The current breakers are suitable for functional field testing with test kit catalog number STK2.

1. There is a memory effect that comes into play when a breaker exists for a time and is cleared by the tripping of a downstream device or the circuit breaker itself. A subsequent overload will cause the circuit breaker to trip in shorter time than normal. The amount of time delay reduction is inverse to the amount of time that has elapsed since the previous overload. Approximately five minutes is required between overloads to completely reset memory.

2. Curve accuracy applies from -20°C to +55°C ambient. For possible continuous ampere derating for ambient above 50°C, refer to Eaton.

3. AQB-A103RMS breakers are suitable for functional field testing with test kit catalog number STK2.

4. This is memory effect that can act to shorten the Long Delay. The memory effect comes into play if the current above the Long Delay Pickup value exists for a time and then is cleared by the tripping of a downstream device or the circuit breaker itself. A subsequent overload will cause the circuit breaker to trip in shorter time than normal. The amount of time delay reduction is inverse to the amount of time that has elapsed since the previous overload. Approximately five minutes is required between overloads to completely reset memory.

5. Long Delay Time at 6x is 20-32 seconds. (26 seconds nominal)

6. Short Delay Pickup is ±10% at 60 Hz (±15% at 400 Hz)

7. Short Delay Time (SDT) is ±20% (i'T portion)

8. Short Delay Time i'T response reverts to a FLAT response at current levels greater than 16x CCS.

9. Total clearing times shown include the response times of the trip unit, the breaker opening, and the interruption of the current.

Notes:

1. Curve accuracy applies from -20°C to +55°C ambient. For possible continuous ampere derating for ambient above 50°C, refer to Eaton.

2. The end of the curve is determined by the instantaneous setting of the circuit breaker.

3. AQB-A103RMS breakers are suitable for functional field testing with test kit catalog number STK2.

4. There is a memory effect that can act to shorten the Long Delay. The memory effect comes into play if the current above the Long Delay Pickup value exists for a time and then is cleared by the tripping of a downstream device or the circuit breaker itself. A subsequent overload will cause the circuit breaker to trip in shorter time than normal. The amount of time delay reduction is inverse to the amount of time that has elapsed since the previous overload. Approximately five minutes is required between overloads to completely reset memory.

5. Long Delay Pick Up is ±10%.

6. Long Delay Time at 6x is 20-32 seconds. (26 seconds nominal)

7. Short Delay Pickup is ±10% at 60 Hz (±15% at 400 Hz)

8. Short Delay Time (SDT) is ±20% (i'T portion)

9. Short Delay Time i'T response reverts to a FLAT response at current levels greater than 16x CCS.

10. Total clearing times shown include the response times of the trip unit, the breaker opening, and the interruption of the current.