Shock Endurance Test

<table>
<thead>
<tr>
<th>Test</th>
<th>Standard/Classification</th>
<th>Test Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test Eb</td>
<td>IEC 60068-2-29</td>
<td>Shock endurance test 10 gn, 16 ms, 1,000 impulses in each direction</td>
</tr>
</tbody>
</table>

Test Fe: Earthquake Test

<table>
<thead>
<tr>
<th>Test</th>
<th>Standard/Classification</th>
<th>Test Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test Fe</td>
<td>IEC 60068-3-3</td>
<td>Single axis earthquake vibration test 3 – 7 Hz: Horizontal 0.394 in. (10 mm), 1 cycle each axis</td>
</tr>
<tr>
<td>Test Fe</td>
<td>KTA 3503</td>
<td></td>
</tr>
<tr>
<td>Test Fe</td>
<td>IEC 60255-21-3</td>
<td></td>
</tr>
<tr>
<td>Class</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

Test Fe: Earthquake Test

<table>
<thead>
<tr>
<th>Class</th>
<th>Test Fe</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class 2</td>
<td>IEC 60068-3-3</td>
<td>Single axis earthquake vibration test 3 – 7 Hz: Horizontal 0.394 in. (10 mm), 1 cycle each axis</td>
</tr>
<tr>
<td></td>
<td>KTA 3503</td>
<td></td>
</tr>
<tr>
<td></td>
<td>IEC 60255-21-3</td>
<td></td>
</tr>
</tbody>
</table>

Test Fe: Earthquake Test

<table>
<thead>
<tr>
<th>Class</th>
<th>Test Fe</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class 2</td>
<td>IEC 60068-3-3</td>
<td>Single axis earthquake vibration test 3 – 7 Hz: Horizontal 0.394 in. (10 mm), 1 cycle each axis</td>
</tr>
<tr>
<td></td>
<td>KTA 3503</td>
<td></td>
</tr>
<tr>
<td></td>
<td>IEC 60255-21-3</td>
<td></td>
</tr>
<tr>
<td>Class</td>
<td>Test Fe</td>
<td>Details</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>--------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Class 2</td>
<td>IEC 60068-3-3</td>
<td>Single axis earthquake vibration test 3 – 7 Hz: Horizontal 0.394 in. (10 mm), 1 cycle each axis</td>
</tr>
<tr>
<td></td>
<td>KTA 3503</td>
<td></td>
</tr>
<tr>
<td></td>
<td>IEC 60255-21-3</td>
<td></td>
</tr>
</tbody>
</table>
Specifications

Specifications of the Real Time Clock

<table>
<thead>
<tr>
<th>Resolution:</th>
<th>1 ms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tolerance:</td>
<td><1 minute / month (+20°C [68°F])</td>
</tr>
</tbody>
</table>

Specifications of the Measured Value Acquisition

Phase and Ground Current Measuring

<table>
<thead>
<tr>
<th>Frequency Range:</th>
<th>50 Hz / 60 Hz ± 10% ¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accuracy:</td>
<td>Class 0.5</td>
</tr>
<tr>
<td>Amplitude Error if I < In:</td>
<td>±0.5% of the rated current ² ³</td>
</tr>
<tr>
<td>Amplitude Error if I > In:</td>
<td>±0.5% of the measured current ² ³</td>
</tr>
<tr>
<td>Amplitude Error if I > 2 In:</td>
<td>±1.0% of the measured current ² ³</td>
</tr>
<tr>
<td>Resolution:</td>
<td>0.01 A (0.001 A for earth current sensitive)</td>
</tr>
<tr>
<td>Harmonics:</td>
<td>Up to 20% 3rd harmonic ±2% (up to 20% 5th harmonic ±2%)</td>
</tr>
<tr>
<td>Frequency Influence:</td>
<td><±2% / Hz in the range of ±5 Hz of the configured nominal frequency</td>
</tr>
<tr>
<td>Temperature Influence:</td>
<td><±1% within the range of 0°C to +60°C (+32°F to +140°F)</td>
</tr>
</tbody>
</table>

Phase-to-Earth and Residual Voltage Measurement

Accuracy for measured values:	Class 0.5
Amplitude error for V<100 V:	±0.5 V independent of rated voltage ²
Amplitude error for V>Vn:	±0.5% of rated voltage ²
Amplitude error for V>Vn:	±0.5% of measured voltage ³
Accuracy for calculated values:	Class 1.0
Amplitude error for V<100V(calculated):	±1.0 V independent of rated voltage ²
Amplitude error for V>Vn:	±1.0% of rated voltage ³
Amplitude error for V>Vn:	±1.0% of calculated voltage ³
Resolution:	0.1 V
Harmonics:	Up to 20% 3rd harmonic ±1%, up to 20% 5th harmonic ±1%
Frequency influence:	<±2% / Hz in the range of ±5 Hz of the configured nominal frequency
Temperature influence:	<±1% within the range of 0°C up to +60°C

*¹) Wide frequency range (10...70Hz) is active outside 50Hz/60Hz=10%. DFT values get more inaccurate, protective elements which have DFT values as input may be blocked automatically.

*²) Accuracy for True RMS values in wide frequency range: 30...70Hz same accuracy like specified above. <~30Hz accuracy is less than 3%. True RMS values are updated only every full cycle (period time).

*³) For earth current sensitive the precision does not depend on the nominal value but its reference to 100 mA (with in=1A) respectively. 500 mA (with in - 5 A)

Energy Measurement*

| Energy counter error for VAh < Sn • 1h: | 3% of Sn |
| Energy counter error for VAh > Sn • 1h: | 3% of measured energy |

Power Measurement*

| VA, W, VAR: | <±0.1% of the measured value or 0.1% x Sn |
| Energy counter error for VAh > Sn • 1h: | 3% of measured energy |

Power Factor Measurement*

| PF: | ±0.01 of measured power factor or 1*
| Energy counter error for VAh > Sn • 1h: | 3% of measured energy |

* Tolerance at 0.8...1.2 x Vn (with Vn=100V), (PF)>0.5, symmetrically fed. Units are selected automatically depending on CT and VT ratings for best fit. Sn=1.73 • VT rating • CT rating

Frequency Measurement

Nominal frequency:	50 Hz / 60 Hz
Precision:	±0.05% of fn within the range of 40-70 Hz at voltages > 50 V
Voltage dependency:	frequency acquisition 0.15 x Vn
Protection Elements Accuracy

NOTICE

THE TRIPPING DELAY RELATES TO THE TIME BETWEEN ALARM AND TRIP. THE ACCURACY OF THE OPERATING TIME RELATES TO THE TIME BETWEEN WHEN THE MEASURED VALUE HAS EXCEEDED THE THRESHOLD UNTIL THE PROTECTION ELEMENT IS PICKED-UP.

Overcurrent Protection Elements: 50P[x], 51P[x]

<table>
<thead>
<tr>
<th></th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pickup</td>
<td>±1.5% of the setting value resp. 1% x In.</td>
</tr>
<tr>
<td>Dropout Ratio</td>
<td>97% or 0.5% x In</td>
</tr>
<tr>
<td>t</td>
<td>DEF T ±1% resp. ±10 ms</td>
</tr>
<tr>
<td>Operating Time</td>
<td><35 ms</td>
</tr>
<tr>
<td>Disengaging Time</td>
<td><45 ms</td>
</tr>
<tr>
<td>t-Multiplier</td>
<td>±5% IEC NINV IEC VINV IEC EINV IEC LINV ANSI MINV ANSI VINV ANSI EINV Flat It Pt P't</td>
</tr>
<tr>
<td>Reset Mode</td>
<td>±1% resp. ±10 ms IEC NINV IEC VINV IEC EINV IEC LINV</td>
</tr>
</tbody>
</table>

Voltage restraint 51V[x]

<table>
<thead>
<tr>
<th></th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pickup</td>
<td>±1.5% of the setting value resp. 1% x In.</td>
</tr>
<tr>
<td>Dropout Ratio</td>
<td>97% or 0.5% x In</td>
</tr>
<tr>
<td>Operating Time</td>
<td><35 ms</td>
</tr>
<tr>
<td>Disengaging Time</td>
<td><45 ms</td>
</tr>
<tr>
<td>t-Multiplier</td>
<td>±5% IEC NINV IEC VINV IEC EINV IEC LINV ANSI MINV ANSI VINV ANSI EINV Flat It Pt P't</td>
</tr>
<tr>
<td>Reset Mode</td>
<td>±1% resp. ±10 ms IEC NINV IEC VINV IEC EINV IEC LINV</td>
</tr>
</tbody>
</table>

Voltage restraint 51V[x] (Cont’d)

<table>
<thead>
<tr>
<th></th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>t-Multiplier</td>
<td>±5% IEC NINV IEC VINV IEC EINV IEC LINV ANSI MINV ANSI VINV ANSI EINV Flat It Pt P't</td>
</tr>
<tr>
<td>Reset Mode</td>
<td>±1% resp. ±10 ms IEC NINV IEC VINV IEC EINV IEC LINV</td>
</tr>
</tbody>
</table>

Overcurrent Protection Elements: 50P[x], 51P[x]

<table>
<thead>
<tr>
<th></th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pickup</td>
<td>±1.5% of the setting value resp. 1% x In.</td>
</tr>
<tr>
<td>Dropout Ratio</td>
<td>97% or 0.5% x In</td>
</tr>
<tr>
<td>t</td>
<td>DEF T ±1% resp. ±10 ms</td>
</tr>
<tr>
<td>Operating Time</td>
<td><35 ms</td>
</tr>
<tr>
<td>Disengaging Time</td>
<td><45 ms</td>
</tr>
<tr>
<td>t-Multiplier</td>
<td>±5% IEC NINV IEC VINV IEC EINV IEC LINV ANSI MINV ANSI VINV ANSI EINV Flat It Pt P't</td>
</tr>
<tr>
<td>Reset Mode</td>
<td>±1% resp. ±10 ms IEC NINV IEC VINV IEC EINV IEC LINV</td>
</tr>
</tbody>
</table>

Voltage restraint 51V[x]

<table>
<thead>
<tr>
<th></th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pickup</td>
<td>±1.5% of the setting value resp. 1% x In.</td>
</tr>
<tr>
<td>Dropout Ratio</td>
<td>97% or 0.5% x In</td>
</tr>
<tr>
<td>Operating Time</td>
<td><35 ms</td>
</tr>
<tr>
<td>Disengaging Time</td>
<td><45 ms</td>
</tr>
<tr>
<td>t-Multiplier</td>
<td>±5% IEC NINV IEC VINV IEC EINV IEC LINV ANSI MINV ANSI VINV ANSI EINV Flat It Pt P't</td>
</tr>
<tr>
<td>Reset Mode</td>
<td>±1% resp. ±10 ms IEC NINV IEC VINV IEC EINV IEC LINV</td>
</tr>
</tbody>
</table>

Voltage restraint 51V[x] (Cont’d)

<table>
<thead>
<tr>
<th></th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>t-Multiplier</td>
<td>±5% IEC NINV IEC VINV IEC EINV IEC LINV ANSI MINV ANSI VINV ANSI EINV Flat It Pt P't</td>
</tr>
<tr>
<td>Reset Mode</td>
<td>±1% resp. ±10 ms IEC NINV IEC VINV IEC EINV IEC LINV</td>
</tr>
</tbody>
</table>

Overcurrent Protection Elements: 50P[x], 51P[x]

<table>
<thead>
<tr>
<th></th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pickup</td>
<td>±1.5% of the setting value resp. 1% x In.</td>
</tr>
<tr>
<td>Dropout Ratio</td>
<td>97% or 0.5% x In</td>
</tr>
<tr>
<td>t</td>
<td>DEF T ±1% resp. ±10 ms</td>
</tr>
<tr>
<td>Operating Time</td>
<td><35 ms</td>
</tr>
<tr>
<td>Disengaging Time</td>
<td><45 ms</td>
</tr>
<tr>
<td>t-Multiplier</td>
<td>±5% IEC NINV IEC VINV IEC EINV IEC LINV ANSI MINV ANSI VINV ANSI EINV Flat It Pt P't</td>
</tr>
<tr>
<td>Reset Mode</td>
<td>±1% resp. ±10 ms IEC NINV IEC VINV IEC EINV IEC LINV</td>
</tr>
</tbody>
</table>

Voltage restraint 51V[x]

<table>
<thead>
<tr>
<th></th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pickup</td>
<td>±1.5% of the setting value resp. 1% x In.</td>
</tr>
<tr>
<td>Dropout Ratio</td>
<td>97% or 0.5% x In</td>
</tr>
<tr>
<td>Operating Time</td>
<td><35 ms</td>
</tr>
<tr>
<td>Disengaging Time</td>
<td><45 ms</td>
</tr>
<tr>
<td>t-Multiplier</td>
<td>±5% IEC NINV IEC VINV IEC EINV IEC LINV ANSI MINV ANSI VINV ANSI EINV Flat It Pt P't</td>
</tr>
<tr>
<td>Reset Mode</td>
<td>±1% resp. ±10 ms IEC NINV IEC VINV IEC EINV IEC LINV</td>
</tr>
</tbody>
</table>

Voltage restraint 51V[x] (Cont’d)

<table>
<thead>
<tr>
<th></th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>t-Multiplier</td>
<td>±5% IEC NINV IEC VINV IEC EINV IEC LINV ANSI MINV ANSI VINV ANSI EINV Flat It Pt P't</td>
</tr>
<tr>
<td>Reset Mode</td>
<td>±1% resp. ±10 ms IEC NINV IEC VINV IEC EINV IEC LINV</td>
</tr>
</tbody>
</table>

Overcurrent Protection Elements: 50P[x], 51P[x]

<table>
<thead>
<tr>
<th></th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pickup</td>
<td>±1.5% of the setting value resp. 1% x In.</td>
</tr>
<tr>
<td>Dropout Ratio</td>
<td>97% or 0.5% x In</td>
</tr>
<tr>
<td>t</td>
<td>DEF T ±1% resp. ±10 ms</td>
</tr>
<tr>
<td>Operating Time</td>
<td><35 ms</td>
</tr>
<tr>
<td>Disengaging Time</td>
<td><45 ms</td>
</tr>
<tr>
<td>t-Multiplier</td>
<td>±5% IEC NINV IEC VINV IEC EINV IEC LINV ANSI MINV ANSI VINV ANSI EINV Flat It Pt P't</td>
</tr>
<tr>
<td>Reset Mode</td>
<td>±1% resp. ±10 ms IEC NINV IEC VINV IEC EINV IEC LINV</td>
</tr>
</tbody>
</table>

Voltage restraint 51V[x]

<table>
<thead>
<tr>
<th></th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pickup</td>
<td>±1.5% of the setting value resp. 1% x In.</td>
</tr>
<tr>
<td>Dropout Ratio</td>
<td>97% or 0.5% x In</td>
</tr>
<tr>
<td>Operating Time</td>
<td><35 ms</td>
</tr>
<tr>
<td>Disengaging Time</td>
<td><45 ms</td>
</tr>
<tr>
<td>t-Multiplier</td>
<td>±5% IEC NINV IEC VINV IEC EINV IEC LINV ANSI MINV ANSI VINV ANSI EINV Flat It Pt P't</td>
</tr>
<tr>
<td>Reset Mode</td>
<td>±1% resp. ±10 ms IEC NINV IEC VINV IEC EINV IEC LINV</td>
</tr>
</tbody>
</table>

Voltage restraint 51V[x] (Cont’d)

<table>
<thead>
<tr>
<th></th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>t-Multiplier</td>
<td>±5% IEC NINV IEC VINV IEC EINV IEC LINV ANSI MINV ANSI VINV ANSI EINV Flat It Pt P't</td>
</tr>
<tr>
<td>Reset Mode</td>
<td>±1% resp. ±10 ms IEC NINV IEC VINV IEC EINV IEC LINV</td>
</tr>
</tbody>
</table>

Overcurrent Protection Elements: 50P[x], 51P[x]

<table>
<thead>
<tr>
<th></th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pickup</td>
<td>±1.5% of the setting value resp. 1% x In.</td>
</tr>
<tr>
<td>Dropout Ratio</td>
<td>97% or 0.5% x In</td>
</tr>
<tr>
<td>t</td>
<td>DEF T ±1% resp. ±10 ms</td>
</tr>
<tr>
<td>Operating Time</td>
<td><35 ms</td>
</tr>
<tr>
<td>Disengaging Time</td>
<td><45 ms</td>
</tr>
<tr>
<td>t-Multiplier</td>
<td>±5% IEC NINV IEC VINV IEC EINV IEC LINV ANSI MINV ANSI VINV ANSI EINV Flat It Pt P't</td>
</tr>
<tr>
<td>Reset Mode</td>
<td>±1% resp. ±10 ms IEC NINV IEC VINV IEC EINV IEC LINV</td>
</tr>
</tbody>
</table>

Voltage restraint 51V[x]

<table>
<thead>
<tr>
<th></th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pickup</td>
<td>±1.5% of the setting value resp. 1% x In.</td>
</tr>
<tr>
<td>Dropout Ratio</td>
<td>97% or 0.5% x In</td>
</tr>
<tr>
<td>Operating Time</td>
<td><35 ms</td>
</tr>
<tr>
<td>Disengaging Time</td>
<td><45 ms</td>
</tr>
<tr>
<td>t-Multiplier</td>
<td>±5% IEC NINV IEC VINV IEC EINV IEC LINV ANSI MINV ANSI VINV ANSI EINV Flat It Pt P't</td>
</tr>
<tr>
<td>Reset Mode</td>
<td>±1% resp. ±10 ms IEC NINV IEC VINV IEC EINV IEC LINV</td>
</tr>
</tbody>
</table>

Voltage restraint 51V[x] (Cont’d)

<table>
<thead>
<tr>
<th></th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>t-Multiplier</td>
<td>±5% IEC NINV IEC VINV IEC EINV IEC LINV ANSI MINV ANSI VINV ANSI EINV Flat It Pt P't</td>
</tr>
<tr>
<td>Reset Mode</td>
<td>±1% resp. ±10 ms IEC NINV IEC VINV IEC EINV IEC LINV</td>
</tr>
</tbody>
</table>

Overcurrent Protection Elements: 50P[x], 51P[x]

<table>
<thead>
<tr>
<th></th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pickup</td>
<td>±1.5% of the setting value resp. 1% x In.</td>
</tr>
<tr>
<td>Dropout Ratio</td>
<td>97% or 0.5% x In</td>
</tr>
<tr>
<td>t</td>
<td>DEF T ±1% resp. ±10 ms</td>
</tr>
<tr>
<td>Operating Time</td>
<td><35 ms</td>
</tr>
<tr>
<td>Disengaging Time</td>
<td><45 ms</td>
</tr>
<tr>
<td>t-Multiplier</td>
<td>±5% IEC NINV IEC VINV IEC EINV IEC LINV ANSI MINV ANSI VINV ANSI EINV Flat It Pt P't</td>
</tr>
<tr>
<td>Reset Mode</td>
<td>±1% resp. ±10 ms IEC NINV IEC VINV IEC EINV IEC LINV</td>
</tr>
</tbody>
</table>

Voltage restraint 51V[x]

<table>
<thead>
<tr>
<th></th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pickup</td>
<td>±1.5% of the setting value resp. 1% x In.</td>
</tr>
<tr>
<td>Dropout Ratio</td>
<td>97% or 0.5% x In</td>
</tr>
<tr>
<td>Operating Time</td>
<td><35 ms</td>
</tr>
<tr>
<td>Disengaging Time</td>
<td><45 ms</td>
</tr>
<tr>
<td>t-Multiplier</td>
<td>±5% IEC NINV IEC VINV IEC EINV IEC LINV ANSI MINV ANSI VINV ANSI EINV Flat It Pt P't</td>
</tr>
<tr>
<td>Reset Mode</td>
<td>±1% resp. ±10 ms IEC NINV IEC VINV IEC EINV IEC LINV</td>
</tr>
</tbody>
</table>

Voltage restraint 51V[x] (Cont’d)

<table>
<thead>
<tr>
<th></th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>t-Multiplier</td>
<td>±5% IEC NINV IEC VINV IEC EINV IEC LINV ANSI MINV ANSI VINV ANSI EINV Flat It Pt P't</td>
</tr>
<tr>
<td>Reset Mode</td>
<td>±1% resp. ±10 ms IEC NINV IEC VINV IEC EINV IEC LINV</td>
</tr>
</tbody>
</table>
Protection Elements Accuracy (Cont'd)

Ground Current Elements: 50X(x), 50R(x), 51X(x), 51R(x)

<table>
<thead>
<tr>
<th>Element</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pickup</td>
<td>±1.5% of the setting value Resp. 1% x ln</td>
</tr>
<tr>
<td>Dropout Ratio</td>
<td>97% or 0.5% x ln</td>
</tr>
<tr>
<td>t</td>
<td>DEFT ±1% resp. ±0 ms</td>
</tr>
<tr>
<td>Operating Time Starting from IE higher than 1.1 x IE></td>
<td><35 ms</td>
</tr>
<tr>
<td>Disengaging Time</td>
<td><45 ms</td>
</tr>
<tr>
<td>t-Multiplier</td>
<td>±5% IEC NINV IEC VINV IEC EINV IEC UNV ANSI MINV ANSI VINV ANSI EINV Flat it Pt Pt</td>
</tr>
<tr>
<td>Reset Mode</td>
<td>±1% resp. ±0 ms IEC characteristics IEC NINV IEC VINV IEC EINV IEC UNV 5% Reset curves if ANSI characteristics ANSI MINV ANSI VINV ANSI EINV Flat it Pt Pt</td>
</tr>
</tbody>
</table>

Phase Differential Protection: 87

<table>
<thead>
<tr>
<th>Element</th>
<th>Range</th>
<th>Step</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Id min</td>
<td>0.1 ... 1.0 x lb</td>
<td>0.1 x lb</td>
<td>±3% of the setting value resp. 1% ln.</td>
</tr>
<tr>
<td>Id(I0)</td>
<td>0.0 ... 1.0 x lb</td>
<td>0.1 x lb</td>
<td>±3% of the setting value resp. 1% ln.</td>
</tr>
<tr>
<td>Id(I1)</td>
<td>0.2 ... 2.0 x lb</td>
<td>0.1 x lb</td>
<td>±3% of the setting value resp. 1% ln.</td>
</tr>
<tr>
<td>Id(I2)</td>
<td>2.0 ... 8.0 x lb</td>
<td>0.1 x lb</td>
<td>±3% of the setting value resp. 1% ln.</td>
</tr>
<tr>
<td>d(H,m)</td>
<td>0.0 ... 30.0 x lb</td>
<td>0.1 x lb</td>
<td>±3% of the setting value resp. 1% ln.</td>
</tr>
<tr>
<td>CT Satur Level</td>
<td>100 ... 500 % 1.00%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operating time</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Id > 2 x pickup (step from zero to 200% pickup of 87-Char)</td>
<td><40 ms</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Typically trip time</td>
<td></td>
<td></td>
<td>30 ms</td>
</tr>
<tr>
<td>Shortest trip time</td>
<td></td>
<td></td>
<td>18 ms</td>
</tr>
</tbody>
</table>

Unrestrained Phase Differential Protection: 87H

<table>
<thead>
<tr>
<th>Element</th>
<th>Range</th>
<th>Step</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Id >></td>
<td>2.0 ... 30.0 x lb</td>
<td>0.1 x lb</td>
<td>±3% of the setting value resp. 1% ln.</td>
</tr>
<tr>
<td>Operating time</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Id > 1.1 x pickup</td>
<td></td>
<td></td>
<td><30 ms</td>
</tr>
<tr>
<td>Typically trip time</td>
<td></td>
<td></td>
<td>19 ms</td>
</tr>
<tr>
<td>Shortest trip time</td>
<td></td>
<td></td>
<td>13 ms</td>
</tr>
</tbody>
</table>

Ground Differential Protection: 87G

<table>
<thead>
<tr>
<th>Element</th>
<th>Range</th>
<th>Step</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>IdG min</td>
<td>0.05 ... 1.0 x lb</td>
<td>0.1 x lb</td>
<td>±3% of the setting value resp. 1% ln.</td>
</tr>
<tr>
<td>IdG(I0)</td>
<td>0.0 ... 1.0 x lb</td>
<td>0.1 x lb</td>
<td>±3% of the setting value resp. 1% ln.</td>
</tr>
<tr>
<td>IdG(I1)</td>
<td>0.2 ... 2.0 x lb</td>
<td>0.1 x lb</td>
<td>±3% of the setting value resp. 1% ln.</td>
</tr>
<tr>
<td>IdG(I2)</td>
<td>2.0 ... 8.0 x lb</td>
<td>0.1 x lb</td>
<td>±3% of the setting value resp. 1% ln.</td>
</tr>
<tr>
<td>Operating time</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IdG > 2 x pickup (step from zero to 200% pickup of 87G-Char)</td>
<td><40 ms</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Typically trip time</td>
<td></td>
<td></td>
<td>30 ms</td>
</tr>
<tr>
<td>Shortest trip time</td>
<td></td>
<td></td>
<td>18 ms</td>
</tr>
</tbody>
</table>

Unrestrained Ground Differential Protection: 87GH

<table>
<thead>
<tr>
<th>Element</th>
<th>Range</th>
<th>Step</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>IdG >></td>
<td>2.0 ... 20.0 x lb</td>
<td>0.1 x lb</td>
<td>±3% of the setting value resp. 1% ln.</td>
</tr>
<tr>
<td>Operating time</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IdG > 1.1 x pickup</td>
<td></td>
<td></td>
<td><30 ms</td>
</tr>
<tr>
<td>Typically trip time</td>
<td></td>
<td></td>
<td>19 ms</td>
</tr>
<tr>
<td>Shortest trip time</td>
<td></td>
<td></td>
<td>13 ms</td>
</tr>
</tbody>
</table>

Phase under- and phase overvoltage

27M(x)/59M(x)

<table>
<thead>
<tr>
<th>Element</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pickup</td>
<td>±1.5% of the setting value Resp. 1% x ln</td>
</tr>
<tr>
<td>Dropout Ratio</td>
<td>97% or 0.5% x ln</td>
</tr>
<tr>
<td>t</td>
<td>DEFT ±1% resp. ±0 ms</td>
</tr>
<tr>
<td>Operating Time Starting from V higher/lower than 1.1 x V> or Vc</td>
<td><35 ms</td>
</tr>
<tr>
<td>Disengaging Time</td>
<td><45 ms</td>
</tr>
</tbody>
</table>
| Aux. under- and phase overvoltage and neutral overvoltage 27A(x)/59A(x)/59N(x)

<table>
<thead>
<tr>
<th>Element</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pickup</td>
<td>±1.5% of the setting value Resp. 1% x ln</td>
</tr>
<tr>
<td>Dropout Ratio</td>
<td>97% or 0.5% x ln</td>
</tr>
<tr>
<td>t</td>
<td>DEFT ±1% resp. ±0 ms</td>
</tr>
<tr>
<td>Operating Time Starting from VG or VX higher than 1.1 x VG> or VX></td>
<td><35 ms</td>
</tr>
<tr>
<td>Disengaging Time</td>
<td><45 ms</td>
</tr>
</tbody>
</table>
Protection Elements Accuracy (Cont’d)

Volts per Hertz:

<table>
<thead>
<tr>
<th>Volts per Hertz:</th>
<th>Range</th>
<th>Step</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>24[x]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pickup</td>
<td>80.00…400.00 %</td>
<td>0.01 %</td>
<td>±1% *)</td>
</tr>
<tr>
<td>t</td>
<td>0.00…600.00 s</td>
<td>0.01 s</td>
<td>DEFT</td>
</tr>
</tbody>
</table>

*1) The V/Hz function provides reliable measurements of V/Hz up to 200% for a frequency range of 5–70 Hz, if voltage (RMS) > 0.15% Vn and < 800V. U/f <48V/Hz.

Voltage unbalance:

<table>
<thead>
<tr>
<th>Voltage unbalance:</th>
<th>Range</th>
<th>Step</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>47[x]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Threshold</td>
<td>0.01…1.30 x Vn</td>
<td>0.01 x Vn</td>
<td>±2 % of the setting value resp.1% Vn</td>
</tr>
<tr>
<td>t</td>
<td>0…300 s</td>
<td>0.01 s</td>
<td>DEFT</td>
</tr>
</tbody>
</table>

Drop-out Ratio

97% for P/Q> and 103% for P/Q<

*1) When |f - fn| > 5Hz: operating and disengaging time < 6 cycles or ±1%. If f < 30Hz, pickup accuracy < ±6% of the setting value resp. 5% x Vn. 32V[x] protection elements may be blocked when |f - fn| > 5Hz.
Technical Data

EGR-5000 Generation Protection Relay

Effective October 2011

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Mho Diameter</td>
<td>1.0 … 512.0 ohms</td>
<td>0.1 ohms</td>
<td>±1.5% or ±0.1 Ohm (5 A) ±0.5 Ohm (1 A) (related to the maximum impedance reach)</td>
</tr>
<tr>
<td>Mho Offset</td>
<td>-250.0 … 250.0 ohms</td>
<td>0.1 ohms</td>
<td>105% or ±0.1 Ohm (5 A) ±0.5 Ohm (1 A) (related to Mho pickup radium)</td>
</tr>
<tr>
<td>t-Mho</td>
<td>0.00 … 400.00 s</td>
<td>0.01 s</td>
<td>±1% or ±20 ms</td>
</tr>
<tr>
<td>V(Positive Sequence) < Pickup</td>
<td>0.01 … 1.30 x Vn</td>
<td>0.01 x Vn</td>
<td>±2% of the setting value or 1% Vn</td>
</tr>
<tr>
<td>t-V<</td>
<td>0.00 … 300.00 s</td>
<td>0.01 s</td>
<td>±1% or ±30 ms</td>
</tr>
<tr>
<td>Directional Angle Pickup</td>
<td>-20 … 0 degrees</td>
<td>1 degree</td>
<td>±1°</td>
</tr>
<tr>
<td>Operating Time</td>
<td>< 50 ms</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sync-Check: Sync

<table>
<thead>
<tr>
<th>Range</th>
<th>Step</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating time</td>
<td>Max. 300 ms</td>
<td></td>
</tr>
<tr>
<td>t-MaxBrCloseDelay</td>
<td>0.00 … 300.00 s</td>
<td>±1% resp. ±10 ms</td>
</tr>
<tr>
<td>t-MaxSyncSuperv</td>
<td>0.00 … 3000.00 s</td>
<td>±1% resp. ±10 ms</td>
</tr>
<tr>
<td>MinLiveBusVoltage</td>
<td>0.10 … 1.30 x Vn</td>
<td>±1.5% of the setting value Resp. 1% x Vn</td>
</tr>
<tr>
<td>MaxDeadBusVoltage</td>
<td>0.01 … 1.00 x Vn</td>
<td>±1.5% of the setting value Resp. 1% x Vn</td>
</tr>
<tr>
<td>MinLiveLineVoltage</td>
<td>0.10 … 1.30 x Vn</td>
<td>±1.5% of the setting value Resp. 1% x Vn</td>
</tr>
<tr>
<td>MaxDeadLineVoltage</td>
<td>0.01 … 1.00 x Vn</td>
<td>±1.5% of the setting value Resp. 1% x Vn</td>
</tr>
<tr>
<td>t-VoltDead</td>
<td>0.000 … 300.000 s</td>
<td>±1% resp. ±10 ms</td>
</tr>
<tr>
<td>MaxVoltageDiff</td>
<td>0.01 … 1.00 x Vn</td>
<td>±1.5% of the setting value Resp. 1% x Vn, may be exceeded when open delta is configured</td>
</tr>
<tr>
<td>MaxSlipFrequency</td>
<td>0.01 … 2.00 x Hz</td>
<td>0.01 Hz</td>
</tr>
<tr>
<td>MaxAngleDiff</td>
<td>1 … 60 x degrees</td>
<td>1 degree</td>
</tr>
</tbody>
</table>

Inadvertent Energy 50/27

<table>
<thead>
<tr>
<th>Range</th>
<th>Step</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>O/C Pickup</td>
<td>0.05 … 3.0 x In</td>
<td>±1.5% of the setting value resp. 1% x In</td>
</tr>
<tr>
<td>U/V Pickup</td>
<td>0.50 … 0.99 x Vn</td>
<td>±1.5% of the setting value resp. 1% x In</td>
</tr>
<tr>
<td>Pickup Delay</td>
<td>0.00 … 300.00 s</td>
<td>±1% resp. ±10 ms</td>
</tr>
<tr>
<td>Drop-out Delay</td>
<td>0.00 … 300.00 s</td>
<td>±1% resp. ±10 ms</td>
</tr>
<tr>
<td>O/C Pickup operating time</td>
<td><35 ms</td>
<td></td>
</tr>
<tr>
<td>O/C Pickup disengaging time</td>
<td><45 ms</td>
<td></td>
</tr>
<tr>
<td>U/V Pickup operating time</td>
<td><30 ms</td>
<td></td>
</tr>
<tr>
<td>U/V Pickup disengaging time</td>
<td><30 ms</td>
<td></td>
</tr>
</tbody>
</table>

Frequency Protection 81O[x]

<table>
<thead>
<tr>
<th>Range</th>
<th>Step</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Threshold</td>
<td>10 mHz at fn</td>
<td></td>
</tr>
<tr>
<td>t</td>
<td>±1% resp. ±10 ms</td>
<td></td>
</tr>
<tr>
<td>Operating time</td>
<td>Starting from f higher than f:+0.02 Hz</td>
<td>40-50Hz <60 ms</td>
</tr>
<tr>
<td>Release time</td>
<td>40-50Hz <85 ms</td>
<td>50-70Hz <75 ms</td>
</tr>
</tbody>
</table>

Frequency Protection 81U[x]

<table>
<thead>
<tr>
<th>Range</th>
<th>Step</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Threshold</td>
<td>10 mHz at fn</td>
<td></td>
</tr>
<tr>
<td>t</td>
<td>±1% resp. ±10 ms</td>
<td></td>
</tr>
<tr>
<td>Operating time</td>
<td>Starting from f lower than f:-0.02 Hz</td>
<td>40-50Hz <60 ms</td>
</tr>
<tr>
<td>Release time</td>
<td>40-50Hz <85 ms</td>
<td>50-70Hz <75 ms</td>
</tr>
<tr>
<td>V Block f</td>
<td>±1.5% of the setting value resp. 1% x Un</td>
<td></td>
</tr>
<tr>
<td>Dropout ratio</td>
<td>103% or 0.5% x Un</td>
<td></td>
</tr>
</tbody>
</table>

Rate of Change of Frequency df/dt

<table>
<thead>
<tr>
<th>Range</th>
<th>Step</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Threshold</td>
<td>100 mHz per Second</td>
<td></td>
</tr>
<tr>
<td>t</td>
<td>±1% resp. ±10 ms</td>
<td></td>
</tr>
<tr>
<td>Operating time</td>
<td><40 ms</td>
<td></td>
</tr>
<tr>
<td>Release time</td>
<td><40 ms</td>
<td></td>
</tr>
</tbody>
</table>
EGR-5000
Generation Protection Relay

<table>
<thead>
<tr>
<th>Rate of Change of Frequency DI/Dt</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treshold</td>
<td>100 mHz per Second</td>
</tr>
<tr>
<td>t</td>
<td>±1% resp. ±10 ms</td>
</tr>
<tr>
<td>Operating time</td>
<td><40 ms</td>
</tr>
<tr>
<td>Release time</td>
<td><40 ms</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Vector surge 78V</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treshold</td>
<td>±0.5° [1-30°] at Vn and fn</td>
</tr>
<tr>
<td>Operating time</td>
<td><40 ms</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PF-55D/PF-55A - Power Factor</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treshold</td>
<td>± 0.01 (absolute)</td>
</tr>
<tr>
<td>Operating time</td>
<td><120 ms</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SOTF – Switch onto fault</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating time</td>
<td><35 ms</td>
</tr>
<tr>
<td>I<</td>
<td>±1.5% of the setting value resp.1% x In</td>
</tr>
<tr>
<td>t-enable</td>
<td>±1% resp. ±10 ms</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CLPU – Cold load pickup</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating time</td>
<td><35 ms</td>
</tr>
<tr>
<td>t-Load OFF</td>
<td>±1% resp. ±10 ms</td>
</tr>
<tr>
<td>t-Max Block</td>
<td>±1% resp. ±10 ms</td>
</tr>
<tr>
<td>I<</td>
<td>±1.5% of the setting value resp.1% x In</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Breaker Failure Protection 50BF</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>I-BF></td>
<td>±1.5% of the setting value resp.1% x In</td>
</tr>
<tr>
<td>Dropout Ratio</td>
<td></td>
</tr>
<tr>
<td>t-BF</td>
<td>±1% resp. ±10 ms</td>
</tr>
<tr>
<td>Operating Time</td>
<td><40 ms</td>
</tr>
<tr>
<td>Starting from I Higher than 1.3 x I-BF></td>
<td><40 ms</td>
</tr>
<tr>
<td>Disengaging Time</td>
<td><40 ms</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Trip Circuit Monitoring TCM</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>t-TCM</td>
<td>±1% resp. ±10 ms</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LOP - loss of potential</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>t-Pickup</td>
<td>±1% resp. ±10 ms</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Current Transformer Supervision CTS</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al</td>
<td>±2% of the setting value resp. 1.5% In</td>
</tr>
<tr>
<td>Dropout Ratio</td>
<td>94%</td>
</tr>
<tr>
<td>Pickup delay</td>
<td>±1% resp. ±10 ms</td>
</tr>
</tbody>
</table>
Ordering Information

Sample Catalog Number

The catalog number identification chart defines the electrical characteristics and operation features included in the EGR-5000. For example, if the catalog number were EGR-5000A0BA1, the device would have the following:

EGR-5000

(A) - 16 DI, 9 Outputs, Removable Terminals, Zone Interlocking, URTD Interface.

(0) - 5A/1A Phase and Ground CTs, Power Supply Range: 19-300 Vdc, 40-250 Vac.

(B) - Modbus-RTU (RS-485).

(A) - Without Conformal Coating.

(1) - Projection Panel Mount.

Table 1. Ordering Table

<table>
<thead>
<tr>
<th>EGR-5000 Eaton Generator Relay Removable Terminals</th>
<th>EGR-5000</th>
<th>A</th>
<th>0</th>
<th>B</th>
<th>A</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Choose from the following options.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hardware Option 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16 DI, 9 Outputs, Removable Terminals, Zone Interlocking, URTD Interface</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 DI, 9 Outputs, 2AI, 2AO, Removable Terminals, Zone Interlocking, URTD Interface</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hardware Option 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phase Current 5A/1A, Ground Current 5A/1A, Power Supply Range: 19-300 Vdc, 40-250 Vac</td>
<td>D (Zero)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phase Current 5A/1A Sensitive Ground Current, 0.5A/0.1A, Power Supply Range: 19-300 Vdc, 40-250 Vac</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Communication Options</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Modbus-RTU (RS-485)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IEC-61850 (Goose)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Modbus-RTU + Modbus-TCP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conformal Coating Options</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>None</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conformal Coated Circuit Boards</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mounting Options</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standard Mount</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Projection Panel Mount</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Standard Accessories EGR-5000

<table>
<thead>
<tr>
<th>Catalogue Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>URTDI-01</td>
<td>UNVL RTD Mod. with Modbus-RTU 48-240 VAC/48-250 VDC</td>
</tr>
<tr>
<td>URTDI-02</td>
<td>UNVL RTD Mod. with Modbus-RTU 24-48 VDC</td>
</tr>
<tr>
<td>66B2214G01</td>
<td>E-Series RS-232 Null Modem Cable</td>
</tr>
<tr>
<td>66B2214G02</td>
<td>E-Series USB to RS-232 Converter</td>
</tr>
<tr>
<td>66B2214G03</td>
<td>E-Series RS-232 Cable & USB to RS-232 Converter</td>
</tr>
</tbody>
</table>
EGR-5000
Generation Protection Relay

Notes:
These technical data materials are published solely for information purposes and should not be considered all-inclusive. If further information is required, you should consult an authorized Eaton sales representative.

The sale of the product shown in this literature is subject to the terms and conditions outlined in appropriate Eaton selling policies or other contractual agreement between the parties. This literature is not intended to and does not enlarge or add to any such contract. The sole source governing the rights and remedies of any purchaser of this equipment is the contract between the purchaser and Eaton.

NO WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE OR MERCHANTABILITY, OR WARRANTIES ARISING FROM COURSE OF DEALING OR USAGE OF TRADE, ARE MADE REGARDING THE INFORMATION, RECOMMENDATIONS, AND DESCRIPTIONS CONTAINED HEREIN. In no event will Eaton be responsible to the purchaser or user in contract, in tort (including negligence), strict liability or otherwise for any special, indirect, incidental or consequential damage or loss whatsoever, including but not limited to damage or loss of use of equipment, plant or power system, cost of capital, loss of power, additional expenses in the use of existing power facilities, or claims against the purchaser or user by its customers resulting from the use of the information, recommendations and description contained herein.