Introduction
Since 1980, Eaton Innovative Technology has provided Surge Protective Devices (SPDs) to power quality equipment users around the world. Whatever your electrical surge protection need may be, Eaton Innovative Technology has a Surge Protective Device to fill it!

General Features
• Peak Surge Current — 80 kA per phase; 40 kA per mode
• ANSI/IEEE C62.41 Location Categories — A, B and C
• Application — Medium to Low Exposure Level, sensitive, mission critical load applications including: distribution panels, branch panels and critical load centers.
• Warranty — 20-Year Free Replacement
• Agency Listings — Compliant to UL® 1449 4th Edition as Type 1* and Type 2 SPD and UL 1283
• Manufacturer Qualifications — ISO® 9001:1994 Quality System Certification BSI FM 30833
• The Protector Series products are produced in the USA and conform to ARRA requirements.

Mechanical and Electrical Features
• Enclosure — Powder Coated Steel, weatherproof; NEMA® Type 4 (IP66)
• Connection — #10 (6 mm²) stranded wire
• Weight — 7 lbs (3 kg)
• Operating Temperature — -40 to 185°F (-40 to 85°C)
• Protection Modes — All Mode L-N, L-L (normal mode), L-G, N-G (common mode)
• Input Power Frequency — 47 – 420 Hz, -SD optioned units: 47 – 64 Hz
• Remote Alarm Form C (Volt Free) relay, contact rating 60 W, or 125 Vac @ 0.5 Amp, or 30 Vdc @ 1 Amp
• Overcurrent Protection Device Requirement — Reference installation instructions for details
• Nominal Discharge current (Iₚ = 10kA)
• Short Circuit Current Rating (SCCR) 200kA

Note: Ideal for applications utilizing a ground fault circuit interrupting (GFCI) main breaker

Optional Features and Equipment
• Audible Alarm, Surge Counter and Phase Loss Monitor (S.M.A.R.T.) — (-SD suffix)
• Stainless Steel, Type 4X enclosure — (-SS suffix) (contact factory, minimum quantities apply)
• Integrated Circuit Breaker= (-C suffix)
• Integrated Circuit Breaker with External Disconnect= (-CD suffix)

* UL 1449 4th Edition Type 1 products available only with options -C and -CD.
Note: Flush mount plate available: 6 x 4 enclosure = ZPLATE-3A.

Performance Data

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1P101</td>
<td>Single-Phase</td>
<td>100, 110, 120, 127</td>
<td>150</td>
<td>530</td>
<td>940</td>
<td>400</td>
<td>600</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1P201</td>
<td>Single-Phase</td>
<td>200, 208, 220, 230, 240, 277</td>
<td>320</td>
<td>540</td>
<td>510</td>
<td>1060</td>
<td>980</td>
<td>400</td>
<td>400</td>
<td>600</td>
<td>600</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1S101</td>
<td>Split-Phase</td>
<td>100/200, 110/220, 120/240, 127/254</td>
<td>150/300</td>
<td>540</td>
<td>510</td>
<td>940</td>
<td>800</td>
<td>960</td>
<td>400</td>
<td>800</td>
<td>600</td>
<td>900</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3Y101</td>
<td>3-Phase Y/Star</td>
<td>100/115, 120/190, 120/208, 127/220</td>
<td>150/300</td>
<td>540</td>
<td>510</td>
<td>940</td>
<td>800</td>
<td>960</td>
<td>400</td>
<td>800</td>
<td>600</td>
<td>600</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3Y201</td>
<td>3-Phase Y/Star</td>
<td>220/380, 230/400, 240/415, 27/480</td>
<td>320/640</td>
<td>100</td>
<td>1730</td>
<td>1530</td>
<td>2250</td>
<td>800</td>
<td>1500</td>
<td>1000</td>
<td>1800</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3Y300</td>
<td>3-Phase Y/Star</td>
<td>305/525, 347/800</td>
<td>420/840</td>
<td>1410</td>
<td>2510</td>
<td>1980</td>
<td>3160</td>
<td>1000</td>
<td>2000</td>
<td>1200</td>
<td>2500</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3D101</td>
<td>3-Phase Δ (Hi-Leg)</td>
<td>120/240</td>
<td>150/320</td>
<td>530</td>
<td>910</td>
<td>940</td>
<td>1270</td>
<td>400</td>
<td>800</td>
<td>1500</td>
<td>600</td>
<td>900</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3D400</td>
<td>3-Phase Δ (Hi-Leg)</td>
<td>200/220, 230, 240</td>
<td>320</td>
<td>980</td>
<td>1640</td>
<td>800</td>
<td>1000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NN201</td>
<td>3-Phase Δ (Hi-Leg)</td>
<td>380, 400, 415, 440, 480</td>
<td>550</td>
<td>1680</td>
<td>2360</td>
<td>1500</td>
<td>1800</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NN300</td>
<td>3-Phase Δ (Hi-Leg)</td>
<td>525, 600</td>
<td>750</td>
<td>2030</td>
<td>2690</td>
<td>2000</td>
<td>2000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Test environment: All tests performed with 6” lead length, positive polarity. Voltages are peak ±10%. Measurements are taken from zero reference per NEMA LS-1.