Digitrip 1150V with Maintenance Mode

Effective December 2006
I.S. 70C1499
Supplement to I.L. 66A7535

FIGURE 1. Digitrip with ARMs in Medium Voltage Circuit Breaker (VCP-T)

Table of Contents

1.0 General ... 2
2.0 Maintenance Mode Settings 2
3.0 Arming Maintenance Mode 2
4.0 Remote Indicator ... 3
5.0 Choosing the Reduction Setting 3
6.0 Tripping and Testing .. 3

Diagrams and Appendix

Wiring Diagram .. 4
Display Matrix for Program Settings Menu 5
Display Matrix for Program Aux Relays Menu 6
Display Matrix for Program Accessory Bus 7
Display Matrix for Possible Events TRIP 8
Display Matrix for View Settings Menu 9
Manufacturer’s Statement ... 10
WARNING

ONLY CERTIFIED AND COMPETENT PERSONNEL SHOULD ATTEMPT TO INSTALL OR MAINTAIN POTENTIALLY HAZARDOUS EQUIPMENT.

DO NOT ATTEMPT TO INSTALL OR PERFORM MAINTENANCE ON EQUIPMENT WHILE IT IS ENERGIZED. DEATH OR SEVERE PERSONAL INJURY CAN RESULT FROM CONTACT WITH ENERGIZED EQUIPMENT. ALWAYS VERIFY THAT NO VOLTAGE IS PRESENT BEFORE PROCEEDING. ALWAYS FOLLOW SAFETY PROCEDURES.

EATON IS NOT LIABLE FOR THE MISAPPLICATION OR MISINSTALLATION OF ITS PRODUCTS.

1.0 General

Per the above WARNING, it is highly recommended that maintenance be conducted on electrical equipment including circuit breakers with the system de-energized.

For situations that arise where this is not possible, the Maintenance Mode function of the Digitrip 1150ARMV family (Cat. # 11ARMVLSIG) can reduce Arc Flash incident energy that is generated on a fault condition. This is accomplished by an analog trip circuit which, when armed, provides a fast acting response to the fault. The reduced arc condition will occur only in devices downstream of the trip unit in Maintenance Mode. This is separate from the normal system protection setting of Instantaneous. The Maintenance Mode is located in the “SYSTEM” submenu of the programmable settings menu (PGM SET). (See Appendix for screen details.)

CAUTION

OBSERVE ALL RECOMMENDATIONS, NOTES, CAUTIONS, AND WARNINGS RELATING TO THE SAFETY OF PERSONNEL AND EQUIPMENT. OBSERVE AND COMPLY WITH ALL GENERAL AND LOCAL HEALTH AND SAFETY LAWS, CODES, AND PROCEDURES.

A FLASH HAZARD ANALYSIS SHOULD BE DONE TO DETERMINE PERSONAL PROTECTIVE EQUIPMENT REQUIREMENTS.

2.0 Maintenance Mode Settings

The Maintenance Mode Settings provide the Arc Flash Reduction setting. 2.5 x Rating Plug Value is the Maximum reduction setting which correlates to the lowest pickup value.

Available Trip current of Maintenance Mode Settings:

- 2.5 x Rating Plug Amperes
- 4.0 x Rating Plug Amperes
- 6.0 x Rating Plug Amperes
- 8.0 x Rating Plug Amperes
- 10.0 x Rating Plug Amperes

3.0 Arming Maintenance Mode

There are three ways to arm the Maintenance Mode Arc Flash Reduction setting. One method is via the local keypad located on the trip unit. The setting is located in the “SYSTEM” submenu of programmable settings (PGM SET). When the Maintenance Mode Arc Flash reduction setting is enabled, the message “Maintenance Mode Enabled” is displayed to confirm that the function is on. If any key is pressed, the Maintenance Mode message is removed and replaced by normal display messages. If no keys are pressed, the Maintenance Mode message will reappear after 10 seconds.

For the second method, a remote switch wired through the breaker secondary contacts can remotely arm the Maintenance Mode setting. A high quality, gold plated or palladium contact is required in this application. The Maintenance Mode Enabled message will verify that the function is armed. (See wiring diagram on adjacent page.)

A third method to arm the maintenance setting is via a communication device. A Palm Pilot along with an IR Mint device can be employed to arm the setting. By initiating the ENABLE setting, the Maintenance Mode selection in the control screen of the Palm, Maintenance Mode is set. There is a confirmation screen that verifies the arming. A BIM (Breaker Interface Module) is another communication method to arm the setting. When Maintenance Setting is enabled via device communications, this setting must be disabled by device communications.
4.0 Remote Indicator

In general, the selection of one of the Reduction Settings should be determined and selected by a person who is experienced in power system analysis.

This setting choice normally does not change unless there are future system modifications that could increase or decrease fault levels at the circuit breaker location.

For time/current curve information, refer to drawing # 70C1498.

5.0 Choosing the Reduction Setting

The Arc Flash Maintenance Switch has five unique settings. From the factory, the circuit breaker is shipped with the Digitrip unit set to the 2.5x setting and with its Maintenance Mode disabled. The “Maintenance Mode Enabled” message provides an indication that the Maintenance Mode setting is armed per one of the three methods described in section 3.0.

6.0 Tripping and Testing

The Maintenance Mode function will provide fast tripping even when the regular Instantaneous is set to OFF. The Instantaneous LED position is also used to indicate a trip initiated by the Maintenance Mode setting. The message “Maintenance Mode Trip” will be displayed after a trip.

The Maintenance setting, external wiring (if any) and tripping functionality should all be periodically verified by primary or secondary injection current testing.
The Digitrip 1150V (Cat #11ARMVxxx) can locally be placed in Maintenance Mode via front panel programming of the Trip Unit. The function can also be armed via a remote switch as shown. In addition, the function can be activated via communications. The display will indicate “Maintenance Mode In Use” when in this special mode.

The recommended selector switch for this low voltage application is Cutler Hammer part number # 10250T1333-2E which includes a contact block rated for Logic Level and Corrosive Use.

The maximum length of this wiring to the remote ARM switch (or alternate relay contact) is three meters (9.78 feet). Use #20 AWG wire or larger.

Control voltage is 120 VAC or 230 VAC or 24-48 VDC or 125 VDC as ordered. Check circuit breaker front cover for Trip Unit Power requirements.

A remote Stack Light, Annunciator Panel or other remote indication device can be connected to remotely verify that the Digitrip is in Maintenance Mode.

RelayA contact changes state when Digitrip is in Maintenance Mode. This action requires pre-assigning RelayA to Maintenance Mode function. RelayC contacts (A9, A10) are also available to be programmed to provide an indication of a trip in Maintenance Mode. Contact is rated 1A @ 120 VAC or 0.5A @ 230 VAC or 1A @ 24-48 VDC or 0.35A @ 125 VDC.

The Digitrip 1150V can also be placed remotely in its Maintenance Mode via a General Purpose Relay (ice cube type with Logic Level contacts) activated by a remote control switch. A recommended type is IDEC Relay Ry22. Choose voltage as desired.
NOTE: Screen shown for Digitrip 1150V - Cat. # 11ARMVxxxx.

NOTE: For units built after July 2006, this setting replaces function of secondary contact hardware jumper.

NOTE: TRIP uses TA device. OPEN requires a separate Shunt Trip wired through Aux Relay C (terminals A-9, A-10) when programmed as EXT COMM TRIP via PowerNet. Requires BC Reset (auto) in system.

NOTE: Throughout Program Settings sub-menus with blocks (□) represent variable information that can be directly changed with the EDIT buttons, while X’s represent variable information that is viewable.
Program Aux Relays Menu

Selected Relay determines Groups displayed.

<table>
<thead>
<tr>
<th>Relay</th>
<th>Groups Displayed</th>
</tr>
</thead>
<tbody>
<tr>
<td>A (Alarming)</td>
<td>1, 2 PULSE INITIATE DISABLED Name PULSE INITIATE ENABLED</td>
</tr>
<tr>
<td>B (Blocking)</td>
<td>1, 3</td>
</tr>
<tr>
<td>C (Latching)</td>
<td>1, 3</td>
</tr>
</tbody>
</table>

*** (asterisk) is placed beside the relay letter when at least one of its RELAY functions is ENABLED.

"ENABLED" or "DISABLED" for all screens.

"ENABLED" or "DISABLED" for all screens.
Each of the 4 addresses is a separate Save group.

NOTE: The "MAINT" Relay Function will act as an indicator that the "Maintenance Mode" is enabled and in use.
Possible Events TRIP

<table>
<thead>
<tr>
<th>Event</th>
<th>Screen Location</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>LONG DELAY TRIP</td>
<td>1st & 2nd Meter screens</td>
<td>No data displayed</td>
</tr>
<tr>
<td>SHORT DELAY TRIP</td>
<td>1st & 2nd Meter screens</td>
<td>No data displayed</td>
</tr>
<tr>
<td>INST TRIP</td>
<td>1st & 2nd Meter screens</td>
<td>High INST TRIP</td>
</tr>
<tr>
<td>NEUTRAL TRIP</td>
<td>1st & 2nd Meter screens</td>
<td>No data displayed</td>
</tr>
<tr>
<td>GROUND FAULT TRIP</td>
<td>1st & 2nd Meter screens</td>
<td>Additional TRIPS for Digitrips Cat # 11Pxxx and 11ARMxxx only</td>
</tr>
<tr>
<td>OPEN BY COMM</td>
<td>No data displayed</td>
<td></td>
</tr>
<tr>
<td>ACC BUS TRIP</td>
<td>No data displayed</td>
<td></td>
</tr>
<tr>
<td>AMPERES OUT OF BALANCE</td>
<td>1st Meter screens</td>
<td>UndrFREQ TRIP</td>
</tr>
<tr>
<td>OVER TEMP TRIP</td>
<td>No data displayed</td>
<td>OverFREQ TRIP</td>
</tr>
<tr>
<td>PlugTRIP</td>
<td></td>
<td>No data displayed</td>
</tr>
<tr>
<td>RevPower TRIP</td>
<td></td>
<td>Power kW screen displayed</td>
</tr>
<tr>
<td>MAKING CURRENT TRIP</td>
<td></td>
<td>L-L Voltage and FREQ screens displayed; See Note 5</td>
</tr>
<tr>
<td>PHASE LOSS TRIP</td>
<td></td>
<td>3rd Meter screen</td>
</tr>
<tr>
<td>HIGH INST TRIP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VOLT UN-BALANCE TRIP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UndrVOLT TRIP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OverVOLT TRIP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UndrFREQ TRIP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OverFREQ TRIP</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. LONG DELAY TRIP term is used by LSI, IEEE and IEC curve type indicating an overload trip.

2. INST TRIP values displayed could be less than actual fault levels due to fast response of this element.

3. NEUTRAL TRIP is a Long Delay Trip on Neutral or 4th pole.

4. If IEC-EF style, "EARTH" will replace "GROUND".

5. Real Time data is shown for Voltage and Frequency. View EventLog screen for actual TRIP data.
NOTE: Screen shown for Digitrip 1150 - Cat. # 11ARMxxxx.

NOTE: TRIP uses TA device. OPEN requires a separate Shunt Trip wired through Aux Relay C (terminals (A-9, A-10)) when programmed as EXT COMM TRIP via PowerNet. Requires BC Reset (auto) in system.

NOTE: Throughout Program Settings sub-menus with blocks () represent variable information that can be directly changed with the EDIT buttons, while X's represent variable information that is viewable.

NOTE: For units built after July 2006, this setting replaces function of secondary contact hardware jumper.
DISCLAIMER OF WARRANTIES AND LIMITATION OF LIABILITY

The information recommendations, descriptions and safety notations in this document are based on Eaton’s experience and judgment and may not cover all contingencies. If further information is required an Eaton sales office should be consulted.

Sale of the product shown in this literature is subject to the terms and conditions outlined in appropriate Eaton Electrical Inc. selling policies or other contractual agreement between Eaton and the purchaser.

THERE ARE NO UNDERSTANDINGS, AGREEMENTS, WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE OR MERCHANTABILITY, OTHER THAN THOSE SPECIFICALLY SET OUT IN ANY EXISTING CONTRACT BETWEEN THE PARTIES. ANY SUCH CONTRACT STATES THE ENTIRE OBLIGATION OF EATON ELECTRICAL INC. THE CONTENTS OF THIS DOCUMENT SHALL NOT BECOME PART OF OR MODIFY ANY CONTRACT BETWEEN THE PARTIES.

IN NO EVENT WILL EATON ELECTRICAL INC. BE RESPONSIBLE TO THE PURCHASER OR USER IN CONTRACT, IN TORT (INCLUDING NEGLIGENCE), STRICT LIABILITY OR OTHERWISE FOR ANY SPECIAL, INDIRECT, INCIDENTAL OR CONSEQUENTIAL DAMAGE OR LOSS WHATSOEVER, INCLUDING BUT NOT LIMITED TO DAMAGE TO OR LOSS OF USE OF EQUIPMENT, PLANT OR POWER SYSTEM, LOSS OF PROFITS OR REVENUES, OR CLAIMS AGAINST THE PURCHASER OR USER BY ITS CUSTOMERS RESULTING FROM THE USE OF THE PRODUCTS OR INFORMATION, RECOMMENDATIONS AND DESCRIPTIONS CONTAINED HEREIN.