Time current curves Power Defense MCCB
Frame 6 PXR electronic trip units
Standards: UL, CSA, IEC, CCC

Contents

<table>
<thead>
<tr>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 1. Revision notes</td>
<td>2</td>
</tr>
<tr>
<td>Table 2. Breaker catalog number convention</td>
<td>3</td>
</tr>
<tr>
<td>Table 3. Electronic trip unit catalog number convention</td>
<td>3</td>
</tr>
<tr>
<td>Table 4. Symmetrical RMS interruption ratings I_{cu} (kA) for each breaker frame</td>
<td>4</td>
</tr>
<tr>
<td>Table 5. Curve notes</td>
<td>4</td>
</tr>
</tbody>
</table>

Labels

Figure 1. Power Defense frame 6 trip unit front labels. .. 4

PXR electronic trip unit curves

Figure 2. 1600A/2000A frame PXR 20D / PXR 25 - I_t long delay and flat short delay 5
Figure 3. 2500A frame PXR 20D / PXR 25 - I_t long delay and flat short delay 6
Figure 4. 1600A/2000A frame PXR 20 - I_t long delay and flat short delay 7
Figure 5. 2500A frame PXR 20 - I_t long delay and flat short delay 8
Figure 6. 1600A/2000A frame PXR 20D / PXR 25 - I_t long delay and I_t short delay 9
Figure 7. 2500A frame PXR 20D / PXR 5 - I_t long delay and I_t short delay 10
Figure 8. 1600A/2000A frame PXR 20 - I_t long delay and I_t short delay 11
Figure 9. 2500A frame PXR 20 - I_t long delay and I_t short delay 12
Figure 10. 1600A/2000A frame PXR 20D / PXR 25 - I_t long delay and flat short delay 13
Figure 11. 2500A frame PXR 20D / PXR 25 - I_t long delay and flat short delay 14
Figure 12. PXR 20D / PXR 25 ground (earth) flat delay ... 15
Figure 13. PXR 20D / PXR 25 - ground (earth) I_t delay .. 16
Figure 14. PXR 20 - ground (earth) flat delay ... 17
Figure 15. PXR 20 - ground (earth) I_t delay ... 18
Figure 16. 1600A frame PXR 20D / PXR 25 - instantaneous and override 19
Figure 17. 2000A frame PXR 20D / PXR 25 - instantaneous and override 20
Figure 18. 2500A frame PXR 20D / PXR 25 - instantaneous and override 21
Figure 19. 1600A frame PXR 20 - instantaneous and override .. 22
Figure 20. 2000A frame PXR 20 - instantaneous and override .. 23
Figure 21. 2500A frame PXR 20 - instantaneous and override .. 24
Figure 22. PXR 20 / PXR 20D / PXR 25 - maintenance mode .. 25
Table 1. Revision notes

Note: Unless noted below, all curves remain unchanged from their prior revision.

<table>
<thead>
<tr>
<th>Revision</th>
<th>Curve number</th>
<th>Page</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Power Defense frame 6 initial release</td>
<td></td>
<td>12/14/2018</td>
</tr>
<tr>
<td>2</td>
<td>Edits to curve notes</td>
<td></td>
<td>02/06/2019</td>
</tr>
<tr>
<td>3</td>
<td>Short delay tolerances adjusted</td>
<td></td>
<td>11/07/2019</td>
</tr>
<tr>
<td></td>
<td>Ground delay tolerance adjusted</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Technical Data TD012068EN
Effective November 2019

Time current curves Power Defense MCCB
Frame 6 PXR electronic trip units
Standards: UL, CSA, IEC, CCC
Technical Data

Time current curves Power Defense MCCB
Frame 6 PXR electronic trip units
Standards: UL, CSA, IEC, CCC

Effective November 2019

Table 2. Breaker catalog number convention

<table>
<thead>
<tr>
<th>Breaker family</th>
</tr>
</thead>
<tbody>
<tr>
<td>PDG6 = Frame 6 global UL / CSA / IEC / GB</td>
</tr>
<tr>
<td>PDF6 = Frame 6 global-100% UL / CSA / IEC / GB (uses PDG trip units)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Intermittent rating designator</th>
</tr>
</thead>
<tbody>
<tr>
<td>kA at 480 V (UL)</td>
</tr>
<tr>
<td>M = 65</td>
</tr>
<tr>
<td>N = 85</td>
</tr>
<tr>
<td>P = 100</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Continuous current rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>1600 = 1600 A</td>
</tr>
<tr>
<td>2000 = 2000 A</td>
</tr>
<tr>
<td>2500 = 2500 A</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Trip unit type</th>
</tr>
</thead>
<tbody>
<tr>
<td>E## = PXR 20 (1)</td>
</tr>
<tr>
<td>D## = PXR 20D (1)</td>
</tr>
<tr>
<td>P## = PXR 25 (1)</td>
</tr>
<tr>
<td>KNS = Molded case switch</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Terminals included</th>
</tr>
</thead>
<tbody>
<tr>
<td>N = No terminals (imperial tapped conductors)</td>
</tr>
<tr>
<td>M = No terminals (metric tapped conductors)</td>
</tr>
</tbody>
</table>

Table 3. Electronic trip unit catalog number convention

<table>
<thead>
<tr>
<th>PDG6</th>
<th>PXR</th>
<th>1600</th>
<th>D</th>
<th>2</th>
<th>W</th>
</tr>
</thead>
<tbody>
<tr>
<td>Style family</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PDG6 = Frame 6 global UL / CSA / IEC / GB for PDG and PDF breakers</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trip unit</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PXR = Electronic trip unit</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Poles</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 = 3 poles</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 = 4 poles with programmable neutral protection</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ETU trip unit style</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E = PXR 20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D = PXR 20D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P = PXR 25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ETU protection style</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 =</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 = LS1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 = LSIG</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 = LS1 ARMS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 = LSIG ARMS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>N = None</td>
</tr>
<tr>
<td>R = Relays</td>
</tr>
<tr>
<td>Z = ZSI, relays</td>
</tr>
<tr>
<td>M = Modbus, relays</td>
</tr>
<tr>
<td>C = CAM interface, relays</td>
</tr>
<tr>
<td>D = Modbus, CAM interface, relays</td>
</tr>
<tr>
<td>W = ZSI & Modbus</td>
</tr>
<tr>
<td>X = ZSI, CAM interface, relays</td>
</tr>
<tr>
<td>Y = ZSI, Modbus, CAM interface, relays</td>
</tr>
</tbody>
</table>

Note: 1 See catalog for ## (protection type and available configured options).

Note: IEC standard breakers include the CE mark; GB standard breakers include the CCC mark.

This information is provided only as an aid to understand the catalog numbers.

It is not to be used to build catalog numbers for circuit breakers or trip units as all combinations may not be available.
Table 4. Symmetrical RMS interruption ratings I_{cu} (kA) for each breaker frame

<table>
<thead>
<tr>
<th>Voltage</th>
<th>UL / CSA</th>
<th>IEC / CCC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frame</td>
<td>240V</td>
<td>480V</td>
</tr>
<tr>
<td>PDG6xM</td>
<td>125</td>
<td>65</td>
</tr>
<tr>
<td>PDG6xN</td>
<td>150</td>
<td>85</td>
</tr>
<tr>
<td>PDG6xP</td>
<td>200</td>
<td>100</td>
</tr>
<tr>
<td>PDG6xN</td>
<td>150</td>
<td>85</td>
</tr>
<tr>
<td>PDG6xP</td>
<td>200</td>
<td>100</td>
</tr>
</tbody>
</table>

Globally Rated

<table>
<thead>
<tr>
<th>Voltage</th>
<th>UL / CSA</th>
<th>IEC / CCC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frame</td>
<td>240V</td>
<td>480V</td>
</tr>
<tr>
<td>PDG6xM</td>
<td>125</td>
<td>65</td>
</tr>
<tr>
<td>PDG6xN</td>
<td>150</td>
<td>85</td>
</tr>
<tr>
<td>PDG6xP</td>
<td>200</td>
<td>100</td>
</tr>
<tr>
<td>PDG6xN</td>
<td>150</td>
<td>85</td>
</tr>
<tr>
<td>PDG6xP</td>
<td>200</td>
<td>100</td>
</tr>
</tbody>
</table>

Globally Rated (UL 100%)

<table>
<thead>
<tr>
<th>Voltage</th>
<th>UL / CSA</th>
<th>IEC / CCC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frame</td>
<td>240V</td>
<td>480V</td>
</tr>
<tr>
<td>PDG6xM</td>
<td>125</td>
<td>65</td>
</tr>
<tr>
<td>PDG6xN</td>
<td>150</td>
<td>85</td>
</tr>
<tr>
<td>PDG6xP</td>
<td>200</td>
<td>100</td>
</tr>
</tbody>
</table>

** 1600A and 2000A frames only.

Table 5. Curve notes

1. These curves apply for 50Hz and 60Hz applications
2. The maximum voltage rating for the frame style is stated in Table 4
3. These curves are comprehensive for Power Defense style circuit breakers including frame sizes, ratings and constructions stated.
4. The total clearing times shown include the response time for the trip unit, the breaker opening and the interruption of the current. The bottom of the time band is the minimum commit to trip time.
5. The end of the curve is determined by the application or the interrupting rating of the circuit breaker.
6. All electronic trip units have an over temperature protection feature that will trip the breaker when the internal temperature of the ETU is over 105°C
7. All time current data based on 3 phase testing.

Labels

PXR 20 - unit with LSIG protection and maintenance mode pictured.

PXR 25 and PXR 20D - unit with LSIG protection and maintenance mode pictured.

Figure 1. Power Defense frame 6 trip unit front labels.

Note: Trip unit drawings in Figure 1 are representative of the face plates provided. Values on the trip unit dials will change based upon the specific breaker and trip unit. Refer to the time current curve of the breaker or the PXR User Guide for the specific settings.
Technical Data
TD012068EN
Effective November 2019

Time current curves Power Defense MCCB
Frame 6 PXR electronic trip units
Standards: UL, CSA, IEC, CCC

Curves

Figure 2. 1600A/2000A frame PXR 20D / PXR 25 - I₂t Long Delay and Flat Short Delay Curves

Notes:
1. Long delay pickup is 110% of the Ir setting with ±5% tolerance. Ir is set from min to max at steps of 10 A.
2. Long delay time settings adjustable from 0.5s - 24s at steps of 0.1s with ±0%/±30% tolerance.
3. If thermal memory is enabled, trip times may be shorter than indicated in this curve.
4. Short delay pickup settings adjustable from 1.5x - 9x at steps of 0.1x with ±5% tolerance.
5. Short delay time settings adjustable from 0.05s - 0.500s at steps of 0.01s with tolerances as follows: time delay settings 0.500s to 0.200s have tolerances of ±20%, time delay settings between 0.190s to 0.160s have tolerances of ±30%, and time delay settings between 0.150s to 0.100s have tolerances of ±40%.
6. If the long delay time is projected to be faster than the short delay time, the long delay trip time will go no faster than the short delay time value.
7. With ZSI enabled and no auxiliary power, tripping times for 3-phase faults will be a maximum of 60ms for 60Hz and 63ms for 50Hz.
Time current curves Power Defense MCCB
Frame 6 PXR electronic trip units
Standards: UL, CSA, IEC, CCC

Notes:
1. Long delay pickup is 110% of the Ir setting with ±5% tolerance. Ir is set from min to max at steps of 10 A.
2. Long delay time settings adjustable from 0.5s - 24s at steps of 0.1s with ±0%/±30% tolerance.
3. If thermal memory is enabled, trip times may be shorter than indicated in this curve.
4. Short delay pickup settings adjustable from 1.5x - 6x at steps of 0.1x with ±5% tolerance.
5. Short delay time settings adjustable from 0.050s – 0.500s at steps of 0.010s with tolerances as follows: time delay settings 0.500s to 2.000s have tolerances of ±0/-20%, time delay settings between 0.190s to 0.160s have tolerances of ±0/-30%, and time delay settings between 0.150s to 0.100s have tolerances of ±0/-40% and time delay settings between 0.090s to 0.050s have tolerances of ±20%/±50%.
6. If the long delay time is projected to be faster than the short delay time, the long delay trip time will go no faster than the short delay time value.
7. With ZSI enabled and no auxiliary power, tripping times for 3-phase faults will be a maximum of 60ms for 60Hz and 63ms for 50Hz.
Technical Data

TD012068EN
Effective November 2019

Time current curves Power Defense MCCB
Frame 6 PXR electronic trip units
Standards: UL, CSA, IEC, CCC

Figure 4. 1600A/2000A frame PXR 20 - I²t long delay and flat short delay.
PD6 2500A PXR20 - I²t Long Delay and Flat Short Delay Curves

Notes:
1. Long delay pickup is 110% of the Ir setting with ±5% tolerance.
2. Long delay time settings as shown have ±0%/-30% tolerance.
3. If thermal memory is enabled, trip times may be shorter than indicated in this curve.
4. Short delay pickup settings as shown have ±5% tolerance.
5. Short time delay slopes are shown with tolerance.
6. If the long delay time is projected to be faster than the short delay time, the long delay trip time will go no faster than the short delay time value.
7. With ZSI enabled and no auxiliary power, tripping times for 3-phase faults will be a maximum of 60ms for 60Hz and 63ms for 50Hz.

Figure 5. 2500A frame PXR 20 - I²t long delay and flat short delay.
Time current curves Power Defense MCCB
Frame 6 PXR electronic trip units
Standards: UL, CSA, IEC, CCC

Technical Data TD012068EN
Effective November 2019

Time current curves
Power Defense circuit breakers
Style: Frame 6
Configuration: 3 and 4-poles
Trip unit type: Power Xpert Release - PXR 20D / PXR 25

Ir setting
PDG/PDF
PDG/PDF
1600 A
2000 A
1600 A
2000 A
Min.
700 A
1000 A
Max.
1600 A
2000 A

Notes:
1. Long delay pickup is 110% of the Ir setting with ±5% tolerance. Ir is set from min to max at steps of 10 A.
2. Long delay time settings adjustable from 0.5s - 24s at steps of 0.1s with +0%/-30% tolerance.
3. If thermal memory is enabled, trip times may be shorter than indicated in this curve.
4. Short delay pickup settings adjustable from 1.5x - 9x at steps of 0.1x with ±5% tolerance.
5. Short delay I^2t slope time settings adjustable from 0.067s - 0.300s at steps of 0.010s with tolerances as follows: I^2t slope time delay settings 0.300s to 0.200s have tolerances of +0/-30%, time delay settings between 0.190s to 0.160s have tolerances of +0/-40% and time delay settings between 0.090s to 0.050s have tolerances of +0/-50%.
6. If the long delay time is projected to be faster than the short delay time, the long delay trip time will go no faster than the short delay time value.
7. With ZSI enabled and no auxiliary power, tripping times for 3-phase faults will be a maximum of 60ms for 60Hz and 63ms for 50Hz.

Figure 6. 1600A/2000A frame PXR 20D / PXR 25 - I^2t long delay and I^2t short delay.
Figure 7. 2500A frame PXR 20D / PXR 25 - t^2 long delay and t^2 short delay.
Time current curves Power Defense MCCB
Frame 6 PXR electronic trip units
Standards: UL, CSA, IEC, CCC

Effective November 2019

Notes:
1. Long delay pickup is 110% of the Ir setting with ±5% tolerance.
2. Long delay time settings as shown have +0%/-30% tolerance.
3. If thermal memory is enabled, trip times may be shorter than indicated in this curve.
4. Short delay pickup settings as shown have ±5% tolerance.
5. Short Delay I²t slope time settings are as follows: I²t slope time setting 0.300s has a tolerance of +0/-30%, time delay setting 0.150s has a tolerance of +0/-40% and time delay setting 0.067s has a tolerance of +0/-50%. After approximately 8x the I²t slope will go flat and those times have tolerances as follows: time delay setting 0.300s has a tolerance of +0/-20%, time delay setting 0.150s has a tolerance of +0/-40% and time delay setting 0.067s has a tolerance of +0/-50%.
6. If the long delay time is projected to be faster than the short delay time, the long delay trip time will go no faster than the short delay time value.
7. With ZSI enabled and no auxiliary power, tripping times for 3-phase faults will be a maximum of 60ms for 60Hz and 63ms for 50Hz.
Figure 9. 2500A frame PXR 20 \(I^t\) long delay and \(I^t\) short delay.
Figure 10. 1600A/2000A frame PXR 20D / PXR 25 - I*t Long Delay and Flat Short Delay Curves.

Notes:
1. Long delay pickup is 110% of the Ir setting with ±5% tolerance. Ir is set from min to max at steps of 10 A.
2. Long delay time settings adjustable from 0.5s - 7s at steps of 0.1s with +0%/-30% tolerance.
3. If thermal memory is enabled, trip times may be shorter than indicated in this curve.
4. Short delay pickup settings adjustable from 1.5x - 9x at steps of 0.1x with ±5% tolerance.
5. Short delay time settings adjustable from 0.05s - 0.500s at steps of 0.010s with tolerances as follows: time delay settings 0.500s to 0.200s have tolerances of +0/-20%, time delay settings between 0.190s to 0.160s have tolerances of +0/-30%, and time delay settings between 0.090s to 0.050s have tolerances of +20%/-50%.
6. If the long delay time is projected to be faster than the short delay time, the long delay trip time will go no faster than the short delay time value.
7. With ZSI enabled and no auxiliary power, tripping times for 3-phase faults will be a maximum of 60ms for 60Hz and 63ms for 50Hz.
Time current curves Power Defense circuit breakers

Style: Frame 6
Configuration: 3 and 4-poles
Trip unit type: Power Xpert Release - PXR 20D / PXR 25

Ir setting | PDG 2500 A
Min. | 1600 A
Max. | 2500 A

Notes:
1. Long delay pickup is 110% of the Ir setting with ±5% tolerance. Ir is set from min to max at steps of 10 A.
2. Long delay time settings adjustable from 0.5s - 7s at steps of 0.1s with ±5% tolerance.
3. If thermal memory is enabled, trip times may be shorter than indicated in this curve.
4. Short delay pickup settings adjustable from 1.5x - 6x at steps of 0.1x with ±5% tolerance.
5. Short delay time settings adjustable from 0.050s - 0.500s at steps of 0.010s with tolerances as follows: time delay settings 0.050s to 0.200s have tolerances of +20%/-20%, time delay settings between 0.190s to 0.160s have tolerances of +30%/-30%, and time delay settings between 0.150s to 0.100s have tolerances of +40%/-40% and time delay settings between 0.090s to 0.050s have tolerances of ±50%.
6. If the long delay time is projected to be faster than the short delay time, the long delay trip time will go no faster than the short delay time value.
7. With ZSI enabled and no auxiliary power, tripping times for 3-phase faults will be a maximum of 60ms for 60Hz and 63ms for 50Hz.

Figure 11. 2500A frame PXR 20D / PXR 25 - I^t long delay and flat short delay.

November 2019
Time current curves Power Defense MCCB
Frame 6 PXR electronic trip units
Standards: UL, CSA, IEC, CCC

PXR20D / PXR25 - Ground (Earth) Flat Delay Curves

EATON
Time current curves
Power Defense circuit breakers
Style: Frame 6
Configuration: 3 and 4-poles
Trip unit type: Power Xpert Release - PXR 20D / PXR 25

Notes:
1. Ground pickup settings adjustable from 0.2x - 1.0x at steps of 0.010x for residual sensing with a tolerance of ±10%.
2. Ground time delay settings adjustable from 0.100s – 1.000s at steps of 0.010s with tolerances as follows: time delay settings 1.000s to 0.200s have tolerances of ±0/-20%, time delay settings between 0.190s to 0.160s have tolerances of ±0/-30%, and time delay settings between 0.150s to 0.100s have tolerances of ±0/-40%.
3. If thermal memory is enabled, trip times may be shorter than indicated in this curve.
4. With ZSI enabled and no auxiliary power, tripping times for 3-phase faults will be a maximum of 60ms for 60Hz and 63ms for 50Hz.

Figure 12. PXR 20D / PXR 25 ground (earth) flat delay.
Technical Data TD012068EN
Effective November 2019

Effective November 2019

Time current curves Power Defense MCCB
Frame 6 PXR electronic trip units
Standards: UL, CSA, IEC, CCC

Notes:
1. Ground pickup settings adjustable from 0.2x - 1.0x at steps of 0.01x are for residual sensing with a tolerance of ± 10%.

2. Ground I²t slope time settings are adjustable from 0.067s – 0.300s at steps of 0.010s with tolerances as follows: I²t slope time delay settings 0.300s to 0.200s have tolerances of +0/-40%, time delay settings between 0.190s to 0.160s have tolerances of +0/-20%, and time delay settings between 0.150s to 0.100s have tolerances of +0/-40% and time delay settings between 0.090s to 0.067s have tolerances of +0/-50%. After approximately 1x the I²t slope will go flat and those times have tolerances as follows: time delay settings 0.300s to 0.200s have tolerances of +50/-20%, time delay settings between 0.190s to 0.160s have tolerances of +0/-30%, and time delay settings between 0.150s to 0.100s have tolerances of +0/-40% and time delay settings between 0.090s to 0.050s have tolerances of +20%/-50%.

3. If thermal memory is enabled, trip times may be shorter than indicated in this curve.

4. With ZSI enabled and no auxiliary power, tripping times for 3-phase faults will be a maximum of 60ms for 60Hz and 63ms for 50Hz.

Figure 13. PXR 20D / PXR 25 - ground (earth) I²t delay. November 2019
Figure 14. PXR 20 - ground (earth) flat delay.
Figure 15. PXR 20 - ground (earth) I²T delay.
Time current curves Power Defense MCCB
Frame 6 PXR electronic trip units
Standards: UL, CSA, IEC, CCC

Technical Data
TD012068EN
Effective November 2019

Figure 16. 1600A frame PXR 20D / PXR 25 - instantaneous and override.

Notes:
1. The instantaneous pickup settings adjustable from 2x – 10.9x (max) at steps of 0.10x with ±10% tolerance.
2. For high fault current levels a fixed instantaneous override is provided at 17500 A and has ±15% tolerance.
Time current curves Power Defense circuit breakers
Style: Frame 6
Configuration: 3 and 4-poles
Trip unit type: Power Xpert Release - PXR 20D / PXR 25

Notes:
1. The instantaneous pickup settings adjustable from 2x – 8.8x (max) at steps of 0.10x with a ±10% tolerance.
2. For high fault current levels a fixed instantaneous override is provided at 17500 A and has a ±15% tolerance.

Figure 17. 2000A frame PXR 20D / PXR 25 - instantaneous and override.
Time current curves Power Defense MCCB

Frame 6 PXR electronic trip units

Standards: UL, CSA, IEC, CCC

Effective November 2019

Figure 18. 2500A frame PXR 20D / PXR 25 - instantaneous and override.

Notes:

1. The instantaneous pickup settings adjustable from 2x – 7x (max) at steps of 0.10x with a ±10% tolerance.
2. For high fault current levels a fixed instantaneous override is provided at 17500 A and has a ±15% tolerance.
Figure 19. 1600A frame PXR 20 - instantaneous and override.
Figure 20. 2000A frame PXR 20 - instantaneous and override.
Eaton Technical Data TD012068EN
Effective November 2019

Time current curves Power Defense MCCB
Frame 6 PXR electronic trip units
Standards: UL, CSA, IEC, CCC

Figure 21. 2500A frame PXR 20 - instantaneous and override. November 2019
Figure 22. PXR 20 / PXR 20D / PXR 25 - maintenance mode.
Time current curves Power Defense MCCB
Frame 6 PXR electronic trip units
Standards: UL, CSA, IEC, CCC