APPLICATION

EIH and EIHT Instrument Enclosures are designed to house instrumentation and control equipment as well as act as a conduit outlet body in hazardous, abusive, and wet locations.

The EIH and EIHT enclosure is approved by Underwriters Laboratories Inc., Canadian Standards Association and Factory Mutual, for use in Class I, Groups B* , D, Class II, Groups E, F, G, and Class III hazardous (classified) locations as defined by the National Electrical Code* and Canadian Electrical Code. It is also NEMA/UL/CSA Type 4X and IP66 rated for watertight applications.

*With conduit seals installed within 18 inches (46 cm) of enclosure. For ATEX, a seal is required at the enclosure wall.

DIMENSIONS

![Diagram of Dimensions]

INSTALLATION

WARNING

If a heat producing instrument or device is mounted in the enclosure, do not install in any classified location where the operating temperature of the enclosure exceeds the ignition temperature of the hazard present.

WARNING

Electrical power must be "OFF" before and during installation and maintenance.

1. EIH Instrument Enclosures are furnished with 3/4" NPT offset throughfeed cast hubs for conduit entries. EIHT Instrument Enclosures are supplied with 3/4" NPT offset throughfeed cast hubs on the power side and one (1) 3/4" NPT hub on the instrument side for conduit entries. (Use Cooper Crouse-Hinds RE21-5A to reduce to 1/2" hubs.)

2. Secure the enclosure to the conduit system. If the enclosure has mounting feet, select a mounting location that will provide sufficient strength and rigidity to support the enclosure as well as the enclosed device and wiring.

3. Install Cooper Crouse-Hinds EYS Sealing Fittings required by Section 501-5 and/or 502-5 of the National Electrical Code and Section 18 of the Canadian Electrical Code as well as any other applicable local codes and when enclosure is installed in Class I, Group B hazardous locations. (For CSA Group C applications, unsealed conduit lengths must not exceed 5 ft. or 152 cm.)

4. Unthread instrument (and power side) covers and carefully set aside to prevent damage to the cover threads and glass lens (when glass lens cover is used).

5. Pull wires into enclosure, making certain they are long enough to make the required connections and to remove the instrument or power supply if servicing is required. Install instrument and a power supply, if applicable, and make all electrical connections. (If installing an EIHT and connections need to be made between the two halves of the EIHT enclosure, see DRILLING BETWEEN ENCLOSURE WALL section of instruction sheet).

6. Tighten cover set screws to prevent cover from loosening under vibration.

8. CAUTION

- Use care to prevent dirt, grit or other foreign material from lodging on threads. If any such material settles on these threads, clean them with kerosene or Stoddard solvent*, then lubricate with Cooper Crouse-Hinds Type STL thread lubricant.
- To avoid the possibility of an explosion, oxidation and corrosion, do not use gasoline or similar solvent.

The schedule of limitations is as follows:

- Rotating machines, or other devices which create turbulence, shall not be incorporated;
- Oil-filled circuit breakers and contactors shall not be used;
- Temperature range: -20ºC to +60ºC;
- (For Group I, IA, and IIB component enclosures) the content of the Ex component enclosure equipment may be placed in any arrangement, provided that an area of at least 20% of each cross-sectional area remains free to permit an unimpeded gas flow and, therefore, unrestricted development of an explosion. Separate relief areas may be aggregated provided that each area has a minimum dimension in any direction of 12.5 mm; and
- Maximum operating temperature of glass: 154ºC.

CAUTION

- Oil-filled circuit breakers and contactors shall not be used;
- Temperature range: -20ºC to +60ºC;
- (For Group I, IA, and IIB component enclosures) the content of the Ex component enclosure equipment may be placed in any arrangement, provided that an area of at least 20% of each cross-sectional area remains free to permit an unimpeded gas flow and, therefore, unrestricted development of an explosion. Separate relief areas may be aggregated provided that each area has a minimum dimension in any direction of 12.5 mm; and
- Maximum operating temperature of glass: 154ºC.

CAUTION

- Use care to prevent dirt, grit or other foreign material from lodging on threads. If any such material settles on these threads, clean them with kerosene or Stoddard solvent*, then lubricate with Cooper Crouse-Hinds Type STL thread lubricant.
- To avoid the possibility of an explosion, oxidation and corrosion, do not use gasoline or similar solvent.

The schedule of limitations is as follows:

- Rotating machines, or other devices which create turbulence, shall not be incorporated;
- Oil-filled circuit breakers and contactors shall not be used;
- Temperature range: -20ºC to +60ºC;
- (For Group I, IA, and IIB component enclosures) the content of the Ex component enclosure equipment may be placed in any arrangement, provided that an area of at least 20% of each cross-sectional area remains free to permit an unimpeded gas flow and, therefore, unrestricted development of an explosion. Separate relief areas may be aggregated provided that each area has a minimum dimension in any direction of 12.5 mm; and
- Maximum operating temperature of glass: 154ºC.

DRILL & TAP INTERNAL MOUNTING PADS (EIH only)

1. Prepare a template or mark the position of the device mounting holes on the mounting pads in the bottom of the enclosure. See Figure 1.

2. Holes can be drilled and tapped in the mounting pads. See Figure 2.

WARNING

To maintain the explosionproof integrity of the enclosure with a screw in a tapped mounting pad hole, there must be a minimum of 1/16" of material between the drill point and the back wall. If, for any reason, a screw will not be threaded into the drilled hole, a minimum of 1/8" of material must remain between the drill point and the back wall.
The external pad has a wall thickness suitable for drilling and tapping an additional 3/4" or 1/2" conduit entry.

NOTE: The conduit entrance must lie within the shaded area outlined in Figure 3.

WARNING

The size of the pad only allows for either one (1) 3/4" or one (1) 1/2" NPT conduit entry. DO NOT attempt to drill and tap two conduit entries or an entry larger than 3/4".

DRILL & TAPPING FOR CONDUIT ENTRIES (EIH Only)

Female conduit entries must be taper tapped with the thread form and taper (3/4 in. per ft.) conforming to NPT. A standard NPT male gage must enter the tapped opening 1-1/2 turns past the gage notch. The opening is tapped deeper than standard NPT gage to ensure a minimum of five (5) full threads engagement with standard NPT thread-ed conduit (refer to current NEMA FB-1).

For ATEX, NPT threads may not have a deeper tapping than flush to +2 turns large. For ATEX, with a flanged joint glass gap of .04mm and width of 15mm, the threaded cover must have 9.6 engaged threads.

Opening may be tapped to accept listed reducers that provide an integral conduit stop or openings may be tapped and counterbored 1/16 to 1/8 inch larger than conduit O.D. to a depth that will still provide a tapped surface of suffi-cient length for the number of threads within the limits shown in Table 1. This will allow assembly of a conduit bushing to the end of the conduit protruding through the wall.

Table 1

<table>
<thead>
<tr>
<th>Conduit Size (Inch)</th>
<th>Number of Threads per Inch</th>
<th>Maximum Number of Threads</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/2</td>
<td>14</td>
<td>7</td>
</tr>
<tr>
<td>3/4</td>
<td>14</td>
<td>7</td>
</tr>
</tbody>
</table>

CAUTION

Sealing fittings must be installed with access allowing the dams to be made and the sealing compound to be properly poured.

DRILLING BETWEEN ENCLOSURE WALL (EIH20 Only)

Up to six (6) 1/4" holes can be drilled between the wall of the two sides of the EIHT enclosure for pass throughs. The minimum spacing between holes must be 0.187 inches.

1. Remove both threaded covers before attempting to drill holes through the EIHT wall.
2. See Figure 5 for defined area for pass throughs.

MAINTENANCE

1. Frequent inspection should be made. A schedule for maintenance checks should be determined by the environment and frequency of use. It is recommended that it should be at least once a year.
2. Perform visual, electrical, and mechanical checks on all components on a regular basis.
 - Visually check for undue heating evidenced by discoloration of wires or other components, damaged or worn parts, or leakage evidenced by water or corrosion in the interior.
 - Electrically check to make sure that all connections are clean and tight and that the device is operating properly.

All statements, technical information and recommendations contained herein are based on information and tests we believe to be reliable. The accuracy or completeness thereof are not guaranteed. In accordance with Crouse-Hinds "Terms and Conditions of Sale", and since conditions of use are outside our control, the purchaser should determine the suitability of the product for his intended use and assumes all risk and liability whatsoever in connection therewith.