Next Generation LED Lighting for Hazardous Offshore Areas

Enhancing Safety and Productivity in Harsh and Hazardous Applications through LED Lighting

Has the Time Come for the Next Generation of LED Lighting?

LED Technology: Making the Commercial Case

Deciding When and How to Upgrade

The Past, Present, and Future of LEDs
Harsh and hazardous conditions? Count on us to light the way.

LED lighting solutions designed for global harsh and hazardous conditions.
When it comes to choosing a lighting solution for classified environments, there’s nothing more hazardous than making the wrong decision. That’s where Eaton’s Crouse-Hinds Business makes a difference. We offer the industry’s broadest portfolio of LED luminaires, ensuring you get the right solution for the right application, right away.

Engineered to provide superior T-ratings, extreme vibration resistance and a lifespan ranging up to 170,000 hours, you can count on 7 to 20 years of maintenance-free operation— even in the harshest offshore and land-based locations. So, for high-quality, reliable LED lighting that will help keep your employees safe, look to Eaton’s Crouse-Hinds Business.

For more information on LED Lighting Solutions, visit follow-the-leder.com

© 2014. The entire contents of this publication are protected by copyright. Full details are available from the Publishers. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of the copyright owner.
Foreword

THE OIL and gas industry is a competitive business with operators competing with one another to discover the tiniest little advantage. It is, then, ironic that perhaps the biggest step forward could come from one of the smallest and most unlikely sources imaginable.

Since we began exploring the oceans for oil and gas, deep sea platforms have been lit in the same way, by fluorescent or high pressure sodium light bulbs designed to provide continuous, round the clock illumination across the entire facility. Perversely, though, their fundamental design leaves them profoundly unsuited to life on board a rig. Although specifically designed and toughened for life on board a rig, light bulbs are by nature fragile. They are vulnerable to damage from high vibrations and rough impacts and they produce sparks when they ignite – none of which are ideal characteristics to have on board an oil rig.

What’s truly got operators concerned, though, is their thirst for energy. This, combined with the constant need for precision tasks in heavy industrial environments. Process areas, compressor areas, and equipment, operations and maintenance resources are required to quickly service and maintain adequate lighting levels, sometimes in very challenging installation locations and at a very high expense. LED lighting, when properly selected, provides the unique benefits of improving lighting quality, reducing energy consumption and maintenance costs and, most importantly, increasing safety due to the enhanced performance and long life. This white paper seeks to highlight some of the benefits of LED luminaires versus conventional lighting technologies, review common misconceptions with LED technology and explore proper luminaire design and selection to maximize long life, performance and enhance the safety of any installation.

Value and Benefits of LED Lighting

Safety

LED’s greatest benefit is long life, reducing downtime and cost associated with traditional lamp and ballast replacements and, most importantly, reducing the risk of hazards commonly associated with servicing luminaires installed in challenging applications. A 2009 report by the US Department of Labor Statistics noted that 605 workers were killed and an estimated 212,760 were seriously injured by falls to the same or lower levels. Bearing in mind that this covers all industries, when you consider harsh and hazardous applications, especially those offshore where an additional subset of challenges is present, reducing the need for maintenance only further increases the safety of workers in the installation.

Introduction

Workplace safety is the most important aspect of any installation. Within an offshore installation, there are locations where high vibration, debris, chemicals, and potential explosives are present. These factors make the correct lighting luminaire selection of utmost importance, but also severely impact the lifetime and performance of light luminaires utilized in these applications. To ensure the highest standard of safety for both people and equipment, operations and maintenance resources are required to quickly service and maintain adequate lighting levels, sometimes in very challenging installation locations and at a very high expense. LED lighting, when properly selected, provides the unique benefits of improving lighting quality, reducing energy consumption and maintenance costs and, most importantly, increasing safety due to the enhanced performance and long life. This white paper seeks to highlight some of the benefits of LED luminaires versus conventional lighting technologies, review common misconceptions with LED technology and explore proper luminaire design and selection to maximize long life, performance and enhance the safety of any installation.

Enhancing Safety and Productivity in Harsh and Hazardous Applications through LED Lighting

Anshuman Bharagava, Product Line Manager – LED Lighting, Eaton’s Crouse-Hinds Business

Champ® FMV LED Series Floodlights

For a floodlight that can go the distance in adverse offshore conditions, choose the Champ® FMV LED. Learn more at follow-the-leader.com
Process areas, compressor decks, stairwells, catwalks, and walkways requiring high quality of consistent illumination are all examples of locations where safety can be further enhanced by using LED lighting.

Common Misconceptions, Selection and Design Criteria for Harsh and Hazardous Applications

System Lifetime
One of the greatest benefits of LED technology is long operational life, but system lifetime remains a confusing and ambiguous measurement for many end-users. An HID or fluorescent luminaire utilizes a common set of lamps across manufacturers with similar lifetimes, while LED is dependent much more on system construction with ambient temperature figuring heavily into the determination of lifetime.

End of life for an LED luminaire is considered the first time the luminaire requires maintenance which would likely be due to decreased LED component output or a driver failure, resulting in a lack of light output. By industry standards, the LED light source is considered end of life when it loses 30% of its light, or what is known as the L70 rating. The L70 rating is calculated with data provided by a LED component manufacturer in the LED component was approximated and extrapolated using a model championed TM121 calculator.

A common misconception when considering fixture lifetime is only accounting for the LED component or L70 rating. However, more often than not, the point of failure is the driver. The driver life is estimated using MTBF or accelerated thermal test data at elevated ambient temperatures which are then extrapolated using Bellcore standards. It is essential to note that fixture lifetime is determined by the shorter of either LED component or driver lifetime and system construction along with ambient temperature figure heavily into lifetime.

Rated Life is defined as the maintenance-free life of an LED luminaire under worst case operating conditions during an always on, constant temperature environment. Economic life is the period of operation before failure. The biggest variable between rated and economic life is temperature, with rated life at worst case temperature versus economic life where temperature will vary according to the actual installation. Economic life of LED luminaires can be substantial as indicated by the example below of the Champ VMX LED family. At ambient temperatures of 25°C and 40°C, useful life derived out of LED light luminaires could be as long as 170,000 hours and 100,000 hours respectively. This is an important concept when defining the total cost of ownership with an LED light luminaire. Figure 1 illustrates the relationship between economic and rated life.

System Efficiency and Design
Efficiency helps drive both the maximum benefit of available energy as well as potentially minimizing the amount of energy required. For luminaries across all lighting sources, both in input wattage and lumens are documented, with a calculation of lumens per watt as the efficiency metric. The efficacy of an LED luminaire is the cumulative efficiency of its LEDs, heat sink, driver and optics. The system level efficacy of an LED luminaire is typically 25-30% less than the LED component due to losses from thermal, electrical and optical efficiency. For example, the LED component efficiency may be in the range of 140 – 150 lumens per watt, but after efficiency losses, the total system efficacy may measure in the range of 100-105 lumens per watt.

Drivers or power supplies are utilized to power LEDs. These devices step down incoming voltage and convert it from AC to DC. Drivers can be constant voltage or constant current output and isolate LEDs from fluctuations in current and voltage. Many drivers have surge protection, which eliminates the need for additional protection devices (i.e. fuses). Redundancy in drivers connected to multiple LED circuits ensures that a light luminaire will have a string of LEDs illuminated in the event any one of the drivers fails. LED drivers have very high power factors (PF) and low total harmonic distortion (THD) within a wide input voltage range of 120-480 VAC.
The most efficient power supplies will perform with a PF above 99% and a THD below 15%. These performance characteristics display how efficiently power supplies minimize interference to other electrical equipment and reduce the load on an electrical system.

Lighting Quality and Performance

A luminaire is the amount of light output in a specific angle from a light source. Often, with LED luminaires the focus is on lumen output. With LED being such a directional light, it requires less lumens than traditional light sources and thus should not be compared to HID or fluorescent luminaires based on lumens. Even when comparing LED luminaires across manufacturers, luminaire construction and optics play a major role and a pure lumen to lumen comparison is not always relevant.

LEDs, with their directional nature, are well suited to custom optics designed for specific types of discrete LEDs or arrays to enable uniform light distribution, higher coverage, and more delivered light to the work plane with minimal light loss and spill. This, in turn, results in maximizing application spacing and minimizing the number of light luminaires required to illuminate effectively a work place. Secondary optics also result in reduction of glare in many applications which need constant human interface such as control rooms and monitoring stations with reflective computer screens. Common optics applications for industrial locations are:

- **Type I** – Long and narrow beam distribution for applications such as aisles, catwalks, ramps, tunnels, long passageways, conveyor belts, loading docks etc.
- **Type III** – Semi-circular kidney shaped beam pattern for Narrow crosswalks or passages with wall luminaires. Tunnels with wall mount. Wall stanchion mount with 180° forward throw.
- **Type V** – Circular beam pattern for Pendant, ceiling or stanchion mount overhead building. Processing mills, industrial plants, large buildings, warehouses etc.

According to the Illuminating Engineering Society of North America (IESNA), color rendering indicates the degree to which a light source shows the true colors of the objects it illuminates. It is expressed in terms of a color-rendering index (CRI) on a scale of 0–100. The higher the CRI the truer people and objects look. HPS light luminaires typically have a very low rendering rating, on the order of CRI ~ 22. For example, in a maintenance area where the worker must use a black, white and green wire, the low CRI will prevent the ability to discern between the black and the green wires and could result in improper installation. Therefore, if a maintenance area was replaced with an LED light luminaire with a CRI of 70, it would result in improper installation. As with any new technology, many misconceptions exist around the benefits of LED especially as it relates to the environment. In these confusing times where a misunderstanding can damage expensive equipment and more importantly, impact human safety, it is crucial to rely on a trusted industry partner. Eaton’s Crouse-Hinds Business has over 115 years of experience in dealing with harsh and hazardous applications and our products deliver safety and reliability where it matters most. With an LED portfolio encompassing over 20 product families across multiple global standards and the largest installed base in hazardous application lighting, Eaton’s Crouse-Hinds is your trusted source to enhance safety and productivity in any installation.

References

4. [Lighting Research Center Rensselaer Polytechnic Institute What is Color Rendering, February 2014](http://www.lrc.rpi.edu/programs/nlpip/lightinganswers/lightsources/whatisColorRenderingIndex.asp#)

Conclusions

- **Safety**, reliability of operation and high maintenance costs of traditional lighting systems in harsh and hazardous environments such as oil and gas refineries, chemical processing plants, drilling and exploration rigs, and heavy industrial facilities have become a critical issue globally. Plant managers and engineers are facing safety concerns of frequent lighting failures and downtime in environments with extreme temperatures, explosive gases, combustible dusts and fibers, high pressure water hosing, vibration and corrosive fluids. LED luminaires provide compelling safety benefits and long-term operational cost savings driven by long maintenance-free economic life, reduced energy consumption, lower operating temperatures, enhanced electrical protection, durability against vibration, dust, corrosion and humidity, superior lighting quality, instant start/restart and ease of installation. As a result of this increased safety and lower total cost of ownership, the trend has developed and continues to accelerate towards LED luminaires replacing traditional light sources.

As with any new technology, many misconceptions exist around the benefits of LED especially as it relates to the demanding applications such as offshore environments. In these confusing times where a misunderstanding can damage expensive equipment and more importantly, impact human safety, it is crucial to rely on a trusted industry partner. Eaton’s Crouse-Hinds Business has over 115 years of experience in dealing with harsh and hazardous applications and our products deliver safety and reliability where it matters most. With an LED portfolio encompassing over 20 product families across multiple global standards and the largest installed base in hazardous application lighting, Eaton’s Crouse-Hinds is your trusted source to enhance safety and productivity in any installation.
Has the Time Come for the Next Generation of LED Lighting?

Tom Cropper, Editor

Next generation LED technology appears to offer a game changing proposition for the oil and gas market, but has the time come to make the change?

For decades, oil and gas platforms have been powered by lighting systems consisting either of fluorescent or incandescent light bulbs, but this system is far from perfect. The constant maintenance required to repair smashed or worn out light bulbs is a continual drain on power. Additionally, rising power prices make the search for more efficient power options an economic as well as environmental priority. A game changing solution appears to present itself in the shape of the next generation, industrial scale, LED technology.

What are LEDs?

Unlike a regular incandescent light bulb, an LED (Light Emitting Diode) does not contain any filament. It is illuminated by the passage of electrons through a semi-conductor material. They are commonly used in commercial applications such as backlighting smartphones, or providing thinner and lighter televisions, but increasingly over the past five years they have been used in large scale commercial and industrial applications. When set against traditional lighting methods they have considerable advantages – even so, much of the oil and gas industry remains uncertain whether or not they offer a more affordable and effective solution than they already have at their disposal.

The Arguments Against

LEDs currently occupy around 18% of the market, but the consensus is that this will grow in the medium to long term. According to a report from McKinsey, LEDs will represent 65% of the general lighting market by 2020. A study from Goldman Sachs, on the other hand places it much higher at 70%. Whatever figure you take, it’s clear that LEDs are in for marked growth in the next few years, but will this be mirrored in the oil and gas industry?

Currently, LEDs have struggled to gain the same foothold in oil and gas as in other industries. Some put this down to the natural caution of an industry which demands the latest technology but will only commit to something with a track record. Others put it down to the natural caution of an industry which demands the latest technology but will only commit to something with a track record. Even so, much of the oil and gas industry remains uncertain whether or not they offer a more affordable and effective solution than they already have at their disposal.

The Arguments Against

LEDs currently occupy around 18% of the market, but the consensus is that this will grow in the medium to long term. According to a report from McKinsey, LEDs will represent 65% of the general lighting market by 2020. A study from Goldman Sachs, on the other hand places it much higher at 70%. Whatever figure you take, it’s clear that LEDs are in for marked growth in the next few years, but will this be mirrored in the oil and gas industry?

Currently, LEDs have struggled to gain the same foothold in oil and gas as in other industries. Some put this down to the natural caution of an industry which demands the latest technology but will only commit to something with a track record. Others put it down to the natural caution of an industry which demands the latest technology but will only commit to something with a track record. Even so, much of the oil and gas industry remains uncertain whether or not they offer a more affordable and effective solution than they already have at their disposal.

Energy Efficiency

LEDs have already been put to use in many industrial applications, where they have demonstrated huge energy savings as high as 80%. An LED might expect to consume 150w of power compared to 400w for a high pressure sodium light bulb and offer double the energy efficiency of fluorescents and 80% that of incandescents.

The more electricity any facility uses, the higher the energy saving, making them ideal for oil rig applications. With pressure mounting from both the public and governments for the oil industry to improve its green credentials, LEDs have become even more attractive. Because of their ability to reduce dramatically energy consumption, they are regarded as green sources of energy. Furthermore, because they contain no hazardous chemcials, their disposal represents less of an environmental threat.

Superior Performance

As well as being more durable and energy efficient, LEDs boast considerable performance advantages. In general terms an LED can emit more than double the amount of light than its fluorescent counterpart. Most importantly of all, the light produced is cleaner, sharper and of better overall quality as opposed to the poor quality, reddish glow experienced with conventional lighting. This has clear benefits in terms of safety. At the most basic end of the scale, better lighting reduces the risk of slips, trips or falls while at the upper end, it can be more effective in alerting passing shipping and guiding in helicopters. Inadequate lighting has been a major complaint of pilots for decades, and LEDs play a major role in reducing the risks of past accidents.

Taken together, the overall case appears irrefutable. Such is the performance differential that people increasingly see LED technology as representing a game-changing step forward in lighting technology. They promise multiple simultaneous benefits reducing costs, improving safety and bringing down carbon emissions. In the past, the technology has been held up by high initial costs, but we have now reached a situation where costs are coming down as the sophistication of the technology increases. It truly does appear that the time has come for LED technology to step into the light.

Count on us for innovation

eLLK Linear LED

Convert your traditional Crouse-Hinds eLLK linear fluorescent to LED in a snap. Literally.

Learn more at follow-the-leder.com
SPECIAL REPORT: NEXT GENERATION LED LIGHTING FOR HAZARDOUS OFFSHORE AREAS

SPECIAL REPORT: NEXT GENERATION LED LIGHTING FOR HAZARDOUS OFFSHORE AREAS

Although any bulb comes with a rated service life, the rigours and challenges on board an oil rig mean lights often fail to reach their predicted life span.

How manufacturers of next generation LED technology are seeking to prove the commercial case for change.

LED Technology: Making the Commercial Case

Tom Cropper, Editor

How manufacturers of next generation LED technology are seeking to prove the commercial case for change.

While the demands of lighting an oil and gas platform have not changed over the decades, LEDs promise to meet and exceed these requirements to a level HID systems can never manage. They are more durable, provide better quality light and consume less energy. Even so, the industry’s a long way from adopting LEDs as the norm. If there is one factor that will change this situation more than any other, it’s proving the commercial case for change.

Operating Cost

Oil rings consume huge quantities of energy. Power is normally supplied through diesel generators consuming on average 20 – 30MJ of diesel each day.

That, approximately 20% is accounted for by the demands of lighting the facility. With fuel prices demonstrating a general upward trend, managing energy costs has become a top priority.

In addition to this, maintenance represents a continual drain on production and profits. Bulbs are prone to breakages and every blackout needs immediate remedy. Although any bulb comes with a rated service life, the rigours and challenges on board an oil rig mean lights often fail to reach their predicted life span.

Maintenance is a round the clock proposition and with every power failure rig experience frustrating and costly down time.

Resistant to Change

Even so, for all the apparent benefits, oil and gas operators remain far behind other industries in adopting LEDs as the go-to technology. Although any bulb comes with a rated service life, the rigours and challenges on board an oil rig mean lights often fail to reach their predicted life span.

In the end, any decision about whether to switch or not is a numbers game. There is a temptation to be conservative, making the change only when the status quo becomes uncomfortable. Certainly the majority of those operators who have chosen to upgrade to LED have done so either because energy or maintenance costs have started to bite. However, all the evidence gathered so far suggests that the cost savings are real and the payback could be earlier than initial estimates. The superior light quality of LEDs contributes to increased productivity and worker wellbeing while also reducing the risk of slips, trips and falls. In turn reduces the danger of small damages claims made against the operator, and the reputational impact of a high accident rate.

Working in the Real World

In this real world, some of the doubts it’s to see LEDs delivering on their promises in the real world, and among those early adopters we already have just that, When Mexico’s largest oil company PEMEX decided to replace existing lighting with LED technology they experienced a 66% reduction in energy consumption.

Another major oil refinery in the US replaced incandescent sodium bulbs with LEDs which provided the same amount of light as a 100W bulb by drawing only 50W of energy. In total the refinery has reduced its energy usage by $34,668 while decreasing annual maintenance costs by $766,647. Such figures make compelling reading, but on top of this we also have to consider other, less easily measured factors, which nevertheless have an impact on bottom line performance.

With just a few clicks, you can configure and view our offshore lighting products, then download design content in one of nearly 100 different file formats. Learn more at crouse-hinds.com/cospec
Deciding When and How to Upgrade

James Goodling, Staff Writer

The argument in favour of LED technology appears compelling, however the efficacy of any system depends on the way in which it is installed.

Those firms that have nailed LED supplies specifically for oil and gas installations hold a substantial lead over those who have yet to fully grasp a hold of the sector.

It’s NOT what you do it’s the way that you do it, so the old song goes, and these are pertinent words for any rig operator considering the installation of LED lighting systems. This technology has already demonstrated its transformative potential in terms of economic, environmental and safety benefits, but the key word here is ‘potential’. This is a market at a stage of considerable flux and development, in which there are substantive quality differences between the best in class and the rest. Taking into account that an LED lighting system is designed to give many years of continual use, decisions made at this point have a profound effect on the long term success or failure of the installation.

Locations of Lighting Solutions on Board the Rig

The average oil and gas platform contains tens of thousands of individual light bulbs in multiple locations around the facility. Each area requires its own specifically tailored solutions from interior lighting and signage to exterior rails, helidecks, warning lights for shipping and much more.

Aside from the on-platform requirements, operators should examine the potential of LEDs to improve lighting on board supply vessels, submersibles and all kinds of FSPOs. LEDs can be used all over the vessel, providing shatter resistance, corrosion resistance and explosion proofing for critical equipment areas, and be explosion proofed (able to withstand ignition – an obvious benefit when hazardous chemicals are in the area).

The Choice of Provider

The market is in flux. The rapid development and experience of many companies are causing a change in how the market perceives the benefits of LED lighting. Traditionally, lighting was focused on the economics and performance, however, the industry is looking to the new market opportunities to fuel safety and environmental gains.

The LED market has reached a level of maturity where the technical specifications of systems can cope with the unique demands of the oil and gas exploration. What’s more, the scramble among lighting manufacturers to gain a best in class reputation is driving development and innovation meaning that LEDs is one of the fastest moving areas of technical evolution. Today’s products are leagues ahead of those in operation just a few years ago and the chances are future generations will exhibit a similar step forward. For operators, it’s a case of choosing the right product for the right situation.

A Step Up in Comparable Products

Operators are not looking to reinvent the wheel. Their lighting requirements are the same as they always have been, but what they need are products which can perform the same task but better. This is where LED technology offers superior temperature ratings and enhanced visibility full spectrum lighting – ideal for providing a safer working environment in hazardous and industrial locations. Its ability to provide instant full temperature illumination with no warm up also gives it an edge over its predecessor.

The new Champ LED product was used by Eaton’s Crouse-Hinds alongside the Vaporguard series to replace the existing High Pressure Sodium (HPS) lighting structures at a major oil refinery in the USA. After several years of component maintenance costs, the refinery sought a system which could simultaneously bring down these costs while providing a cleaner environment for workers.

The LED replacements managed just that, providing cleaner light and a substantial reduction in energy usage. According to Eaton’s Crouse-Hinds, the Champ LED produces the equivalent lighting levels of a 100W bulb with just 50W, while the Vaporguard, with explosion resistant technology, promises a reduction of 86%. In total, the refinery reduced its total energy usage by $34,668 while decreasing annual maintenance costs by $766,647.

Hazardous Environments

Any offshore oil rig will require products rated to withstand extreme and hazardous conditions – namely areas containing combustible or corrosive gasses, liquids, dust or fibres. Any lighting installation should adhere to applicable hazardous area ratings where products are directly exposed to combustible elements, and be explosion proofed (able to contain internal combustion).

This is an area in which LEDs exhibit a clear technical advantage over fluorescent or incandescent fittings. Their internal construction is more robust leaving them less prone to breakages or shock and they offer spark free ignition – an obvious benefit when hazardous chemicals are in the area.

Conclusion

Today’s products are leagues ahead of those in operation just a few years ago and the chances are future generations will exhibit a similar step forward. For operators, it’s a case of choosing the right product for the right situation.
The Past, Present and Future of LEDs

Jo Roth, Staff Writer

LEDs have been around in one shape or form ever since 1907 when Henry Round discovered that inorganic materials could light up when an electrical current was passed through them, but it wasn’t until the sixties that the first LEDs of any type made it to the market. It was even more recent, in the 90s, that the first white light LEDs appeared. However, it is in the last few years when the first LEDs outputting 100 lumens or more per Watt appeared that they’ve become usable on a large industrial scale.

With that power output has come a significant growth in the use of LEDs. Most estimates place the current share at around 18% of the overall general electric market, but several studies agree that the next five or six years are set for remarkable growth. According to a study by McKinsey, LEDs will incorporate 60% of the equipment are all factored in power consumption of any oil or gas facility. When you consider that LED lights promise to extend lifespans by up to 80% and more, and reduce costs by anything between 50% and 90%, this new technology looks like a compelling proposition. Factor in the environmental benefits of reduced light pollution, carbon emissions, and the fact that they contain no hazardous chemicals such as mercury, and it is small wonder that so many editorialists are running promoting the switch to LEDs.

A Perfect Storm

Conditions certainly seem to be right for the adoption of LED technology. The safety of conditions on board offshore oil rigs has been a cause of growing concern over the past few years. The surface of an oil rig is a hazardous environment with workers often forced to venture out in poor weather conditions, low visibility and at night. Like any workplace, the operator of an oil rig has an obligation to provide a safe environment for its staff and good, clear lighting is a key part of that. Fluorescent bulbs are prone to failure and breakages leaving areas in the dark and with LEDs providing a significant step forward both in terms of light quality and reliability, there is an argument to say that operators have an obligation to install the best possible lighting technology.

LEDs are air travel, through, that has dominated safety over the past few years after a series of helicopter disasters. This places additional pressure on the quality of lighting on the helideck level. Here, the better reliability, brightness, range and penetration of LEDs represents a significant boost. The value of helideck lighting was highlighted in a questionnaire put to pilots in the nineties in which they ranked helideck lighting as being the fourth most important to pilots. The recommended changes suggested included yellow LED strip lights outlining the perimeter around the central illuminated ‘H’.

Coming of Age

More importantly, LED technology has now reached a point where quality is high enough for large scale industrial application, while solutions have become affordable enough to make the financial proposition worthwhile. Current estimates suggest that the general payback period has reduced to 3 years or less from 10 in just a few years and that figure is arguably lower for high power consumption operations such as offshore drilling. This creates a unique moment of opportunity for lighting companies where the product they are developing offers real value for end customers. But, as yet, there are relatively low levels of take up.

There is a huge gulf to be filled, and much like the Gold Rush of the 1800s there is a mad scramble to fill it and become the acknowledged market leader. For this reason, the leading manufacturers are devoting substantial sums and resources into developing cutting edge technology. The result is that the new generation of LED applications provide increasing levels of performance and quality. It’s with this in mind that we find Eaton’s Crouse-Hinds Business opened a 60,000 square foot LED research centre to trial and develop new technologies. This state of the art multi-million dollar facility houses research, development, design, validation and manufacturing of the very latest and cutting edge LED technology for every area of business or industrial application.

In multiple labs and R&D facilities, teams of mechanical, electrical, thermal, optical and reliability engineers work with industrial designers, technicians and manufacturing personnel to produce the next generation of LED solutions. The results of their work can be seen in a range of specialist LED lighting solutions for every part of an offshore platform. For the most part this simply involved producing lighting products which do the same job better but there are exciting innovations on the horizon such as the use of solar power LEDs. Although incorporating only a tiny fraction of industrial LED products currently, they do have some potential particularly in further reducing energy costs and carbon footprint, while also producing a reliable and renewable backup to conventional lighting systems.

This competition between manufacturers has led to a rapid expansion in the quality and sophistication of products on offer. The result is that the calculation that rig operators make when assessing the viability of LED lighting technology is progressively becoming heavily weighted in its favour.
SPECIAL REPORT: NEXT GENERATION LED LIGHTING FOR HAZARDOUS OFFSHORE AREAS

References:

Offshore Technology Reports... the leading specialist combined online research and networking resource for senior upstream oil and gas industry professionals.

- Up to the minute Industry and Technology information available to all site users on a free of charge open access basis.
- Qualified signed up members are able to access premium content Special Reports and interact with their peers using a variety of advanced online networking tools.
- Designed to help users identify new technical solutions, understand the implications of different technical choices and select the best solutions available.
- Thought Leadership – Advice and guidance from internationally recognised upstream oil and gas key opinion leaders.
- Peer Input – Contributions from senior upstream oil and gas industry professionals.
- Independent Editorial Content – Expert and authoritative analysis from award winning journalists and leading industry commentators.
- Unbiased Supplier Provided Content.
- Designed to facilitate debate.
- Written to the highest professional standards

Visit http://www.offshoretchnologyreports.com/