Medium-voltage power distribution and control systems >

High resistance grounding—medium voltage

Contents

General Description .. 36.1-2
Ratings ... 36.1-5
Product Selection .. 36.1-6

Layouts and Dimensions 36.1-7
Dimensions .. 36.1-7

Application Data ... 36.1-8
Circuit Diagrams .. 36.1-8

More about this product
Eaton.com/mvhrg

Complete library of design guides
Eaton.com/designguides
General Description

Medium-Voltage High Resistance Grounding System

Where continuity of service is a high priority, high resistance grounding can add the safety of a grounded system while minimizing the risk of service interruptions due to grounds. The concept is a simple one: provide a path for ground current via a grounding transformer (with adjustable resistance across its secondary) that limits the current magnitude and a monitor to determine when an abnormal condition exists.

The ground current path is provided at the point where the service begins, by placing a predominantly resistive impedance in the connection from system neutral to ground. Control equipment continuously measures ground current; a relay detects when the current exceeds a predetermined level. An alarm alerts building personnel that a ground exists. The system has built-in fault tracing means to assist in finding the source of the ground. A 120 Vac supply (remote) is required for control power for the system.

The C-HRG is used to protect an electrical distribution system from damaging transient overvoltages caused by ground faults. It also provides a means to locate the ground fault, therefore extending the life of the distribution system.

Ratings and Configurations

The C-HRG MV is offered at the 5 kV class rating. It can be applied to delta or wye ungrounded three-wire distribution systems. Standard dimensions are 36.00-inch (914.4 mm) W x 40.00-inch (1016.0 mm) D x 92.00-inch (2336.8 mm) H.
Application Issues

4200 V (Maximum) Delta Systems
To add high resistance grounding to an ungrounded delta-connected system, a neutral point must be created. Three single-phase transformers can be interconnected in a wye-broken delta configuration to provide such a neutral point. The transformers and grounding resistors are chosen to limit the ground current to a maximum value of 6 A.

Note: The neutral point may not be used to serve phase-to-neural loads. Also, this technique may be applied on wye-connected sources when the neutral point is not conveniently accessible from the service entrance location. One delta high resistance grounding would ground the 5 kV system.

4200 V (Maximum) Wye Systems
To add high resistance grounding to a wye-connected system, resistors are placed across the secondary of a grounding transformer whose primary is placed in series with the neutral-to-ground connection of the power source. The resistors are chosen to limit the current to a maximum value of 6 A.

Note: Per 1999 NEC® 250.36(4), line-to-neutral loads may not be connected to a system that the neutral is resistance-grounded. Also, if the system has two switchable sources not permanently connected to the bus, two wye-type grounding systems are required as shown in Figure 36.1-1.

Ground Current Detection
Any time a system is energized, a small ground current called the “capacitive charging current” will be observed. For medium voltage (4200 V and below) systems, this naturally occurring current is typically 3 A or less.

When one phase becomes grounded, additional current above the charging level will flow. As all ground current must flow through the grounding resistor/grounding transformer assembly, an ammeter in this circuit will read the total amount of ground current. By placing a current-sensing relay in series with the ammeter, the current relay can be adjusted to pick-up at a level in excess of the capacitive charging current, thus indicating the abnormal condition.

Alternatively, an optional volt-ampere-relay can be connected across the grounding resistors. The voltage across the resistors is proportional to the amount of ground current. The volt-ampere-relay’s pickup adjustment is set above the capacitive charging current, to the desired detection level.

In both current and voltage detection methods, the ground current ammeter provides a direct reading of the total actual ground current present in the system at that time. It will be helpful to periodically note the ammeter’s reading; a trend toward higher values may indicate the need for equipment maintenance, and hence reduce the occurrence of unplanned shutdowns.

Indication and Alarm Circuits
When a fault is detected, an adjustable time delay is provided to override transients. When the time delay has been exceeded, the green “normal” light will turn off, the red “ground fault” light will turn on, and the ground alarm contacts will transfer. If equipped with the optional alarm horn, it will sound.

The grounding transformer secondary breaker must be closed for the system to be operational. Should this breaker be opened at any time, the system will signal a ground fault condition as a fail-safe feature. The breaker must be closed to clear the alarm signal.

When the fault is cleared, the current/voltage relay will reset. If the reset control is set on “auto,” the lights will return to “normal” on, “ground fault” off, and the ground alarm contacts will transfer. If the reset control is set on “manual,” the lights and relay contacts will remain latched until the operator turns the reset control to “reset.” The lights and ground alarm contacts will then return to normal. The system can be reset only if the fault has been cleared.

During a fault, the optional alarm horn can be silenced at any time by using the “alarm silence” pushbutton. It will not re-sound until either the system is reset, or the re-alarm timer expires. The re-alarm timer is activated by the “alarm silence” control. If the horn has been silenced but the fault has not been cleared, the timer will run. It has a range of 2–48 hours. When the timer times out, the horn will re-sound, alerting maintenance personnel that the fault has not been cleared.

Test Circuit
A test circuit is provided to allow the user to quickly determine that the system is working properly. The test circuit will operate only under normal conditions—it will not allow testing if the system is sensing a fault. The test operation does not simulate an actual system ground fault. It does, however, test the complete controls of the fault indication and pulsing circuitry. The system then reacts as it would under actual system ground conditions—lights transfer, alarm contacts transfer and the (optional) horn sounds.

Pulser Circuit
The pulser circuit offers a convenient means to locate the faulted feeder and trace the fault to its origin. The pulser is available any time a fault has been detected. The pulse intervals are controlled by an adjustable recycle timer. The “pulse” light flashes on and off, corresponding to the on-off cycles of the pulser contactor. The pulser contactor switches a bank of resistors on and off, thus allowing a momentary increase in the ground current (approximately 4 A current pulse above the ground current).

Locating a Ground Fault
The current pulsing pulses can be noted with a clamp-on ammeter when the ammeter is placed around the cables or conduit feeding the fault. The operator tests each conduit or set of cables until the pulsing current is noted. By moving the ammeter along the conduit, or checking the conduit periodically along its length, the fault can be traced to its origin. The fault may be located at the point where the pulsing current drops off or stops.

If little or no change in the pulsing current is noted along the entire length of a conduit, then the fault may be in the connected load. If the load is a medium voltage distribution equipment or motor control center, repeat the process of checking all outgoing cable groups and conduits to find the faulted feeder. If the fault is not found in an outgoing feeder, the fault may be internal to that equipment.

Note: It may not be possible to precisely locate faults within a conduit. The ground current may divide into many components, depending on the number of cables per phase, number of conduits per feeder, and the number and resistance of each ground point along the conduits. The resulting currents may be too small to allow detection or may take a path that the am-meter cannot trace. An important note to keep in mind is that while the pulser can greatly aid in locating a fault, there may be certain conditions under which the pulses cannot be readily traced, and other test procedures (megohm, high-potential, etc.) may be needed.
Sequence of Operations

Normal
- Green “normal” light on
- Red “ground fault” light off
- White “pulse” light off
- System control switch in “normal” position
- Reset control switch in either “auto” or “manual”

Test
Turn and hold the system control switch in the “test” position. This mode will test the control circuitry only. It will bypass the sensing circuit and cause the green “normal” light to turn off and the red “ground fault” light to turn on. The pulser will be activated as well. The white “pulse” light will turn on and off as the pulser contactor closes and opens. However, the ground current ammeter will not display the total ground current, including the incremental pulse current. When ready, return the system control switch to “normal.”

The pulser will stop. If the reset control is in the “manual” position, turn it to “reset” to reset the fault sensing circuit. The red “ground fault” light will turn off, and the green “normal” light will turn on. Test mode is not available if the system is detecting a ground. The sensing circuit will disable the test circuit.

Ground Fault
When the sensing circuit detects a fault, the green “normal” light will turn off and the red “ground fault” light will turn on. The ground current ammeter will indicate the total ground current. To use the pulser, turn the system control switch to “pulse.” The pulser contactor will cycle on and off as controlled by the recycle timer relay. Use the clamp-on ammeter to locate the faulted feeder. Open the feeder and clear the fault. If the reset control switch is in the “manual” position, turn it to “reset” to reset the sensing circuit. (If reset control is in “auto,” it will reset itself.) When ready to restore service to the load, close the feeder. Return the system control to “normal.”

Application
When a ground fault occurs on an ungrounded system, high transient voltages can occur, which may cause more frequent equipment failures than if the equipment were grounded. These transient overvoltages, as high as four times the normal voltage, reduce the life of the system’s insulation resulting in:
- Motor failure
- Transformer failure
- Coil failure
- Electronic equipment failure
- Cable insulation failure

By using a high resistance grounding system, many facilities can gain the benefit of a grounded system without impairing the continuity of service to their equipment. The concept behind high resistance grounding is to provide a path for the ground current to flow while limiting its magnitude by using a resistor. The ground current path is provided at the point where service begins. Control equipment continuously monitors the magnitude of the ground current. When the ground current exceeds a predetermined level, the built-in alarm relay alerts building personnel that a ground fault exists. In addition, the C-HRG MV “Safe Ground” system has a built-in fault pulsing as a means to assist in finding the source of the ground fault without interrupting service.

Product Features
- Tapped resistors (limits primary current to 3–6 A)
- Current sensing ground fault detection (2–10 A pickup/0.5–20 second delay)
- Ground current transformer (10/10 ratio)
- Control circuit pull fuseblock
- Ground current ammeter (0–10 A, 1% accuracy)
- Indicating lights:
 - Red (ground fault)
 - Green (normal)
 - White (pulse)
- Adjustable pulsing timer (0–10 seconds)
- 3-position selector switch (normal, pulse, test)
- Control switch for manual or automatic reset
- Ground fault contacts (1NO/1NC)
- Shorting terminal block for ground current CT
- UL® label
- Wiremarkers

The system is completely assembled, wired and tested at the factory in accordance with NEMA and UL requirements. A certified production test report is shipped with the unit.
Ratings

Table 36.1-1. CH MV HRG Systems Application Table

<table>
<thead>
<tr>
<th>Resistor Tap</th>
<th>System Voltage</th>
<th>Primary Ground Current Total</th>
<th>CPT kVA/Ph</th>
<th>Secondary Ground Current</th>
<th>Resistance for Ground Current (Ohms)</th>
<th>Pulsing Resistor Value (Ohms)</th>
<th>Pulsing Secondary Current</th>
<th>Pulsing Primary Total Current</th>
<th>Resistor/Watts Dissipated (kW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2400V ☩</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Delta</td>
<td>2400</td>
<td>3.0</td>
<td>2400/120</td>
<td>10</td>
<td>20.00</td>
<td>40.40</td>
<td>780</td>
<td>26.70</td>
<td>4.0</td>
</tr>
<tr>
<td>2 Delta</td>
<td>2400</td>
<td>4.0</td>
<td>2400/120</td>
<td>10</td>
<td>26.70</td>
<td>780</td>
<td>26.70</td>
<td>4.0</td>
<td>5.55</td>
</tr>
<tr>
<td>3 Delta</td>
<td>2400</td>
<td>5.0</td>
<td>2400/120</td>
<td>10</td>
<td>33.30</td>
<td>6.24</td>
<td>780</td>
<td>26.70</td>
<td>4.0</td>
</tr>
<tr>
<td>4 Delta</td>
<td>2400</td>
<td>6.0</td>
<td>2400/120</td>
<td>10</td>
<td>40.00</td>
<td>5.20</td>
<td>780</td>
<td>26.70</td>
<td>4.0</td>
</tr>
<tr>
<td>1 Wye</td>
<td>2400</td>
<td>3.0</td>
<td>1400/140</td>
<td>15</td>
<td>30.00</td>
<td>6.22</td>
<td>3.46</td>
<td>40.00</td>
<td>4.0</td>
</tr>
<tr>
<td>2 Wye</td>
<td>2400</td>
<td>4.0</td>
<td>1400/140</td>
<td>15</td>
<td>40.00</td>
<td>3.46</td>
<td>3.46</td>
<td>40.00</td>
<td>4.0</td>
</tr>
<tr>
<td>3 Wye</td>
<td>2400</td>
<td>5.0</td>
<td>1400/140</td>
<td>15</td>
<td>50.00</td>
<td>2.77</td>
<td>3.46</td>
<td>40.00</td>
<td>4.0</td>
</tr>
<tr>
<td>4 Wye</td>
<td>2400</td>
<td>6.0</td>
<td>1400/140</td>
<td>15</td>
<td>60.00</td>
<td>2.31</td>
<td>3.46</td>
<td>40.00</td>
<td>4.0</td>
</tr>
<tr>
<td>3300V ☩</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Delta</td>
<td>3300</td>
<td>3.0</td>
<td>3600/120</td>
<td>10</td>
<td>30.00</td>
<td>6.35</td>
<td>4.76</td>
<td>40.00</td>
<td>4.0</td>
</tr>
<tr>
<td>2 Delta</td>
<td>3300</td>
<td>4.0</td>
<td>3600/120</td>
<td>10</td>
<td>40.00</td>
<td>4.76</td>
<td>4.76</td>
<td>40.00</td>
<td>4.0</td>
</tr>
<tr>
<td>3 Delta</td>
<td>3300</td>
<td>5.0</td>
<td>3600/120</td>
<td>10</td>
<td>50.00</td>
<td>3.61</td>
<td>4.76</td>
<td>40.00</td>
<td>4.0</td>
</tr>
<tr>
<td>4 Delta</td>
<td>3300</td>
<td>6.0</td>
<td>3600/120</td>
<td>10</td>
<td>60.00</td>
<td>3.18</td>
<td>4.76</td>
<td>40.00</td>
<td>4.0</td>
</tr>
<tr>
<td>1 Wye</td>
<td>3300</td>
<td>3.0</td>
<td>1950/195</td>
<td>25</td>
<td>30.00</td>
<td>6.35</td>
<td>4.76</td>
<td>40.00</td>
<td>4.0</td>
</tr>
<tr>
<td>2 Wye</td>
<td>3300</td>
<td>4.0</td>
<td>1950/195</td>
<td>25</td>
<td>40.00</td>
<td>4.76</td>
<td>4.76</td>
<td>40.00</td>
<td>4.0</td>
</tr>
<tr>
<td>3 Wye</td>
<td>3300</td>
<td>5.0</td>
<td>1950/195</td>
<td>25</td>
<td>50.00</td>
<td>3.81</td>
<td>4.76</td>
<td>40.00</td>
<td>4.0</td>
</tr>
<tr>
<td>4 Wye</td>
<td>3300</td>
<td>6.0</td>
<td>1950/195</td>
<td>25</td>
<td>60.00</td>
<td>3.18</td>
<td>4.76</td>
<td>40.00</td>
<td>4.0</td>
</tr>
<tr>
<td>4160V ☩</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Delta</td>
<td>4160</td>
<td>3.0</td>
<td>4160/120</td>
<td>15</td>
<td>34.67</td>
<td>6.00</td>
<td>4.50</td>
<td>46.22</td>
<td>4.0</td>
</tr>
<tr>
<td>2 Delta</td>
<td>4160</td>
<td>4.0</td>
<td>4160/120</td>
<td>15</td>
<td>46.22</td>
<td>4.50</td>
<td>4.50</td>
<td>46.22</td>
<td>4.0</td>
</tr>
<tr>
<td>3 Delta</td>
<td>4160</td>
<td>5.0</td>
<td>4160/120</td>
<td>15</td>
<td>57.77</td>
<td>3.60</td>
<td>4.50</td>
<td>46.22</td>
<td>4.0</td>
</tr>
<tr>
<td>4 Delta</td>
<td>4160</td>
<td>6.0</td>
<td>4160/120</td>
<td>15</td>
<td>69.33</td>
<td>3.00</td>
<td>4.50</td>
<td>46.22</td>
<td>4.0</td>
</tr>
<tr>
<td>1 Wye</td>
<td>4160</td>
<td>3.0</td>
<td>2400/240</td>
<td>25</td>
<td>30.00</td>
<td>8.00</td>
<td>6.00</td>
<td>40.00</td>
<td>4.0</td>
</tr>
<tr>
<td>2 Wye</td>
<td>4160</td>
<td>4.0</td>
<td>2400/240</td>
<td>25</td>
<td>40.00</td>
<td>6.00</td>
<td>6.00</td>
<td>40.00</td>
<td>4.0</td>
</tr>
<tr>
<td>3 Wye</td>
<td>4160</td>
<td>5.0</td>
<td>2400/240</td>
<td>25</td>
<td>50.00</td>
<td>4.80</td>
<td>6.00</td>
<td>40.00</td>
<td>4.0</td>
</tr>
<tr>
<td>4 Wye</td>
<td>4160</td>
<td>6.0</td>
<td>2400/240</td>
<td>25</td>
<td>60.00</td>
<td>4.00</td>
<td>6.00</td>
<td>40.00</td>
<td>4.0</td>
</tr>
</tbody>
</table>

腳注：Resistances and currents listed are an engineering guide only. Final results may differ somewhat from those listed because of resistor limitations.
Product Selection

Eaton's C-HRG High Resistance Grounding Assembly can be completely described by an 8-digit catalog number: MVRG-__ __ __ __

Table 36.1-2. High Resistance Pulsing Grounding Systems Catalog Numbering System

<table>
<thead>
<tr>
<th>MVRG</th>
<th>F</th>
<th>W</th>
<th>W</th>
<th>C</th>
<th>L</th>
<th>L</th>
<th>T</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enclosure Type</td>
<td>F = Free-standing NEMA 1</td>
<td>R = Free-standing NEMA 3R outdoor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Service Voltage</td>
<td>W = 4160 V, 60 Hz</td>
<td>X = 2400 V, 60 Hz</td>
<td>Y = 3300 V, 60 Hz</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>System Neutral Point</td>
<td>W = Wye</td>
<td>D = D (wye broken delta grounding transformer)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fault Sensing</td>
<td>C = Overcurrent relay (51N)</td>
<td>V = Overcurrent relay (51N) and voltage relay (59)</td>
<td>D = Overcurrent relay (51N) and indicating voltmeter</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Audible Alarm</td>
<td>Alarm contacts are standard on all assemblies.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>No audible alarm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>Alarm horn with re-alarm timer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Loss of Control Power Alarm</td>
<td>A relay is connected across the customer’s 120 Vac supply.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>No relay</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>Alarm relay with 1NO and 1NC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wiremarkers</td>
<td>Marks all internal wiring for ease of maintenance.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>Standard wrap-on</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>Tube/heat shrink type</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Indicating Lamps</td>
<td>Standard lights are industrial, oil-tight, transformer type. Optional are the same type lights except with a push-to-test feature.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T = Transformer type incandescent lamps</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X = Push-to-test transformer type</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

© MV HRG is available for outdoor application — contact Eaton.

Example: MVRG-FWWCLLTS defines a free-standing NEMA 1 enclosure, 4200 V / 60 Hz, wye-connected system, current-sensing control scheme, alarm horn with re-alarm timer, alarm relay with 1NO and 1NC, transformer type incandescent lights, wrap-on wiremark.
Figure 36.1-2. NEMA 1 Free-Standing—Dimensions in Inches (mm)

1 Minimum required clearances are: front 36.00 inches (914.4 mm), rear 30.00 inches (762.0 mm), left or right sides—6.00 inches (152.4 mm).
Circuit Diagrams

Figure 36.1-3. Ungrounded Wye System (With Standard Current and Optional Voltage Relay Fault Detectors)

- **Mechanical Interlock**
- **Control Power Transformer**
- **Secondary Circuit Breaker**
- **Pulsing Resistor**
- **Grounding Resistor**
- **Current Detector**
- **To Remote Alarm**
- **Optional Voltage Detector**
- **Control Circuit**
 - Normal
 - Alarm
 - Pulsing
 - Audible Alarm
- **CT 10/10 A**
- **5 kV - CLE Fuses**
- **Option Resistor Tap**

Figure 36.1-4. Ungrounded Delta System (With Standard Current and Optional Voltage Relay Fault Detectors)

- **Mechanical Interlock**
- **Control Power Transformer**
- **Secondary Circuit Breaker**
- **Pulsing Resistor**
- **Grounding Resistor**
- **Current Detector**
- **To Remote Alarm**
- **Optional Voltage Detector**
- **Control Circuit**
 - Normal
 - Alarm
 - Pulsing
 - Audible Alarm
- **CT 10/10 A**
- **5 kV - CLE Fuses**
- **Option Resistor Tap**

High Resistance Grounding—Medium Voltage

Application Data

Design Guide DG019006EN

Effective February 2020

36.1-8