Time current curves Power Defense MCCB, frame 4 thermal-magnetic and PXR electronic trip units

Contents

Description	Page
Table 1. Revision notes | 3
Table 2. Breaker catalog number convention | 4
Table 3. Electronic trip unit catalog number convention. | 4
Table 4. Magnetic trip unit thermal catalog number convention | 5
Table 5. Symmetrical RMS interruption ratings (kA) for each breaker frame | 5
Table 6. Curve notes | 5

Labels

Figure 1. Power Defense frame 4 trip unit front labels | 6

PXR electronic trip unit curves

Figure 2. PXR 20D / PXR 25 - I₂t long delay and flat short delay | 7
Figure 3. PXR 20 - I₂t long delay and flat short delay | 8
Figure 4. PXR 20D / PXR 25 - I₂t long delay and I₂t short delay | 9
Figure 5. PXR 20 I₂t long delay and I₂t short delay | 10
Figure 6. PXR 20D / PXR 25 - I₄t long delay and flat short delay | 11
Figure 7. PXR 20D / PXR 25 - ground (earth) flat delay | 12
Figure 8. PXR 20D / PXR 25 - ground (earth) I₂t delay | 13
Figure 9. PXR 20 - ground (earth) flat delay | 14
Figure 10. PXR 20 - ground (earth) I₂t delay | 15
Figure 11. PXR 20D / PXR 25 - instantaneous and override for 800A frame | 16
Figure 12. PXR 20D / PXR 25 - instantaneous (1000A) | 17
Figure 13. PXR 20 / PXR 10 - instantaneous (800A) | 18
Figure 14. PXR 20 / PXR 10 - instantaneous and override 1000A frame | 19
Figure 15. PXR 20 / PXR 20D / PXR 25 - maintenance mode | 20
Figure 16. PXR 10 LI 800A frame | 21
Figure 17. PXR 10 LI 1000A frame | 22
Figure 18. PXR 10 LSI profile for short flat curves | 23
Figure 19. PXR 10 LSI profile for I₂t short curves | 24
Technical Data TD012066EN
Effective November 2018

Time current curves Power Defense MCCB, frame 4 thermal-magnetic and PXR electronic trip units

Thermal magnetic trip unit curves
Figure 20. Fixed thermal adjustable magnetic 300A-600A ... 25
Figure 21. Fixed thermal adjustable magnetic 700A-800A ... 26
Figure 22. Adjustable thermal adjustable magnetic 630A-1000A .. 27

Peak let through curves
Figure 23. 240V let through current ... 28
Figure 24. 240V peak let through energy ... 29
Figure 25. 415V-480V let through current ... 30
Figure 26. 415V-480V let through energy ... 31
Figure 27. 600V let through current ... 32
Figure 28. 600V let through energy ... 33
Time current curves Power Defense MCCB, frame 4 thermal-magnetic and PXR electronic trip units

Table 1. Revision notes

Note: Unless noted below, all curves remain unchanged from their prior revision.

<table>
<thead>
<tr>
<th>Revision</th>
<th>Curve number</th>
<th>Page</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Power Defense frame 4 initial release</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
This information is provided only as an aid to understand the catalog numbers.
It is not to be used to build catalog numbers for circuit breakers or
trip units as all combinations may not be available.

Table 2. Catalog number convention

Table 3. Electronic trip unit catalog number convention

Note: IEC standard breakers include the CE mark; GB standard breakers include the CCC mark.
Technical Data
TD012066EN
Effective November 2018

Time current curves Power Defense MCCB, frame 4 thermal-magnetic and PXR electronic trip units

Table 4. Magnetic trip unit thermal catalog number convention

Table 5. Symmetrical RMS interruption ratings (kA) for each breaker frame

Table 6. Curve notes

1. These curves apply for 50Hz and 60Hz applications
2. The maximum voltage rating for the frame style is stated in Table 5.
3. These curves are comprehensive for Power Defense style circuit breakers including frame sizes, ratings and constructions stated.
4. The total clearing times shown include the response time for the trip unit, the breaker opening and the interruption of the current. The bottom of the time band is the minimum commit to trip time.
5. The end of the curve is determined by the application or the interrupting rating of the circuit breaker.
6. Thermal magnetic trip unit calibration based on 40°C ambient, cold start. Tested with 4 feet of rated wire (75°C) per terminal. Tested in open air with current in all poles.
7. Thermal magnetic trip unit instantaneous calibration based on single pole testing.
8. All electronic trip units have an over temperature protection feature that will trip the breaker when the internal temperature of the ETU is over 105°C

Note: IEC standard breakers include the CE mark; GB standard breakers include the CCC mark.
Labels

PXR 25 and PXR 20D – unit with LSIG protection and maintenance mode pictured

PXR 20 – unit with LSIG protection and maintenance mode pictured

PXR 10 – unit with LSI protection pictured

Fixed thermal, adjustable magnetic unit pictured

Figure 1. Power Defense frame 4 trip unit front labels

Note: Trip unit drawings in Figure 1 are representative of the face plates provided. Values on the trip unit dials will change based upon the specific breaker and trip unit. Refer to the time current curve of the breaker or the PXR User Guide for the specific settings.
Time current curves Power Defense MCCB, frame 4 thermal-magnetic and PXR electronic trip units

Curves

Figure 2. PXR 20D / PXR 25 - I²t Long Delay and Flat Short Delay Curves

Time Current Curves
Power Defense Circuit Breakers
Style: Frame 4
Configuration: 3 and 4 Poles
Trip Unit Type: Power Xpert Release - PXR20D / PXR25
Curve: Long I²t Delay and Short Flat Delay

Current in Multiples of Long Delay Setting (I₀)

Notes:
1. Long Delay pickup is 110% of the Ir setting with ±5% tolerance.
2. Long Delay Time Settings adjustable from 0.5s - 24s at steps of 0.1s with +0%/-30% tolerance.
3. If Thermal Memory is enabled, trip times may be shorter than indicated in this curve.
4. Short Delay pickup settings adjustable from 1.5x - 8.0x at steps of 0.1x with ±5% tolerance.
5. Short Delay time settings adjustable from 0.05s - 0.500s at steps of 0.010s with +0%/-30% tolerance.
6. If the Long Delay time is projected to be faster than the Short Delay time, the Long Delay trip time will go no faster than the Short Delay time value.
7. With ZSI enabled and no auxiliary power, tripping times for 3-phase faults will be a maximum of 60ms for 60Hz and 63ms for 50Hz.
Figure 3. PXR 20 - I^2t long delay and flat short delay curves
Figure 4. PXR 20D / PXR 25 - I²t Long Delay and I²t Short Delay Curves

EATON
www.eaton.com

Time Current Curves
Power Defense Circuit Breakers
Style: Frame 4
Configuration: 3 and 4 Poles
Trip Unit Type: Power Xpert Release - PXR20D / PXR25
Curve: Long I²t Delay and Short I²t Delay

Notes:
1. Long Delay pickup is 110% of the Ir setting with ±5% tolerance. Ir is set from Min to Max at steps of 10A.
2. Long Delay Time Settings adjustable from 0.5s - 24s at steps of 0.1s with +0%/-30% tolerance.
3. If Thermal Memory is enabled, trip times may be shorter than indicated in this curve.
4. Short Delay pickup settings adjustable from 1.5x - 8.0x at steps of 0.1x with ±5% tolerance.
5. Short Delay I²t slope time settings adjustable from 0.07s - 0.300s at steps of 0.010s with +0%/-30% tolerance, 0.1s times and lower have +0%/-40% tolerance.
6. If the Long Delay time is projected to be faster than the Short Delay time, the Long Delay trip time will go no faster than the Short Delay time value.
7. With ZSI enabled and no auxiliary power, tripping times for 3-phase faults will be a maximum of 60ms for 60Hz and 63ms for 50Hz
Figure 5. PXR 20 I²t long delay and I²t short delay curves

Notes:
1. Long Delay pickup is 110% of the Ir setting with ±5% tolerance.
2. Long Delay Time Settings as shown have +0%/-30% tolerance.
3. If Thermal Memory is enabled, trip times may be shorter than indicated in this curve.
4. Short Delay pickup settings as shown have ±5% tolerance.
5. Short Time delay I²t slopes as shown have a +0%/-30% tolerance, 0.067s slope has a +0%/-40% tolerance.
6. If the Long Delay time is projected to be faster than the Short Delay time, the Long Delay trip time will go no faster than the Short Delay time value.
7. With ZSI enabled and no auxiliary power, tripping times for 3-phase faults will be a maximum of 60ms for 60Hz and 63ms for 50Hz.
Time current curves Power Defense MCCB, frame 4 thermal-magnetic and PXR electronic trip units

Technical Data TD012066EN
Effective November 2018

EATON www.eaton.com

Figure 6. PXR 20D / PXR 25 - I₄t Long Delay and Flat Short Delay Curves

Notes:
1. Long Delay pickup is 110% of the Ir setting with ±5% tolerance. Ir is set from Min to Max at steps of 10A.
2. Long Delay Time Settings adjustable from 0.5s - 7s at steps of 0.1s with ±0%/-30% tolerance.
3. If Thermal Memory is enabled, trip times may be shorter than indicated in this curve.
4. Short Delay pickup settings adjustable from 1.5x - 8.0x at steps of 0.1x with ±5% tolerance.
5. Short Delay time settings adjustable from 0.050s - 0.500s at steps of 0.010s with ±0%/-30% tolerance. 0.1s times and lower have ±0%/-40% tolerance.
6. If the Long Delay time is projected to be faster than the Short Delay time, the Long Delay trip time will go no faster than the Short Delay time value.
7. With ZSI enabled and no auxiliary power, tripping times for 3-phase faults will be a maximum of 60ms for 60Hz and 63ms for 50Hz.
Figure 7. PXR 20D / PXR 25 ground (earth) flat delay
Time current curves Power Defense MCCB, frame 4 thermal-magnetic and PXR electronic trip units

Technical Data

TD012066EN

Effective November 2018

EATON

www.eaton.com

Figure 8. PXR 20D / PXR 25 - ground (earth) I²t Delay Curves

- **Time Current Curves**
- **Power Defense Circuit Breakers**
- **Style:** Frame 4
- **Configuration:** 3 and 4 Poles
- **Trip Unit Type:** Power Xpert Release - PXR20D / PXR25
- **Curve:** Ground (Earth) I²t Delay

Notes:
1. Ground Pickup settings adjustable from 0.2x - 1.0x at steps of 0.01x are for Residual sensing with a tolerance of ± 10%.
2. Ground slope I²t time adjustable from 0.067s – 0.300s at steps of 0.010s with tolerances as shown in the curve.
3. If Thermal Memory is enabled, trip times may be shorter than indicated in this curve.
4. With ZSI enabled and no auxiliary power, tripping times for 3-phase faults will be a maximum of 60ms for 60Hz and 63ms for 50Hz.
Figure 9. PXR 20 - ground (earth) flat delay

Notes:
1. Ground Pickup settings as shown are for Residual sensing with a tolerance of ±10%.
2. Ground slope Flat time setting are shown with tolerances.
3. If Thermal Memory is enabled, trip times may be shorter than indicated in this curve.
4. With ZSI enabled and no auxiliary power, tripping times for 3-phase faults will be a maximum of 60ms for 60Hz and 63ms for 50Hz
Time current curves Power Defense MCCB, frame 4 thermal-magnetic and PXR electronic trip units

Figure 10. PXR 20 - ground (earth) I²t Delay Curves

- **Time Current Curves**
- **Power Defense Circuit Breakers**
- **Style:** Frame 4
- **Configuration:** 3 and 4 Poles
- **Trip Unit Type:** Power Xpert Release - PXR20
- **Curve:** Ground (Earth) I²t Delay

Notes:
1. Ground Pickup settings as shown are for Residual sensing with a tolerance of ± 10%.
2. Ground slope I²t time settings are shown with tolerances.
3. If Thermal Memory is enabled, trip times may be shorter than indicated in this curve.
4. With ZSI enabled and no auxiliary power, tripping times for 3-phase faults will be a maximum of 60ms for 60Hz and 63ms for 50Hz.

Figure 10. PXR 20 - ground (earth) I²t delay

September 2018
Time current curves Power Defense MCCB, frame 4 thermal-magnetic and PXR electronic trip units

Figure 11. PXR 20D / PXR 25 - instantaneous and override for 800A frame

Notes:
1. The instantaneous pickup settings adjustable from 2x – 8.5x(Max) at steps of 0.10x with ±10% tolerance.
2. For high fault current levels a fixed instantaneous override is provided at 6800A and has ±15% tolerance.
Time current curves Power Defense MCCB, frame 4 thermal-magnetic and PXR electronic trip units

Figure 12. PXR 20D / PXR 25 - instantaneous (1000A)

- **Style:** Frame 4
- **Configuration:** 3 and 4 Poles
- **Trip Unit Type:** Power Xpert Release - PXR20D / PXR25
- **Curve:** Instantaneous and Override for 1000A frame

Notes:
1. The Instantaneous pickup settings adjustable from 2x – 8x(Max) at steps of 0.10x with ±10% tolerance.
2. For high fault current levels a fixed instantaneous override is provided at 8000A and has ±15% tolerance.

1000A Frame Override Curve

- **Setting range:**
- **Current in Multiples of Rating (Iₙ):**
- **Current in Amps:**
- **Time in Seconds:**

Technical Data TD012066EN

Effective November 2018
Time current curves Power Defense MCCB, frame 4 thermal-magnetic and PXR electronic trip units

Effective November 2018

Figure 13. PXR 20 / PXR 10 - instantaneous (800A)
Technical Data

TD012066EN

Effective November 2018

Time current curves Power Defense MCCB, frame 4 thermal-magnetic and PXR electronic trip units

PXR 20 / PXR 10 - 1000A Frame Instantaneous Curves

- **Style:** Frame 4
- **Configuration:** 3 and 4 poles
- **Trip Unit Type:** Power Xpert Release – PXR20 / PXR10
- **Curve:** Instantaneous
- **Override for 1000A frame**

Notes:
1. The instantaneous pickup settings as shown with a ±10% tolerance.
2. For high fault current levels a fixed instantaneous override is provided at 8000A and has a ±15% tolerance.

1000A Frame Override Curve

Figure 14. PXR 20 / PXR 10 - instantaneous and override 1000A frame

September 2018
Figure 15. PXR 20 / PXR 20D / PXR 25 - maintenance mode
Time current curves Power Defense MCCB, frame 4 thermal-magnetic and PXR electronic trip units

Figure 16. PXR 10 LI 800A frame

Notes:
1. Long Delay pickup is 110% of the Ir setting with ±5% tolerance.
2. Long Delay Time Setting has +0%/-30% tolerance.
3. Instantaneous pickup settings have ±10% tolerance.
4. For high fault current levels a fixed instantaneous override is provided at 6800A and has a ±15% tolerance.
5. If Thermal Memory is enabled, trip times may be shorter than indicated in this curve.
Time current curves Power Defense MCCB, frame 4 thermal-magnetic and PXR electronic trip units

Technical Data

TD012066EN

Effective November 2018

Figure 17. PXR 10 LI 1000A frame

Notes:
1. Long Delay pickup is 110% of the Ir setting with ±5% tolerance.
2. Long Delay Time Setting has ±0%/-30% tolerance.
3. Instantaneous pickup settings have ±10% tolerance.
4. For high fault current levels a fixed instantaneous override is provided at 8000A and has a ±15% tolerance.
5. If Thermal Memory is enabled, trip times may be shorter than indicated in this curve.
Time current curves Power Defense MCCB, frame 4 thermal-magnetic and PXR electronic trip units

Effective November 2018

Figure 18. PXR 10 LSI profile for short flat curves

<table>
<thead>
<tr>
<th>Profile</th>
<th>(Isd) (n x Ir)</th>
<th>(tsd) (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>2</td>
<td>0.150</td>
</tr>
<tr>
<td>B</td>
<td>2</td>
<td>0.300</td>
</tr>
<tr>
<td>C</td>
<td>2</td>
<td>(I^t)</td>
</tr>
<tr>
<td>D</td>
<td>4</td>
<td>0.150</td>
</tr>
<tr>
<td>E</td>
<td>4</td>
<td>(I^t)</td>
</tr>
<tr>
<td>F</td>
<td>6</td>
<td>0.150</td>
</tr>
<tr>
<td>G</td>
<td>6</td>
<td>0.300</td>
</tr>
<tr>
<td>H</td>
<td>8</td>
<td>0.150</td>
</tr>
<tr>
<td>J</td>
<td>8</td>
<td>0.300</td>
</tr>
<tr>
<td>K</td>
<td>OFF</td>
<td></td>
</tr>
</tbody>
</table>
Technical Data
TD012066EN
Effective November 2018

Time current curves Power Defense MCCB,
frame 4 thermal-magnetic and PXR
electronic trip units

Figure 19. PXR 10 LSI profile for I²t short curves

Notes:
1. Long Delay pickup is 110% of the Ir setting with ±5%
tolerance.
2. Long Delay Time Setting has +0%/-30% tolerance.
3. Instantaneous pickup settings have ±10% tolerance.
4. Short Delay pickup settings as shown have ±5%
tolerance.
5. If Thermal Memory is enabled, trip times may be
shorter than indicated in this curve.
6. When Profile K is selected, PXR10 LI style curve should
be used.
7. Setting J in the table is the default value but can be
programmed from a minimum of 2x to a maximum of 8x in
steps 0.5x and a time delay of 50ms to 300ms in steps of
50ms using the Power Xpert Protection Manager software
(PXPM).

<table>
<thead>
<tr>
<th>Profile</th>
<th>Isd (n x Ir)</th>
<th>tsd (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>2</td>
<td>0.150</td>
</tr>
<tr>
<td>B</td>
<td>2</td>
<td>0.300</td>
</tr>
<tr>
<td>C</td>
<td>2</td>
<td>0.150</td>
</tr>
<tr>
<td>D</td>
<td>4</td>
<td>0.150</td>
</tr>
<tr>
<td>E</td>
<td>4</td>
<td>0.300</td>
</tr>
<tr>
<td>F</td>
<td>6</td>
<td>0.150</td>
</tr>
<tr>
<td>G</td>
<td>6</td>
<td>0.300</td>
</tr>
<tr>
<td>H</td>
<td>8</td>
<td>0.150</td>
</tr>
<tr>
<td>J</td>
<td>8</td>
<td>0.300</td>
</tr>
<tr>
<td>K</td>
<td>OFF</td>
<td></td>
</tr>
</tbody>
</table>

September 2018
Time current curves Power Defense MCCB, frame 4 thermal-magnetic and PXR electronic trip units

Effective November 2018

Figure 20. Fixed thermal adjustable magnetic 300A-600A
Technical Data TD012066EN
Effective November 2018

Time current curves Power Defense MCCB, frame 4 thermal-magnetic and PXR electronic trip units

Figure 21. Fixed thermal adjustable magnetic 700A-800A

Notes:
1. Utilization Category A
 \(U_{imp} = 8kV \)
2. DC Instantaneous trip values are approximately 40% higher.
3. Magnetic settings are a multiple of In rating
4. Thermal setting is a function of Ir setting or rating

EATON www.eaton.com
Time current curves Power Defense MCCB, frame 4 thermal-magnetic and PXR electronic trip units

Effective November 2018

Figure 22. Adjustable thermal adjustable magnetic 630A-1000A

Notes:
1. Utilization Category A
 \[U_{IMP} = B kV \]
2. DC Instantaneous trip values are approximately 40% higher.
3. Magnetic settings are a multiple of In rating
4. Thermal setting is a function of Ir setting or rating
5. The Ir adjustment range is 100% to 80% of In
PD4 800A 240V
Peak Let Through Current

Available Short Circuit Current, kA \text{rms}

Figure 23. 240V let through current

September 2018
Figure 24. 240V peak let through energy
Figure 25. 415V-480V let through current
Time current curves Power Defense MCCB, frame 4 thermal-magnetic and PXR electronic trip units

Figure 26. 415V-480V let through energy

PD4 800A 415V - 480V

Peak Let Through Energy

<table>
<thead>
<tr>
<th>Available Short Circuit Current, kA$_\text{rms}$</th>
<th>Peak Let Through Energy I^2t, A2 sec</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10000000</td>
</tr>
<tr>
<td>10</td>
<td>10000000</td>
</tr>
<tr>
<td>100</td>
<td>10000000</td>
</tr>
<tr>
<td>1000</td>
<td>10000000</td>
</tr>
</tbody>
</table>

415V - 480V
PD4 800A 600V

Peak Let Through Current

![Graph showing peak let-through current vs. available short circuit current for PD4 800A 600V](image)

- **Peak Let-Through Current, kA**
- **Available Short Circuit Current, kA_{rms}**

Figure 27. 600V let through current

September 2018
Figure 28. 600V let through energy
Technical Data TD012066EN
Effective November 2018

Time current curves Power Defense MCCB, frame 4 thermal-magnetic and PXR electronic trip units