VacClad-W 27 kV, arc-resistant metal-clad medium-voltage switchgear

Contents

General Description ... 5.5-2
 Standard Metal-Clad Switchgear Assembly Ratings . 5.5-5

Devices ... 5.5-6
 Unusual and Usual Service Conditions 5.5-6
 Circuit Breakers ... 5.5-7
 Protection Relays and Metering: 5.5-10
 Switchgear Meters 5.5-10
 Protective Relays ... 5.5-10
 Instrument Transformers 5.5-10
 Ohmic Voltage Sensing (OVS) 5.5-12
 Thermal Monitoring 5.5-13
 Dummy Element .. 5.5-13
 Integral Motorized Remote Racking Option (VC-W MR2) 5.5-14
 Accessories ... 5.5-18
 System Options .. 5.5-19

Layouts and Dimensions 5.5-21

Application Data ... 5.5-26
 Weights ... 5.5-26
 Control Power ... 5.5-26
 Heat Loss .. 5.5-26
 Typical Schematics 5.5-27
General Description

Eaton has been manufacturing arc-resistant metal-clad switchgear since 1990. Eaton was the first major North American manufacturer to design, test and manufacture arc-resistant switchgear in accordance with EEMAC G14.1. We now offer Type 2 and 2B arc-resistant switchgear assemblies, designed and tested in accordance with the IEEE® C37.20.7, with Type VCP-W drawout vacuum circuit breakers.

Eaton's VacClad-W metal-clad arc-resistant switchgear with Type VCP-W vacuum circuit breakers can be configured in various combinations of breakers and auxiliaries to satisfy user's application requirements. One-high and two-high arrangements can be provided when required.

Arc-Resistant Switchgear—Accessibility Types

Arc-resistant switchgear performance is defined by its accessibility type in accordance with IEEE test guide C37.20.7 as follows:

Type 1 — Switchgear with arc-resistant designs or features at the freely accessible front of the equipment only.

Type 2 — Switchgear with arc-resistant designs or features at the freely accessible exterior (front, back and sides) of the equipment only. (Type 2 incorporates Type 1.)

Type 2B — Switchgear with Type 2 accessibility plus arc-resistant in front of the instrument/control compartment with the instrument/control compartment door opened. (Type 2B incorporates Type 2.)

Eaton's 27 kV switchgear is designed and tested for IEEE Type 2 accessibility.

Arc-resistant features are intended to provide an additional degree of protection to the personnel performing normal operating duties in close proximity to the equipment while the equipment is operating under normal conditions. The normal operating conditions for proper application of arc-resistant switchgear designs are as follows:

- All doors and covers providing access to high-voltage components are properly closed and latched
- Pressure relief devices are free to operate
- The fault energy available to the equipment does not exceed the rating of the equipment (short-circuit current and duration)
- There are no obstructions around the equipment that could direct the arc fault products into an area intended to be protected
- The equipment is properly grounded

The user should also refer to documents such as NFPA 70E, for safety training and safe work practices and methods of evaluating safe work distances from energized equipment based on the potential flash hazard, and use proper PPE when working on or near energized equipment with the door/cover opened or not properly secured.

Standards

Switchgear Assembly

Eaton's VacClad-W metal-clad arc-resistant switchgear meets or exceeds the following standards and test guides:

North American Documents

- IEEE C37.20.2 — Standards for Metal-Clad Switchgear
- IEEE C37.20.7 — Guide for Testing Metal-Enclosed Switchgear for Internal Arcing Faults

Canadian Documents

- CSA® C22.2 No. 31-04 — Switchgear Assemblies
- EEMAC G8-3.2 — Metal-Clad and Station Type Cubicle Switchgear
- EEMAC G14-1 — Procedure for testing the resistance of metal-clad switchgear under conditions of arcing due to an internal fault. The G14-1 was the first North American testing guide introduced in 1987

Circuit Breakers

The Type VCP-W and VCP-WC vacuum circuit breakers, used in VacClad-W arc-resistant switchgear, meet or exceed all ANSI and IEEE standards applicable to ac high-voltage circuit breakers rated on symmetrical current basis, including but not limited to: C37.04, C37.06, and C37.09. Also available are Type VCP-WG vacuum circuit breakers conforming to IEEE standard C37.013 for ac high-voltage generator circuit breakers.

Arc-Resistant Metal-Clad Switchgear

Arc-resistant metal-clad switchgear also conforms to C37.20.2 and is tested as such for short time and momentary short-circuit withstand for through bolted fault. In addition, the enclosure is also tested in accordance with IEEE guide C37.20.7 for withstand against the effects of internal arcing faults as shown in Figure 5.5-1.

Figure 5.5-1. Arc-Resistant Switchgear

Enclosure Internal Arcing Short-Circuit Withstand Test

Internal arcing faults are those faults occurring in air, phase-to-phase or phase-to-ground, within the confines of the switchgear enclosure. Arcing faults can occur within a switchgear compartment as a result of insulation failure or human error. The arcing fault produces a tremendous release of heat energy at the point of the fault, which heats and expands the air volume within the enclosure, and may decompose or vaporize materials exposed to an arc or involved in its path.
The effects of this type of fault vary depending on enclosure volume, arc duration, arc voltage, and available short-circuit current. If the switchgear is not designed and tested to withstand effects of internal arcing faults, its parts could blow away along with discharge of hot decomposed matter, gaseous or particulate, causing injury to personnel that may be present in its vicinity. Arc-resistant switchgear is designed to channel and control effects of the arcing fault and its enclosure is tested for withstand against such fault in accordance with IEEE guide C37.20.7.

Medium-Voltage Vacuum Circuit Breaker Features and Ratings

VacClad-W metal-clad arc-resistant switchgear is designed for use with Eaton’s state-of-the-art medium-voltage vacuum type VCP-W (standard ANSI) and VCP-WC (extra capability) circuit breakers. Refer to Table 5.5-7 for complete list of available ratings.

Arc-Resistant Enclosure and Arc Exhaust

VacClad-W arc-resistant switchgear is designed to withstand effects of internal arcing faults up to its rated arc short-circuit current and duration. The arc-withstand capability of the switchgear enclosure is achieved by use of reinforced heavier gauge steel where needed, smart latching of doors and covers, and top-mounted built-in pressure relief system. Following are standard design features built into each arc-resistant switchgear assembly.

The formed steel compartment design provides sealed joints under fault conditions. This prevents smoke and gas from escaping to other compartments, a condition that can occur with switchgear compartments designed with conventional flat bolted panels.

Integral, pressure release flap vents mounted on top of each individual vertical section provide for controlled upward release of arc created over-pressure, fire, smoke, gases and molten material out of the assembly without affecting structural integrity, and protect personnel who might be present in the vicinity of the switchgear.

The structure roof, including the pressure release flap vents, is drip proof. The design is made strong such that the roof can be “walked-on” when the gear is completely de-energized (for example, during installation).

Because arc pressure is vented out through the top of each individual vertical section, the equipment damage is confined to individual structures, minimizing damage to adjacent structures.

Circuit Breaker Compartment

The levering mechanism is mechanically interlocked with the compartment door such that the door cannot be opened until the circuit breaker is opened and levered out to the test/disconnect position. This interlocking ensures that the levering of the circuit breaker into or out from the connected position is done with compartment door closed and latched, without exposure to potential arc flash.

Easy access and viewing ports are provided on the door to allow operator to carry out normal functions with the door closed and latched, with no exposure to potential arc flash. Those functions include: Breaker levering and manual opening of the circuit breaker, viewing of open/close status of the breaker main contacts, viewing of charged/discharged status of the closing springs, viewing of mechanical operations counter, and breaker position.

Auxiliary Compartments

The 27 kV design permits maximum of only one auxiliary drawer per vertical section.

Each auxiliary drawer is equipped with cell-mounted levering mechanism. The mechanism is mechanically interlocked with its compartment door such that the door cannot be opened and access to auxiliary drawer cannot be gained until the drawer is first levered out to the disconnected position. This interlocking ensures that the levering of the auxiliary drawer into or out from the connected position is done with compartment door closed and latched, with no exposure to potential arc flash.

A viewing window is provided on the door and on front panel of the drawer to allow viewing of the drawer position and the primary fuses.

In 27 kV designs, an auxiliary drawer can be configured as a fuse drawer with two primary fuses and connected to a fixed-mounted CPT (single-phase 25 kVA maximum) in the rear of the structure.

Control Compartments

The control compartment doors can be opened to access control wiring without having to de-energize the primary circuit. The control compartments have been tested to provide arc-resistant protection with its door opened under normal operating condition. Please note the control compartment door should be opened only for access to control wiring when needed, and should remain closed at all other times.
27 kV Arc-Resistant Switchgear

Front View — 27 kV VCP-W Arc-Resistant Switchgear (Plenum Above the Switchgear is Not Shown)

Typical 27 kV Cell — Controls in Top, Breaker in the Bottom

Rear View — Typical 27 kV Breaker Cable Termination

Note: Application layouts and dimensions — refer to Page 5.5-21 to Page 5.5-24.
Standard Metal-Clad Switchgear Assembly Ratings

VacClad-W metal-clad arc-resistant switchgear is available for application at voltages up to 38 kV, 50 or 60 Hz. Refer to the table below for complete list of available ratings.

Table 5.5-1. VacClad-W Arc-Resistant Metal-Clad Switchgear

<table>
<thead>
<tr>
<th>Rated Maximum Voltage</th>
<th>(Ref.) Rated Voltage Range Factor</th>
<th>Insulation Level</th>
<th>Ratings per IEEE C37.20.2-2015</th>
<th>Enclosure Internal Arc Withstand</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(Ref.) Rated Short-Circuit Current</td>
<td></td>
<td>Rated Main Bus Continuous Current</td>
<td>Rated Momentary Short-Circuit Current Withstand (10-Cycle) (167 ms)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Power Frequency Withstand Voltage, 60 Hz, 1 Minute</td>
<td>Lightning Impulse Withstand Voltage [LIWW] (BIL)</td>
</tr>
<tr>
<td>kV rms</td>
<td>kA rms</td>
<td>kV rms</td>
<td>kV Peak</td>
<td>Amperes</td>
</tr>
<tr>
<td>27</td>
<td>1</td>
<td>16</td>
<td>60</td>
<td>125</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>22</td>
<td>60</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>25</td>
<td>68</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>31.5</td>
<td>85</td>
<td>51</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>40</td>
<td>108</td>
<td>64</td>
</tr>
</tbody>
</table>

1. **27–38 kV switchgear is supplied with arc wall.** For plenum requirements at 27 and 38 kV, contact Eaton.
2. **27 kV arc-resistant switchgear can be supplied in one-high configuration only.**

VacClad-W 27 kV, Arc-Resistant Metal-Clad Medium-Voltage Switchgear

General Description

EATON www.eaton.com

Design Guide DG022005EN

Effective May 2020

5.5-5
Unusual and Usual Service Conditions

Unusual Service Conditions
Applications of metal-clad switchgear at other than usual altitude or temperature, or where solar radiation is significant, require special consideration. Other unusual service conditions that may affect design and application include:

- Exposure to salt air, hot or humid climate, excessive dust, dripping water, falling dirt, or other similar conditions
- Unusual transportation or storage conditions
- Switchgear assemblies when used as the service disconnecting means
- Installations accessible to the general public
- Exposure to seismic shock
- Exposure to nuclear radiation

Usual Service Conditions
Usual service conditions for operation of metal-clad switchgear are as follows:

- Altitude does not exceed 3300 feet (1000 m)
- Ambient temperature within the limits of −30 °C and +40 °C (−22 °F and +104 °F)
- The effect of solar radiation is not significant

Applications Above 3300 Feet (1006 m)
Equipment utilizing sealed interrupting devices (such as vacuum interrupters) does not require derating of rated maximum voltage. The rated one-minute power frequency withstand voltage, the impulse withstand voltage and the continuous current rating must be multiplied by the appropriate correction factor in Table 5.5-4 to obtain modified ratings that must equal or exceed the application requirements.

Note: Intermediate values may be obtained by interpolation.

Applications Above or Below 40 °C Ambient
Refer to ANSI C37.20.2, Section 8.4 for load current-carrying capabilities under various conditions of ambient temperature and load.

Applications at Frequencies Less Than 60 Hz

Rated Short-Circuit Current
Based on series of actual tests performed on Type VCP-W circuit breakers and analysis of these test data and physics of vacuum interrupters, it has been found that the current interruption limit for Type VCP-W circuit breakers is proportional to the square root of the frequency. Table 5.5-2 provides derating factors, which must be applied to breaker interrupting current at various frequencies.

Table 5.5-2. Derating Factors

<table>
<thead>
<tr>
<th>Frequency</th>
<th>50 Hz</th>
<th>25 Hz</th>
<th>16 Hz</th>
<th>12 Hz</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>0.65</td>
<td>0.52</td>
<td>0.45</td>
<td></td>
</tr>
</tbody>
</table>

Rated Short-Time and Close and Latch Currents
No derating is required for short time and close and latch current at lower frequency.

Rated Continuous Current
Because the effective resistance of circuit conductors is less at lower frequency, continuous current through the circuit can be increased somewhat. Table 5.5-3 provides nominal current rating for VCP-W breakers when operated at frequencies below 60 Hz.

Table 5.5-3. Current Ratings

<table>
<thead>
<tr>
<th>Rated Continuous Current at 60 Hz</th>
<th>Nominal Current at Frequency Below 60 Hz</th>
</tr>
</thead>
<tbody>
<tr>
<td>1200 A</td>
<td>1243</td>
</tr>
<tr>
<td>2000 A</td>
<td>2075</td>
</tr>
</tbody>
</table>

Power Frequency and Impulse Withstand Voltage Ratings
No derating is required for lower frequency.

CTs, VTs, Relays and Instruments
Application at frequency other than rated frequency must be verified for each device on an individual basis.

Table 5.5-4. Altitude Derating Factors

<table>
<thead>
<tr>
<th>Altitude Above Sea Level in Feet (m)</th>
<th>Altitude Correction Factor to be Applied to:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage</td>
<td>Rated Continuous Current</td>
</tr>
<tr>
<td>3300 (1006)</td>
<td>1.0</td>
</tr>
<tr>
<td>4000 (1219)</td>
<td>0.98</td>
</tr>
<tr>
<td>5000 (1524)</td>
<td>0.95</td>
</tr>
<tr>
<td>6000 (1829)</td>
<td>0.92</td>
</tr>
<tr>
<td>6600 (2012)</td>
<td>0.91</td>
</tr>
<tr>
<td>7000 (2137)</td>
<td>0.89</td>
</tr>
<tr>
<td>8000 (2438)</td>
<td>0.86</td>
</tr>
<tr>
<td>9000 (2743)</td>
<td>0.83</td>
</tr>
<tr>
<td>10,000 (3048)</td>
<td>0.80</td>
</tr>
<tr>
<td>12,000 (3658)</td>
<td>0.75</td>
</tr>
<tr>
<td>13,200 (4023)</td>
<td>0.72</td>
</tr>
<tr>
<td>14,000 (4267)</td>
<td>0.70</td>
</tr>
<tr>
<td>16,000 (4877)</td>
<td>0.65</td>
</tr>
<tr>
<td>16,400 (5000)</td>
<td>0.64</td>
</tr>
<tr>
<td>18,000 (5486)</td>
<td>0.61</td>
</tr>
<tr>
<td>20,000 (6096)</td>
<td>0.56</td>
</tr>
</tbody>
</table>

Unusual Service Conditions
Applications of metal-clad switchgear at other than usual altitude or temperature, or where solar radiation is significant, require special consideration. Other unusual service conditions that may affect design and application include:

- Exposure to salt air, hot or humid climate, excessive dust, dripping water, falling dirt, or other similar conditions
- Unusual transportation or storage conditions
- Switchgear assemblies when used as the service disconnecting means
- Installations accessible to the general public
- Exposure to seismic shock
- Exposure to nuclear radiation
Circuit Breakers

Table 5.5-5. Available 27 kV VCP-W Vacuum Circuit Breaker Types Rated on Symmetrical Current Rating Basis, Per ANSI Standards

<table>
<thead>
<tr>
<th>Circuit Breaker Type</th>
<th>Nominal Voltage Class</th>
<th>Voltage MVA Class</th>
<th>Voltage Insulation Level</th>
<th>Current Rating (Amps)</th>
<th>Rated Transient Recovery Voltage</th>
<th>Rated Permanent Tripping Delay</th>
<th>Rated Maximum Voltage</th>
<th>Rated Voltage Range Factor</th>
<th>Power Frequency Withstand Voltage (1 min.)</th>
<th>Lightning Impulse Withstand Voltage (1.2 x 50 µs)</th>
<th>Rated Continuous Current at 60 Hz</th>
<th>Rated Short-Circuit Current (at Rated Maximum kV)</th>
<th>Rated Crest Voltage</th>
<th>Rated Time to Crest</th>
<th>Rate of Rise of Recovery Voltage</th>
<th>Rated Asymmetry Capability</th>
<th>Rated Maximum Voltage Divided by K</th>
<th>3-Second Short-Time Current Carrying Capability</th>
<th>Closing and Latching Capability (Momentary)</th>
<th>Asymmetry Factor for VCP-W Breakers</th>
</tr>
</thead>
<tbody>
<tr>
<td>270 VCP-W 16</td>
<td>27</td>
<td>750</td>
<td>1.0</td>
<td>60</td>
<td>125</td>
<td>106</td>
<td>0.55</td>
<td>2</td>
<td>300</td>
<td>27</td>
<td>16</td>
<td>16</td>
<td>43</td>
<td>26</td>
<td>1.2</td>
<td>1.6</td>
<td>0.13</td>
<td>0.6</td>
<td>1.2</td>
<td>1.2</td>
</tr>
<tr>
<td>270 VCP-W 22</td>
<td>27</td>
<td>1000</td>
<td>1.0</td>
<td>60</td>
<td>125</td>
<td>106</td>
<td>0.55</td>
<td>5</td>
<td>300</td>
<td>27</td>
<td>22</td>
<td>22</td>
<td>60</td>
<td>35</td>
<td>1.2</td>
<td>1.6</td>
<td>0.13</td>
<td>0.6</td>
<td>1.2</td>
<td>1.2</td>
</tr>
<tr>
<td>270 VCP-W 25</td>
<td>27</td>
<td>1250</td>
<td>1.0</td>
<td>60</td>
<td>125</td>
<td>106</td>
<td>0.55</td>
<td>5</td>
<td>300</td>
<td>27</td>
<td>25</td>
<td>25</td>
<td>68</td>
<td>40</td>
<td>1.2</td>
<td>1.6</td>
<td>0.13</td>
<td>0.6</td>
<td>1.2</td>
<td>1.2</td>
</tr>
<tr>
<td>270 VCP-W 32</td>
<td>27</td>
<td>1600</td>
<td>1.0</td>
<td>60</td>
<td>125</td>
<td>106</td>
<td>0.55</td>
<td>5</td>
<td>300</td>
<td>27</td>
<td>31.5</td>
<td>31.5</td>
<td>85</td>
<td>51</td>
<td>1.2</td>
<td>1.6</td>
<td>0.13</td>
<td>0.6</td>
<td>1.2</td>
<td>1.2</td>
</tr>
<tr>
<td>270 VCP-W 40</td>
<td>27</td>
<td>2000</td>
<td>1.0</td>
<td>60</td>
<td>125</td>
<td>106</td>
<td>0.55</td>
<td>5</td>
<td>300</td>
<td>27</td>
<td>40</td>
<td>40</td>
<td>108</td>
<td>64</td>
<td>1.2</td>
<td>1.6</td>
<td>0.13</td>
<td>0.6</td>
<td>1.2</td>
<td>1.2</td>
</tr>
</tbody>
</table>

For capacitor switching, refer to Table 5.5-7.

27 kV breakers are not UL listed.

Circuit breakers shown in this table were tested in accordance with IEEE standard C37.09-1979.

For three-phase and line-to-line faults, the symmetrical interrupting capability at an operating voltage

\[I_s = \frac{V}{V_o} (\text{Rated Short-Circuit Current}) \]

But not to exceed \(K_I \).

Single line-to-ground fault capability at an operating voltage

\[I_s = 1.15 \frac{V}{V_o} (\text{Rated Short-Circuit Current}) \]

But not to exceed \(K_I \).

The above apply on predominately inductive or resistive three-phase circuits with normal-frequency line-to-line recovery voltage equal to the operating voltage.

\[\text{RRRV} = 1.13T \frac{E_2}{T_2} \]

3-cycle rating available, refer to Table 5.5-7.

Tripping may be delayed beyond the rated permissible tripping delay at lower values of current in accordance with the following formula:

\[T (\text{seconds}) = \frac{1}{V} \left(K \times \text{Rated Short-Circuit Current} \right)^{\frac{3}{2}} \]

The aggregate tripping delay on all operations within any 30-minute period must not exceed the time obtained from the above formula.

For reclosing service, there is No derating necessary for Eaton's VCP-W family of circuit breakers. \(R = 100\% \). Type VCP-W breaker can perform the O-C-o per ANSI C37.09; O-0.3s-CO-15s-CO per IEC 56; and some VCP-Ws have performed O-0.3s-CO-15s-CO-15s-CO-15s-CO; all with no derating.

Contact Eaton for special reclosing requirements.

For higher close and latch ratings, refer to Table 5.5-7.

Included for reference only.

Asymmetrical interrupting capability = \("S" \) times symmetrical interrupting capability, both at specified operating voltage.
Type VCP-W Circuit Breaker Operating Times

The closing time (initiation of close signal to contact make) and opening time (initiation of the trip signal to contact break) are shown in Table 5.5-6.

Table 5.5-6. Closing Time and Opening Time

<table>
<thead>
<tr>
<th>Rated Control Voltage</th>
<th>Breaker Rating</th>
<th>Closing Time Milliseconds</th>
<th>Opening Time Milliseconds</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Standard 5-Cycle Breaker</td>
<td>Optional 3-Cycle Breaker</td>
</tr>
<tr>
<td>48V, 125V, 250Vdc</td>
<td>All</td>
<td>45–60</td>
<td>30–45</td>
</tr>
<tr>
<td>120V, 240Vac</td>
<td>All</td>
<td>45–60</td>
<td>—</td>
</tr>
<tr>
<td>120V or 240Vac capacitor trip</td>
<td>All</td>
<td>—</td>
<td>26–41</td>
</tr>
<tr>
<td>Optional—undervoltage trip release 48V, 125V, 250Vdc</td>
<td>All</td>
<td>—</td>
<td>30–45</td>
</tr>
</tbody>
</table>

Figure 5.5-2 below shows the sequence of events in the course of circuit interruption, along with applicable VCP-W circuit breaker timings.

Figure 5.5-2. Sequence of Events and Circuit Breaker Operating Times

1. Times shown are based on 60 Hz.
2. % dc component capability (and asymmetry factor S) depend on the minimum contact parting time.
 The % dc component capability is M 50% (S factor M 1.2) for all VCP-W circuit breakers.

Figure 5.5-3. Typical Transfer Times

1. Times shown are based on 60 Hz.
Industry Leader VCP-WC
Introducing the VCP-WC extra capability medium-voltage drawout circuit breaker. Designed to provide all the industry-leading features expected of the VCP-W, plus extra capabilities for those application requirements that go beyond what is usually experienced. The performance enhancement features of the VCP-WC make it an ideal choice for capacitor switching duty, high altitude applications, transformer secondary fault protection, locations with concentrations of rotating machinery or high operating endurance requirements, just to mention a few. Consider these capability enhancements:

- Definite purpose capacitor switching
- Higher close and latch
- Faster rate of rise of recovery voltage
- Higher short-circuit current
- Higher mechanical endurance
- Higher insulation level
- Higher voltage ratings with K=1
- 3-cycle interrupting time
- Higher switching life
- Designed and tested to ANSI standards and higher
- WR fixed retrofit configuration available

Vacuum Circuit Breaker Design Leadership
Eaton is a world leader in vacuum interrupter and vacuum circuit breaker technology, offering VCP-WC with extra capabilities without sacrificing the proven features already standard with other VCP-W circuit breakers. Features such as:

- Vacuum interrupters with copper-chrome contacts
- V-Flex non-sliding current transfer system
- Visible contact erosion indicators
- Visible contact wipe indicators
- Front, functionally grouped controls and indicators
- Epoxy insulation (27/38 kV)
- Front, vertically mounted stored energy mechanism
- Drawout on extension rails
- Integrally mounted wheels
- Quality Assurance Certificate

The Type VCP-WC Breakers are not Interchangeable with Standard VCP-W Breakers. They are Equipped with Different Code Plates and Taller Front Panels.

Table 5.5-7. VCP-WC Ratings (Symmetrical Current Basis), Rated K = 1

<table>
<thead>
<tr>
<th>Circuit Breaker Type</th>
<th>Voltage (kV rms)</th>
<th>Insulation Level</th>
<th>Current Short-Circuit Current</th>
<th>Maximum Permissible Tripping Delay</th>
<th>Rate of Rise of Recovery Voltage (RRRV)</th>
<th>Capacitor Switching Ratings</th>
<th>Mechanical Endurance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sym. Interrupting Current (ka)</td>
<td>% de Component [%]</td>
<td>Asym. Interrupting Current (ka)</td>
<td>Closing and Latching Capability</td>
<td>Back-to-Back Capacitor Switching</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>% rms</td>
<td>Total</td>
<td>% rms</td>
<td>Total</td>
<td>% rms</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>A rms</td>
<td>ms</td>
<td>A rms</td>
<td>ms</td>
<td>A rms</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>kA</td>
<td></td>
<td>kA</td>
<td></td>
<td>kA</td>
</tr>
<tr>
<td>270VCP-W 25C</td>
<td>27</td>
<td>1</td>
<td>60</td>
<td>125</td>
<td>25</td>
<td>75</td>
<td>36</td>
</tr>
<tr>
<td>270VCP-W 32C</td>
<td>27</td>
<td>1</td>
<td>60</td>
<td>125</td>
<td>31.5</td>
<td>55</td>
<td>40</td>
</tr>
<tr>
<td>270VCP-W 40C</td>
<td>27</td>
<td>1</td>
<td>60</td>
<td>125</td>
<td>40</td>
<td>50</td>
<td>49</td>
</tr>
</tbody>
</table>

① Except as noted.
② 3 cycles.
③ Contact Eaton for higher RRRV or for more information.
④ 2.5 seconds.
⑤ 1.6 second.
⑥ 1 second.
Protection Relays and Metering

Switchgear Meters

Eaton’s Power Xpert™ Power and Energy Meters, and Power Xpert Dashboard products allow switchgear owners and operators to interface with their equipment at varying levels of sophistication. To learn more about these devices, visit our website.

Instrument Transformers

Instrument transformers are used to protect personnel and secondary devices from high voltage, and permit use of reasonable insulation levels for relays, meters and instruments. The secondaries of standard instrument transformers are rated at 5 A and/or 120 V, 60 Hz.

Voltage Transformers

Selection of the ratio for voltage transformers is seldom a question since the primary rating should be equal to or higher than the system line-to-line voltage. The number of potential transformers per set and their connection is determined by the type of system and the relaying and metering required.

When two VTs are used, they are typically connected L-L, and provide phase-to-phase voltages, (Vab, Vbc, Vca) for metering and relaying.

When three VTs are used, they are connected line-to-ground, and provide phase-to-ground (Va, Vb, Vc) voltages for metering and relaying.

If metering or relaying application requires phase-to-ground voltages, use three VTs, each connected L-G. If not, use of two VTs connected L-L is sufficient.

For ground detection, three VTs connected in Line-to-ground/broken-delta are used.

A single VT, when used, can be connected line-to-line (it will provide line-to-line output, for example Vab or Vbc or Vca), or line-to-ground (it will provide line-to-ground output, for example Va or Vb or Vc). Generally, a single VT is used to derive voltage signal for synchronizing or Overvoltage/Undervoltage function.

Current Transformers

The current transformer ratio is generally selected so that the maximum load current will read about 70% full scale on a standard 5 A coil ammeter. Therefore, the current transformer primary rating should be 140–150% of the maximum load current.

Maximum system fault current can sometimes influence the current transformer ratio selection because the connected secondary devices have published one-second ratings.

The zero-sequence current transformer is used for sensitive ground fault relaying or self-balancing primary current type machine differential protection. The zero-sequence current transformer is available with a nominal ratio of 50/5 or 100/5 and available opening size for power cables of 7.25 inches (184.2 mm). Special zero-sequence transformers with larger windows are also available.

The minimum number of current transformers for circuit relaying and instruments is three current transformers, one for each phase or two-phase connected current transformers and one zero-sequence current transformer. Separate sets of current transformers are required for differential relays.

The minimum pickup of a ground relay in the residual of three-phase connected current transformers is primarily determined by the current transformer ratio. The relay pickup can be reduced by adding one residual connected auxiliary current transformer. This connection is very desirable on main incoming and tie circuits of low resistance grounded circuits.

Standard accuracy current transformers are normally more than adequate for most standard applications of microprocessor-based protective relays and meters. See Table 5.5-10 for CT accuracy information.

<table>
<thead>
<tr>
<th>Table 5.5-8. Standard Voltage Transformer Ratio Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rating-Volts</td>
</tr>
<tr>
<td>Ratio</td>
</tr>
</tbody>
</table>

Effective May 2020
Table 5.5-9. Standard Voltage Transformer, 60 Hz Accuracy Information

<table>
<thead>
<tr>
<th>Switchgear</th>
<th>Voltage Transformer — ANSI Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>kV Class</td>
<td>kV BIL</td>
</tr>
<tr>
<td>27</td>
<td>125</td>
</tr>
</tbody>
</table>

① For solidly grounded system only.

Note: LL = Line-to-line connection. LG = Line-to-ground connection.

Table 5.5-10. Current Transformers, 55 °C Ambient

<table>
<thead>
<tr>
<th>CT Ratio (MR = Multi-Ratio)</th>
<th>Metering Accuracy Classification</th>
<th>Relaying Accuracy Classification</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>At 60 Hz Standard Burden B 0.1</td>
<td>At 60 Hz Standard Burden B 0.5</td>
</tr>
<tr>
<td>50:5</td>
<td>1.2</td>
<td>—</td>
</tr>
<tr>
<td>75:5</td>
<td>1.2</td>
<td>2.4</td>
</tr>
<tr>
<td>100:5</td>
<td>1.2</td>
<td>2.4</td>
</tr>
<tr>
<td>150:5</td>
<td>0.6</td>
<td>2.4</td>
</tr>
<tr>
<td>200:5</td>
<td>0.6</td>
<td>2.4</td>
</tr>
<tr>
<td>250:5</td>
<td>0.6</td>
<td>2.4</td>
</tr>
<tr>
<td>300:5</td>
<td>0.6</td>
<td>2.4</td>
</tr>
<tr>
<td>400:5</td>
<td>0.3</td>
<td>1.2</td>
</tr>
<tr>
<td>500:5</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>600:5</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>800:5</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>1000:5</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>1200:5</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>1500:5</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>2000:5</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>2500:5</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>3000:5</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>4000:5</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>600:5 MR</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>1200:5 MR</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>2000:5 MR</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>3000:5 MR</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>50:5 zero sequence</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>100:5 zero sequence</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

② Not listed in C3720.2.

Note: Maximum number of CTs — Two sets of standard accuracy or one set of high accuracy CTs can be installed in the breaker compartment on each side of the circuit breaker.
Ohmic Voltage Sensing (OVS)

Eaton’s Ohmic Voltage Sensing (OVS) is an alternative to traditional VTs in medium voltage. While traditional VTs are susceptible to transients and ferro-resonance, the OVS system is not. The OVS sensor consists of four non-inductive resistors (two medium-voltage resistors in series and two low-voltage resistors in parallel) that serve as a voltage divider; a low-voltage signal from the sensor is sent to the R2m adapter that is connected to the CAPDIS device. The CAPDIS device then sends 120 V signals to the relays and meters in the system (see Figure 5.5-4). The system is designed to be agnostic when meter and relay devices are being selected for use in a protection and controls scheme.

The OVS system is rated for applications 2.4 to 36 kV as a replacement for VTs. The selection of sensors and R2m adapter for the system is dependent on the nominal voltage being applied to the switchgear. The OVS systems must be applied with three sensors installed line to ground; the low-voltage control circuit can be configured to provide a line-to-line or a line-to-ground output dependent upon the wiring to the relay or meter. Relays and meters installed in the protection and controls scheme would process the signal from the OVS system in the same manner it would a VT. The sensors are traditionally mounted in the rear switchgear compartment (see Figure 5.5-5). However, if an existing installation requires the OVS system, it can be retrofitted into the existing VT drawer.

Figure 5.5-4. Typical OVS System Setup

OVS is not to be used to provide any control power to devices in the switchgear, or to be used for utility metering applications.

The OVS system has been tested to IEEE C37.20.2.2015 Annex D.

Technical Data

- 24 to 230 Vac or Vdc control power for CAPDIS
- Voltage system accuracy better than 2%
- Phase angle accuracy of better than 0.1% over frequency range of 2 kHz
- Burden 0.78 VA L-L, 0.45 VA L-N
Thermal Monitoring

Eaton can provide multiple options for thermal monitoring in switchgear. From infrared (IR) windows to continuous thermal monitoring solutions.

IR windows are placed on the rear covers of the switchgear doors providing the ability to use an IR camera for checking cable connections to circuit breakers. IR windows are applied in different configurations depending on the field of view each window has into the cable compartment of the switchgear. An IR camera is needed for taking pictures through the window to check system health. See Figure 5.5-6 for IR window installation example.

Continuous thermal monitoring systems consist of sensors mounted in the cable compartment, which are hardwired or wireless and connected to a data card or collector to put the information over a control network to be monitored. The temperature measured is a delta t (ambient to bus temperature); some systems require a second sensor for ambient temperature. See Figure 5.5-7 for a continuous thermal monitoring system installation example.

The delta t that can be taken from both systems should be analyzed and compared to industry standards to determine any corrective action required.

Figure 5.5-6. Typical Install for IR Window on Rear Door

Figure 5.5-7. Typical Install for Continuous Thermal Monitoring Sensors

Dummy Element

Dummy element is a drawout element with primary disconnects similar to a drawout circuit breaker, but consists of solid copper conductors in place of vacuum interrupters, and is designed for manual racking. It is typically used as drawout disconnect link in the primary system for circuit isolation or bypass. The device is insulated to suit the voltage rating of the switchgear and will carry required levels of short-circuit current, but it is not rated for any current interruption.

It must be key interlocked with all source devices such that it can only be inserted into or removed from its connected position only after the primary circuit in which it is to be applied is completely de-energized.

Before using a dummy element, it is recommended that each user develop detailed operating procedure consistent with safe operating practices. Only qualified personnel should be authorized to use the dummy element.
Integral Motorized Remote Racking Option (VC-W MR2)

VC-W MR2 is an optional motorized racking device accessory installed inside a circuit breaker or auxiliary compartment. It is available for application in circuit breaker compartments of 5/15/27/38 kV Type VC-W arc and non-arc, and 5 kV VC-W ND metal-clad switchgear. It is also available for application in auxiliary compartments of 5/15 kV Type VC-W arc-resistant and standard switchgear. This optional accessory allows a user to safely move a circuit breaker between Connected, Test and Disconnected positions and auxiliary drawer (VT, CPT, primary fuse) between Connected and Disconnected positions within their respective compartments from a safe distance away from the switchgear. The MR2 controller also allows a user to electrically open and close the circuit breaker from a safe distance away from the switchgear. For switchgear designs/ratings not included above, contact Eaton for availability of MR2 accessory.

A microprocessor-based controller card, located below the drive motor, interfaces with an external hand-held pendant (standard), discrete external I/O (optional) or external Modbus communication (optional) and controls the breaker/auxiliary drawer movement via the drive motor. The system is also designed such that it allows manual racking of the breaker/auxiliary using the levering crank accessory if needed. The VC-W MR2 controller interface is shown in Figure 5.5-8. The crank safety switch disables the motor whenever a breaker/auxiliary is being manually racked in or out. The connect, test and disconnect limit switches provide breaker/auxiliary position inputs to the controller card. In addition to the standard permissive switch, two terminals are provided for connection of the customer’s external interlocking/permissive contact(s). Note that a single-phase 120 Vac control supply is required for proper operation of the VC-W MR2 controller and the drive motor.

When VC-W MR2 integral racking is supplied, its controller card is wired to the CAT 6 jack installed in the associated breaker/auxiliary compartment door, and each switchgear lineup is shipped with one hand-held pendant with 30 feet of CAT 6 cable (lengths up to 100 ft available). The pendant interfaces with the MR2 controller card via the CAT 6 cable through a CAT 6 jack located on the breaker/auxiliary compartment door. It allows the operator to move away from the switchgear up to 30 feet. The pendant includes Enable pushbutton for additional security. It must be pressed in order to activate the pendant functions. By pressing Enable pushbutton and an appropriate function pushbutton together momentarily, the operator can rack the breaker between Connected, Test and Disconnected positions or open or close the breaker or rack the auxiliary drawer between Connected and Disconnected positions. Breaker or auxiliary drawer positions (Connect, Test, Disconnect) and breaker opened/closed status are indicated by appropriate LED lights on the pendant. A blinking light indicates that the breaker/auxiliary is in motion through the selected position.
A solid (non-blinking) light indicates that the breaker/auxiliary has reached and stopped in the selected position. In case normal operation fails, the appropriate error code is displayed in a separate two-character LED display window on the pendant. A list of various error codes and their descriptions along with suggested corrective actions are printed on the back side of the pendant. Examples of error states: motor overcurrent, motor overtemperature, motor timed out, breaker position unknown, open permissive, communication error and no breaker/auxiliary.

In addition to pendant, three optional I/O interfaces can be supplied as follows:

1. I/O interface to allow racking of breaker (connect, test, disconnect) or auxiliary drawer (connect, disconnect) by external hardwired dry contacts and 24 Vdc output for corresponding remote position indicating LEDs.

2. I/O board that provided dry contacts for remote indication of breaker (connect, intermediate, test, disconnect)/auxiliary drawer (connect, test) position within its compartment.

3. I/O interface to allow breaker open/close functions via external hardwired dry contacts and 24 Vdc output for corresponding remote open/close status LEDs.

The remote LED lights are not included with MR2. If the customer needs to operate the MR2 with the hand-held pendant, the pendant becomes the master and will override the customer’s remote control signals.

The VC-W MR2 controller is also equipped with terminal blocks to allow the customer to interface with the controller via their SCADA system using a Modbus interface. Please note that only one of the two options, discrete I/O interface or Modbus interface, can be used, but not both. Figure 5.5-9 shows an illustration of a typical Modbus control example. Additional components shown outside the MR2 controller in Figure 5.5-9 are not included with the MR2. System-level controls can be optionally supplied by Eaton’s Engineering Services & Systems. If the customer needs to operate the MR2 with the hand-held pendant, the pendant becomes the master and will override the Modbus interface. Error codes are displayed on Modbus devices when controlling the MR2 with Modbus and on the pendant when controlling with the pendant.

Technical Data

Control Supply Ratings
- Nominal control voltage — 120 Vac, 50 or 60 Hz, single-phase
- Control voltage range — 100 to 140 Vac, 50 or 60 Hz
- Time to travel from connect to disconnect, or disconnect to connect — 50 seconds maximum
- Current draw during the travel — 15 A maximum for about 3 seconds and 3.6 A for about 24 seconds
- Optional dry output contacts when included for position indications are rated for 125 Vac, 2 A
- External permissive contacts, when used, must be rated for 24 Vdc, 50 mA

Requirements for External Contacts and LEDs when Interfacing with MR2
- External contacts should be rated for minimum open circuit voltage of 24 Vdc, and be able to close and carry 5 mA at 24 Vdc
- When remote LEDs are used, use 24 Vdc rated LEDs, current up to 20 mA
- Optional dry output contacts when included for position indications are rated for 125 Vac, 2 A
- External permissive contacts, when used, must be rated for 24 Vdc, 50 mA

It is the customer’s responsibility to provide single-phase 120 V, 50 or 60 Hz nominal supply for the MR2 controller. It can be derived from within the switchgear if an appropriate control power transformer is available within the switchgear.

Type VC-W MR2 motorized racking accessory has been endurance tested and guaranteed for 500 operations as required by IEEE C37.20.2.
Figure 5.5-8. VC-W MR2 Controller Interface for a VCB with Distinct Test Position and Open/Close Functions
Figure 5.5-9. VC-W MR2 Typical Modbus Control Example

Example shown here is typical for control of up to 16 circuit breakers controlled via each USB COM port.
Accessories

Ground and Test Device

The ground and test device is a drawout element that may be inserted into a metal-clad switchgear housing in place of a circuit breaker to provide access to the primary circuits to permit the temporary connection of grounds or testing equipment to the high-voltage circuits. High potential testing of cable or phase checking of circuits are typical tests which may be performed. The devices are insulated to suit the voltage rating of the switchgear and will carry required level of short-circuit current.

Before using ground and test devices, it is recommended that each user develop detailed operating procedures consistent with safe operating practices. Only qualified personnel should be authorized to use ground and test devices.

Manual and electrical ground and test devices are available. These devices include six studs for connection to primary circuits. On the manual device, selection and grounding is accomplished by cable or bus bars connection. On electrical-type devices, grounding is accomplished by an electrically operated grounding switch.

Standard Accessories

- One test jumper
- One levering crank
- One maintenance tool
- One lifting yoke (5–27 kV)
- One sets of rails (5–27 kV)
- One turning handle (5th wheel, 38 kV)

Optional Accessories

- Transport dolly (5–27 kV), (5–15 kV arc-resistant)
- Portable lifter (5–27 kV)
- Test cabinet
- Electrical levering device (5–38 kV)
- Ramp for lower breaker (5–27 kV), (5–15 kV arc-resistant)
- Manual or electrical ground and test device
- Hi-pot tester
- Integral motorized remote racking (VC-W MR2) for circuit breaker
- Integral motorized remote racking (VC-W MR2) for auxiliary drawer
Partial Discharge Sensing and Monitoring for Switchgear

Partial Discharge in Switchgear
Partial discharge is a common name for various forms of electrical discharges such as corona, surface tracking, and discharges internal to the insulation. It partially bridges the insulation between the conductors. These discharges are essentially small arcs occurring in or on the surface of the insulation system when voltage stress exceeds a critical value. With time, airborne particles, contaminants and humidity lead to conditions that result in partial discharges. Partial discharges start at a low level and increase as more insulation becomes deteriorated. Examples of partial discharge in switchgear are surface tracking across bus insulation, or discharges in the air gap between the bus and a support, such as where a bus passes through an insulating window between the sections of the switchgear. If partial discharge process is not detected and corrected, it can develop into a full-scale insulation failure followed by an electrical fault. Most switchgear flashover and bus failures are a result of insulation degradation caused by various forms of partial discharges.

Sensing and Monitoring
Eaton’s Type VCP-W metal-clad switchgear (2.4–38 kV) is corona-free by design. Corona emissions within the standard VacClad switchgear assemblies have been eliminated or reduced to very low levels by special fabrication and assembly techniques, such as rounding and buffing of all sharp copper edges at the joints, employing star washers for bolting metal barriers, and using specially crafted standoff insulators for primary bus supports. By making switchgear assemblies corona-free, Eaton has made its standard switchgear more reliable. However, as indicated above, with time, airborne particles, contaminants and humidity lead to conditions that cause partial discharges to develop in switchgear operating at voltages 4000 V and above. Type VC-W switchgear can be equipped with factory-installed partial discharge sensors and partial discharge sensing relay for continuous monitoring of the partial discharges under normal operation. Timely detection of insulation degradation through increasing partial discharges can identify potential problems so that corrective actions can be planned and implemented long before permanent deterioration develops. Partial discharge detection can be the foundation of an effective predictive maintenance program. Trending of partial discharge data over time allows prediction of failures, which can be corrected before catastrophic failure occurs.

The PD sensing and monitoring system is optional. It consists of Eaton’s InsulGard™ Relay and PD sensors specifically developed for application in the switchgear to work with the relay. Partial discharges within the switchgear compartment are detected by installation of a small donut type radio frequency current transformer (RFCT) sensor over floating stress shields of the specially designed bus or line side primary bushings. Partial discharges in customer’s power cables (external discharges) are detected by installation of the RFCT around ground shields of the incoming or outgoing power cables termination. In 27/38 kV switchgear (refer to Figure 5.5-11), when specified, a set of coupling capacitor sensors is installed in the rear compartment and connected to the primary circuit at every two vertical sections for measurement of discharges internal to the switchgear compartment. The sensor’s output is wired to terminal blocks in control compartment for easy access for periodic field measurements. The sensor can also be connected directly to optional InsulGard relay for continuous monitoring of partial discharges. An additional RFCT sensor for each incoming and outgoing power cable circuits can be provided for measurement of external discharges.
Figure 5.5-10. InsulGard Relay System

- **Input Terminal Block**: Includes Temp Sensor and Humidity Sensor.
- **InsulGard Relay**: Optional Modem.
- **Output**: Alarm Status, 120 Vac Auxiliary Power, Signals (up to 15 Total) from PD Sensors (Coupling Capacitors, RFCT Sensor, RTD Input, etc.).

Coupling Capacitor detects partial discharges internal to switchgear compartment.

RFCT detects partial discharges in customer’s cables up to 100 ft from switchgear.

Figure 5.5-11. Typical Partial Discharge Sensor Connections

(27/38 kV Switchgear)
Typical Application Layouts

Figure 5.5-12. Typical Arc-Resistant Switchgear Application Layouts—27 kV

Notes:
1. Maximum number of CTs: Two sets of standard or one set of high accuracy CTs can be installed on each side of the circuit breaker.
2. Bottom entry is standard for all power cables, maximum four per phase.
3. Refer to Figure 5.5-13 to Figure 5.5-15 for dimensions.
4. 27 kV arc-resistant switchgear can be supplied in one-high design configuration only.
Figure 5.5-13. Available Arc-Resistant Switchgear Configurations (Front Views)—27 kV

Please note that an additional 48.00-inch (1219.2 mm) clearance is required above the arc wall for arc exhaust.
Figure 5.5-14. Typical Arc-Resistant Switchgear Sectional (Side Views)—27 kV
Typical Floor Plan—Dimensions in Inches (mm)

1. Bottom cable entrance. Refer to shop order base plan for conduit locations.
2. Secondary control wiring conduit openings, location bottom entrance (optional; only by special order).
4. Minimum left clearance. Minimum clearance to RH side of the switchgear: 6.00 inches (152.4 mm).
5. Recommended minimum rear clearance.
6. Finished foundation surface shall be level within 0.06-inch (1.5 mm) in 36.00 inches (914.4 mm) left-to-right, front-to-back, and diagonally, as measured by a laser level.
7. 102 mm base channel.

Figure 5.5-15. Typical Arc-Resistant Switchgear Floor Plan—27 kV
Arc Exhaust Wall—for 27 and 38 kV Switchgear

Arc Exhaust wall Figure 5.5-16 is supplied as standard for all 27/38 kV arc-resistant switchgear. The arc exhaust wall must be field installed above the switchgear. Note minimum 48.00-inch (1219.2 mm) ceiling clearance is required above the arc exhaust wall for proper venting of the arc exhaust. All 5/15 kV arc-resistant switchgear is provided with arc exhaust chamber (plenum). It is also installed in the field. When using arc exhaust chamber, minimum ceiling clearance required above the arc exhaust chamber (plenum) is equal to that needed for field installation of the chamber. Eaton recommends minimum 18.00-inch (457.2 mm).

Note: APPLICABLE TO ALL ARC-RESISTANT SWITCHGEAR:

For switchgear with enclosure arc ratings of up to 41 kA rms symmetrical, minimum two vertical sections and one arc duct exit is required.

For switchgear with enclosure arc rating of 50 kA rms symmetrical or higher, minimum three vertical sections and two arc duct exits are required.

Arc Exhaust Chamber (Plenum) with Arc Duct Exit—for 5 and 15 kV Switchgear

Figure 5.5-16. Arc Exhaust Wall Above the Switchgear

Figure 5.5-17. Arc Exhaust Chamber (Plenum) with Arc Duct Exit Above the Switchgear
Weights

Typical Weights in Lb (kg)

<table>
<thead>
<tr>
<th>Type of Vertical Section</th>
<th>Main Bus Rating Amperes</th>
<th>Indoor Structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control/breaker</td>
<td>1200</td>
<td>2700 (1226)</td>
</tr>
<tr>
<td></td>
<td>2000</td>
<td>2800 (1271)</td>
</tr>
<tr>
<td>Control/auxiliary</td>
<td>1200</td>
<td>2400 (1090)</td>
</tr>
<tr>
<td></td>
<td>2000</td>
<td>2500 (1135)</td>
</tr>
</tbody>
</table>

Control Power

VCP-W Breaker Stored Energy Mechanism Control Power Requirements

<table>
<thead>
<tr>
<th>Rated Voltage</th>
<th>Spring Charging Motor</th>
<th>Average Run Time, Sec.</th>
<th>Close or Trip Amperes</th>
<th>UV Trip mA Maximum</th>
<th>Voltage Range</th>
<th>Indicating Light Amperes</th>
</tr>
</thead>
<tbody>
<tr>
<td>48 Vdc</td>
<td>36.0</td>
<td>6</td>
<td>16</td>
<td>200</td>
<td>38–56</td>
<td>0.02</td>
</tr>
<tr>
<td>125 Vdc</td>
<td>16.0</td>
<td>6</td>
<td>7</td>
<td>80</td>
<td>70–140</td>
<td>0.02</td>
</tr>
<tr>
<td>250 Vdc</td>
<td>9.2</td>
<td>6</td>
<td>4</td>
<td>40</td>
<td>140–280</td>
<td>0.02</td>
</tr>
<tr>
<td>120 Vac</td>
<td>16.0</td>
<td>6</td>
<td>6</td>
<td>—</td>
<td>104–127</td>
<td>0.02</td>
</tr>
<tr>
<td>240 Vac</td>
<td>9.2</td>
<td>6</td>
<td>3</td>
<td>—</td>
<td>208–254</td>
<td>0.02</td>
</tr>
</tbody>
</table>

Control Power Transformers—Single-Phase, 60 Hz

<table>
<thead>
<tr>
<th>Rated Primary Voltage, Volt</th>
<th>Rated Secondary Voltage, Volt</th>
<th>kVA</th>
<th>kV Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>2400</td>
<td>240–120</td>
<td>5, 10, 15</td>
<td>5</td>
</tr>
<tr>
<td>4160</td>
<td>240–120</td>
<td>5, 10, 15</td>
<td>5</td>
</tr>
<tr>
<td>4800</td>
<td>240–120</td>
<td>5, 10, 15</td>
<td>5</td>
</tr>
<tr>
<td>7200</td>
<td>240–120</td>
<td>5, 10, 15</td>
<td>15</td>
</tr>
<tr>
<td>8400</td>
<td>240–120</td>
<td>5, 10, 15</td>
<td>15</td>
</tr>
<tr>
<td>12470</td>
<td>240–120</td>
<td>5, 10, 15</td>
<td>15</td>
</tr>
<tr>
<td>13200</td>
<td>240–120</td>
<td>5, 10, 15</td>
<td>15</td>
</tr>
<tr>
<td>13800</td>
<td>240–120</td>
<td>5, 10, 15</td>
<td>15</td>
</tr>
<tr>
<td>23000</td>
<td>240–120</td>
<td>5, 10, 15</td>
<td>15</td>
</tr>
<tr>
<td>34500</td>
<td>240–120</td>
<td>15, 25</td>
<td>38 ②</td>
</tr>
</tbody>
</table>

② Line-to-line connection only available. Refer to Eaton for other voltages and kVA ratings.

③ 150 kV BIL.

Heat Loss

Heat Loss in Watts at Full Rating, at 60 Hz

<table>
<thead>
<tr>
<th>Type of Switchgear Assembly</th>
<th>Breaker Rating</th>
<th>1200 A</th>
<th>2000 A</th>
<th>2500 A</th>
<th>3000 A</th>
<th>4000 A Fan Cooled</th>
</tr>
</thead>
<tbody>
<tr>
<td>VCP-W 27 kV</td>
<td>5, 15 and 27 kV</td>
<td>600W</td>
<td>1400W</td>
<td>2300W</td>
<td>2100W</td>
<td>3700W</td>
</tr>
<tr>
<td>VCP-W 38 kV</td>
<td>5, 15 and 27 kV</td>
<td>850W</td>
<td>1700W</td>
<td>3000W</td>
<td>3800W</td>
<td>–</td>
</tr>
</tbody>
</table>

Other Components

- Each CT, standard accuracy: 50 W
- Each CT, high accuracy: 100 W
- Each VT: 60 W
- CPT single-phase, 25 kVA: 450 W
- CPT single-phase, 45 kVA: 892 W
- Space heater—each: 250 W
Figure 5.5-18. Typical 5/15/27 kV VCP-W “dc” and “ac” Control Schematics

Note:

- CS = Breaker Control Switch–Close
- C = Breaker Control Switch–Trip
- T = Anti Pump Relay
- SR = Spring Release Coil (Coil)
- M = Spring Charge Motor
- ST = Shunt Trip
- PR = Protective Relay
- \(\wedge \) = Secondary Disconnect

Note:

- LS1 = Closed until springs are fully charged.
- bb = Open until springs are fully charged.
- LS2 = Closed until springs are fully charged.
- aa = Open until mechanism is reset.
- PS1 = Open in all except between “Test” and “Connected” positions.
- PS2 = Closed in all except between “Test” and “Connected” positions.
Figure 5.5-19. Typical 38 kV VCP-W "dc" and "ac" Control Schematics

Note:
- **CS** = Breaker Control Switch–Close
- **CS** = Breaker Control Switch–Trip
- **Y** = Anti Pump Relay
- **SR** = Spring Release Coil (Coil)
- **M** = Spring Charge Motor
- **ST** = Shunt Trip
- **PR** = Protective Relay
- **A** = Secondary Disconnect

Note:
- **LS1** = Closed until springs are fully charged.
- **LS2** = Open until springs are fully charged.
- **LS2** = Closed until springs are fully charged.
- **LC** = Open until mechanism is reset.
- **PS1** = Open in all except between “Test” and “Connected” positions.
- **PS2** = Closed in all except between “Test” and “Connected” positions.