Solutions for Your Most Demanding Applications

AND REAL PROPERTY AND IN THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OWNER OWNER OWNER OWNER

Everflex

Eaton has been a pioneer in the production of hoses made with Teflon[®] resin. Everflex hoses are ideally suited for use in applications where high and low temperature, chemical resistance, low coefficient of friction, flexibility, and non-aging characteristics are required. Since 1961, Everflex has been the premier brand of hose products made from Teflon resin for use in truck, chemical, hot melt, paper and pulp, hot presses, steam, packaging, paint, machinery and many other demanding applications.

Teflon® is a registered trademark of DuPont used under license by Eaton.

Everflex Hose

Α

Design Considerations	Section A
Safety Information	A-2
Steam Hose Safety Information	A-3
Steam Temperatures	A-4
Why Eaton Everflex Hose?	A-5
How to Order	A-6
Hose Length Information	A-6
Warranty	A-6
Everflex Smooth Bore Hose	Section B
S-Series	B-2
SC-Series	B-3
S-TW Series	B-4
SC-TW Series	B-5
B-Series and M-Series	B-6
S3-PVC Series	B-7
Hi-PSI Series	B-8
FC493	B-9
FC740 and FC742	B-10
SC-GTW LP Gas Hose	B-11
Convoluted Hose and Hose Ends	Section C
Conv-O-Crimp Bulk Hose	C-2
Conv-O-Crimp Hose Ends	C-3
Everswage Swaged Hose Ends, Components and Fitting	Section D
Everswage Hose Ends	D-2
Everswage Components	D-6
Everswage Fitting Bill of Material Cross-Reference	D-8
E-Series Crimp Hose Ends and Fittings	Section E
E-Series Crimp Hose Ends	E-2
Field Attachable Fittings	Section F
Fittings for use with Everflex Hose S-TW, SC-TW	F-2
Everflex Hose Accessories	Section G
Firesleeve & Chafe Sleeve	G-2
Spring Guards	G-3
Guardian Sleeve	G-4
Assembly Equipment	Section H
Everswage Equipment & Tooling	H-2
Everswage Tooling Selector Chart	H-3
E-Series Barrel Crimp Tooling Selector Chart	H-4
Conv-O-Crimp Equipment & Tooling	H-6
Field Attachable Fittings Assembly Equipment	H-7
Chemical Resistance Chart	Section
Partial List of Chemicals - Everflex Only	-2

Convoluted Hose and Hose Ends	С
Everswage Swaged Hose Ends, Components and Fitting	D
E-Series Crimp Hose Ends and Fittings	E
Field Attachable Fittings	F
Everflex Hose Accessories	G
Assembly Equipment	н

Chemical Resistance Chart

Design Considerations Basic Considerations in Hose Selection

Smooth Bore vs. Convoluted

The primary differentiators between smooth and convoluted tubes are size and bend radius. Smooth bore hoses are generally only available in tube diameters of one inch or less, and they will have much greater minimum bend radii. For example, one inch smooth bore hose has a minimum bend radius of 12 inches while the same size convoluted hose has a minimum bend radius of only three inches. Convoluted hoses are also more resistant to collapse in vacuum. Smooth bore hoses tend to have a lower price than same-sized convoluted hoses.

Wall Thickness

In applications where a hose is flexed severely, thicker

walls will provide better resistance to buckling. Thick wall hoses are also less permeable with both fluids and gases than thin wall hoses. Thin wall hoses tend to have a lower price because they contain less material. Most Everflex hoses are classified as either thin wall (.030") or thick wall (.040").

Fittings

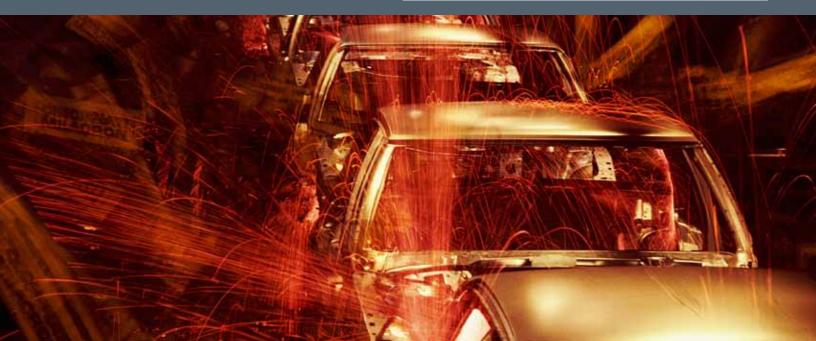
Hoses made with Teflon can use crimp, swage, or reusable fittings. The choice is largely one of individual preference, since there are no significant performance differences between the systems.

Interior & Exterior Treatments

Hoses exposed to severe environmental conditions

can be fitted with several different forms of external protection. Options include extruded thermoplastic and silicone sleeves, slip-over or integral fire-resistant sleeves, and a variety of metallic and fabric protective braids. Hoses used in vacuum applications, particularly at high temperatures, are often fitted with internal coils or sleeves to prevent collapse.

Conductive vs. Non-Conductive Teflon


Hoses, typically fuel lines carrying low-viscosity hydrocarbons at high flow rates, tend to build-up static electrical charges that can arc through the Teflon to the braid. This can create a pinhole in the Teflon. Specifying conductive Teflon will allow the static charge to bleed off harmlessly to the fitting.

Braid Material

304 Stainless is the baseline braid material for most hoses made with Teflon. 316 Stainless is the recommended material for marine hose applications. Monel is available for hoses exposed to severe corrosion environments, and bronze is used in applications together or against other pieces of equipment. In the latter case, the excellent lubricity of bronze often can stainless steel. Braid material is also a major factor in the pressure rating for a given hose. Special braid materials and configurations are available to handle pressures up to 5,000 psi.

Table of Contents

Safety Information	A-2
Steam Hose Safety Information	A-3
Steam Temperatures	A-4
Why Eaton Everflex Hose	A-5
How to Order	A-6
Hose Length Information	A-6
Warranty	A-6

Safety Information

This catalog is intended as a guide in selecting the proper hose and fittings for the applications listed herein. It contains cautions, warnings, guidelines and directions for the safe and proper use of Everflex hose. All these directions and footnotes should be read and understood before specifying or using any of these hoses.

This symbol is used when personal injury is possible.

WARNING: A failure of Everflex hose in service can result in personal injury, death or damage of property.

Do not use Everflex hose at temperatures or pressures above those recommended by the manufacturer. All operators must be thoroughly trained in the care and use of this hose and must at all times wear protective clothing. A hose or system failure could cause the release of a poisonous, corrosive or flammable material.

WARNING: These hoses can be used to convey hazardous chemicals, steam, hot liquids or other dangerous materials which can cause death, serious injury including burns, pressure wounds or chemical exposure if released accidentally. They should, therefore, only be handled or worked on by personnel properly trained in the safe handling of the materials or chemicals being conveyed in the hoses.

WARNING: In the case of low viscosity hydrocarbon fluids moving at high flow rates, it is necessary to use conductive tubed Everflex hose products.

WARNING: Selection of the proper end fittings for the hose end application is essential to the proper operation and safe use of the hose and related equipment. Inadequate attention to the selection of the end fittings for your application can result in leaking or the hose ends blowing off the hose, leading to serious personal injury, death or property damage.

The use or intermixing of fittings and hose not specifically engineered and designed for use with the Eaton Everflex equipment may result in the production of an unsafe or unreliable hose assembly. The Eaton limited warranty is contingent upon the fact that only Eaton Everflex end fittings and Eaton Everflex hose be used on Eaton Everflex assembly equipment.

In order to avoid serious bodily injury or property damage resulting from selection of the wrong end fitting, you should carefully review the information in this catalog.

Make Your Selection With Safety In Mind

- Select a hose identified as steam hose construction.
- Identify the type of service the steam hose is required to accomplish and review these considerations:
 - a) Is the hose manually handled?
 - b) What is the anticipated frequency of use?
 - c) What is the actual pressure of the steam service?
 - d) Is it subject to surges or peak pressures?
 - e) What is the temperature of the steam?
 - f) Saturated (wet) or superheated (dry) steam?
 - g) What are the external conditions in the area where the hose will be used?

Recognize that spillage, or accumulations of corrosive chemicals or petroleum based materials externally, can have a deteriorating effect on the hose cover.

Make Sure the Hose is Installed Properly

- Avoid extreme flexing of the hose near the coupling. If necessary, use elbows in the piping system to assure a straight line connection with the hose.
- Installing and using a shut-off valve between the steam source and the hose will maximize service life and operator safety. Eaton considers such a valve mandatory for safe operation.
- The use of spring guards can relieve some of the acute flexing encountered in heavy manual handling applications.
- Provide a suitable means of storing the hose when not in use. A permanent rack or tray will minimize the damage to the hose in storage. Do not hang the hose on a hook, nail, or other device which could cut or damage the hose.

Common Sense with Steam Hose

- Provide operators with adequate safety clothing, include gloves, rubber boots, full length protective clothing, and eye protection. The objective is to provide protection from scalding burns resulting from splash-back of steam or hot water.
- Ensure that the work area is free of tripping hazards and other clutter.
- Do not allow the hose to remain pressurized when not in service. Turning off the pressure can provide dramatic increases in steam hose service life.
- The best protection from accidents is the anticipation that they could occur.

Periodic Maintenance of Steam Hose

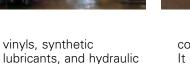
All steam hoses are expected to wear out in time. It is important to continually be on the look-out for hose that has deteriorated to the point where it can no longer provide safe service. The following guidelines can help in that determination. Operators should be aware of the obvious signs of trouble. They include:

- Steam leakages at the coupling ends or anywhere along the length of the hose.
- Flattened or kinked areas which have damaged the hose.

When any of the above abnormalities appear, it is good safety sense to immediately remove the hose from service. Once removed, the hose can be carefully inspected before further use.

WARNING: Exposure to steam is hazardous. If not properly controlled, steam can cause serious injury, death, or damage to property. In order to avoid serious injury, death, or damage to property, you must select the proper steam hose for the given application.

A-3


Also, proper installation, usage and maintenance of the steam hose you select will contribute to increased operator safety. Carefully read and understand the safety information provided on this page and the following pages. WARNING: Failure to properly follow the manufacturer's recommended procedures for the care, maintenance and storage of a particular hose may result in its failure to perform in the manner intended and may result in serious injury, death, and damage to property. WARNING: Only specially trained persons should engage in applications or testing procedures that require particular skills. Failure to do so may result in damage to the hose products or to other property and more importantly, may also result in serious injury.

Lbs. Per Sq. Inch Pressure	Degrees Fahrenheit	Degrees Centigrade	Lbs. per Sq. Inch Pressure	Degrees Fahrenheit	Degrees Centigrade
0	212.0	100.0	110	344.1	173.4
5	227.1	108.4	115	347.2	175.1
10	239.4	115.2	120	350.1	176.7
15	249.8	121.0	125	352.9	178.3
20	258.8	126.0	130	355.6	179.8
22	261.2	127.8	135	358.3	181.3
24	265.3	129.6	140	360.9	182.7
26	268.3	131.3	145	363.4	184.1
28	271.2	132.9	150	365.9	185.5
30	274.1	134.5	155	368.2	186.8
32	276.8	136.0	160	370.6	188.1
34	279.3	137.4	165	373.9	189.4
36	281.8	138.8	170	375.3	190.7
38	284.4	140.2	175	377.4	191.9
40	286.7	141.5	180	379.6	193.1
42	289.0	142.8	185	381.7	194.3
44	291.2	144.0	190	383.7	195.4
46	293.5	145.3	195	385.9	196.6
48	295.5	146.4	200	387.9	197.7
50	297.7	147.6	205	398.8	198.8
52	299.9	148.7	210	391.6	199.8
54	301.6	149.8	215	392.9	200.5
56	303.6	150.9	220	395.4	201.7
58	305.4	151.9	225	397.2	202.9
60	307.4	153.0	230	399.0	203.9
62	309.2	154.0	235	400.7	204.8
64	310.8	154.9	240	402.5	205.8
66	312.6	155.9	245	404.2	206.8
68	314.2	156.8	250	406.1	207.8
70	316.0	157.0	255	407.7	208.7
72	317.7	158.7	260	409.4	209.7
74	319.3	159.6	265	411.0	210.6
76	320.9	160.5	270	412.6	211.4
78	322.3	161.3	275	414.2	212.3
80	323.8	162.1	280	415.7	213.2
85	327.6	164.2	300	421.0	216.1
<u>90</u>	331.2	166.2	350	436.5	224.7
<u>90</u> 95	334.6	168.1	300	400.0	۲.1
100	334.6	169.9		is bottor than 2120E /bail	ing water) and increases in temperature as pressure
100	337.8	169.9	increases. See safety info		my water, and increases in temperature as pressure

- Everflex hose made from Teflon resin has excellent temperature characteristics. It works well in high ambient, fluid or gas media temperatures (+450°F). It works equally well in cryogenic applications (-65°F).
- Everflex hose has a broad range of **chemical resistance**. It is inert to most commercial chemicals, acids, alcohols, coolants, elastomers, petroleum compounds, solvents,

fluids. Chemical Resistance Guidelines are found on pages I-2.

- Everflex hose withstands continuous flexing, vibration, or impulse.
- Everflex hose is **compatible with steam**. It absorbs no moisture, hot or cold.
- Everflex hose is **noncontaminating** Conveyed materials, fluids, or gases will not

contaminate in service. It is easy to clean and sterilize for FDA or pharmaceutical applications.

- Everflex hose has high flow rates. Its low coefficient of friction with anti-stick properties insures continuous lower pressure drop during service with good pressure rating.
- Everflex hose resists deterioration. It is impervious to weather and can be stored for long periods of time without aging.

- Everflex hose has a long life expectancy when applied within its temperature and pressure ratings.
- Everflex hose can handle many substances such as adhesives, asphalt, dyes, greases, glue, latex, lacquers and paints. It has no carbon build-up when used as a compressor discharge line.

Application Data

How To Order Hose Length Information Warranty

How To Order:

1. Specify quantity required:

- a. For bulk hose in random lengths, state quantity in feet. Ex. 150 ft. S-12.
- b. For specified ("cut") lengths of hose, state number of pieces. 10 pcs. Ex. S-12-00200.
- c. Eaton reserves the right to ship +10% of the maximum reel length quantity or bulk quantity ordered.

2. Specify part number:

- a. For bulk hose, state hose style number and dash size. Ex. 100 ft. S-12.
- b. For cut lengths, state hose style number and dash size plus length to the nearest 1/8 inch. Ex. 10 pcs. S-12-00125 indicates 10 pieces S-12 hose, length of each piece 12-5/8 inches (the fifth digit of the length designator represents eighths of an inch).

3. Bulk Everflex hose is supplied in the following length patterns:

Sizes: -3 through -12

- No less than 75% in lengths 25 feet or longer
- No more than 25% in lengths 5 feet to 24 feet

Sizes: -14 through -24

- No less than 65% in lengths 25 feet or longer
- No more than 35% in lengths 5 feet to 25 feet

4. For large quantities or long lengths, please consult Eaton for price and availability.

Note: Length tolerance for cut hose lengths, assemblies and sleeves is:

- Up to and including 12": +/- 1/8"
- Above 12" to and including 18": +/- 3/16"
- Above 18" to and including 36": +/- 1/4"
- Above 36": +/- 1% of length

Hose Length Information

Average Length Patterns

Part Number	Minimum Length Ft.	Average Length Ft.	Maximum Length Ft.	Part Number	Minimum Length Ft.	Average Length Ft.	Maximum Length Ft.
S-3	5	400	700	S-8TW	5	115	300
S-4	5	170	500	S-10TW	5	110	300
S-5	5	130	400	S-12TW	5	320	600
S-6	5	100	300	S-14TW	5	160	500
S-8	5	150	500	S-16TW	5	200	400
S-10	5	300	600	S-18ZTW	5	80	150
S-12	5	240	500	SC-4TW	5	200	300
S-16	5	140	300	SC-5TW	5	100	200
S-16Z	5	30	58	SC-6TW	5	150	200
S-20Z	5	30	58	SC-7TW	5	60	150
SC-3	5	200	400	SC-8TW	5	60	150
SC-4	5	210	300	SC-10TW	5	60	140
SC-5	5	170	200	SC-12TW	5	200	400
SC-6	5	65	200	SC-14TW	5	200	450
SC-8	5	35	150	SC-16TW	5	90	200
SC-10	5	60	100	SC-18ZTW	5	80	150
SC-12	5	100	120	8012/8512	5	45	90
SC-16	5	50	75	8016/8516	5	45	80
S-4TW	5	275	700	8020/8520	5	30	70
S-5TW	5	85	500	8024/8524	5	30	60
S-6TW	5	160	600	803218532	5	30	45
S-7TW	5	70	300				

Warranty

Eaton Hydraulics warranty policy is located at www.hydraulics.eaton.com/warranty

Everflex Smooth Bore Hose

Everflex Smooth Bore hose made from Teflon resin is specified in many of the most difficult applications across various industries. The extruded tube has excellent flex life, high temperature resistance and chemical resistance. Additionally, Everflex hose is an excellent choice in applications requiring steam cleaning of an assembly or transfer of a highly viscous media, such as adhesives, paints or food products. The 304 stainless steel wire reinforcement provides the strength necessary to carry the working pressure and the durability to withstand harsh environments. The optional 316 stainless steel braid is ideal for more corrosive environments. High temperature hydraulic and pneumatic systems, such as those found in steel mills, foundries and transit buses, are ideal locations to offer Everflex hose as a problem solver. Materials meet 21-CFR-177.1550 for use in food handling applications.

Table of Contents

Smooth Bore Bulk Hose	
- S-Series	B-2
- SC-Series	B-3
- S-TW Series	B-4
- SC-TW Series	B-5
- B-Series and M-Series	B-6
- S3-PVC Series	B-7
- Hi-PSI Series	B-8
- FC493	B-9
- FC740 and FC742	B-10

S-Series

Smooth Bore Non-Dissipating

Everflex S-Series tube is reinforced with 304 or 316 stainless steel wire. All sizes are made from virgin Teflon resin and have a minimum wall thickness of .040". That is 33% more material than most other manufacturers offer. The additional material results in improved bend radius, kink resistance and slows permeation of gases. The minimum bend radius is measured in inches to the inside bend. Multiply the bend radius by 1.25 for dynamic applications.

Temperature Range -54°C to +230°C

(-65°F to +450°F)

Construction

- Non-conductive Teflon
 inner tube
- One or two layers of stainless steel braid

Applications

- Steam
- Compressor discharge
- Chemical transfer

Min. Bend	Hose Weight	Vacuum Service	Hose
Chernical transfe	71		

I.D.		Hose O.D.		Worki Pressu		Min. Burst		Min. Bend		Hose Weight		Vacuum Service	Hose Ends
mm	in	mm	in	bar	psi	bar	psi	mm	in	Kg/m	lbs/ft	In/HG	
3.2	0.13	6.8	0.27	241	3,500	965	14,000	25.4	1.00	0.07	0.05	28	Everswage
4.8	0.19	8.6	0.34	206	3,000	827	12,000	38.1	1.50	0.12	0.08	28	Everswage
6.4	0.25	10.2	0.4	206	3,000	827	12,000	50.8	2.00	0.13	0.09	28	Everswage
7.9	0.31	11.7	0.46	172	2,500	689	10,000	88.9	3.50	0.18	0.12	28 ‡	Everswage
10.4	0.41	14.7	0.58	137	2,000	551	8,000	114.3	4.50	0.22	0.15	28 ‡	Everswage
12.7	0.50	17.3	0.68	120	1,750	482	7,000	127.0	5.00	0.30	0.20	28 ‡	Everswage
15.7	0.62	20.3	0.8	103	1,500	413	6,000	152.4	6.00	0.34	0.23	28 ‡	Everswage
22.4	0.88	27.2	1.07	68	1,000	275	4,000	228.6	9.00	0.46	0.31	12 ‡	Everswage
22.4	0.88	28.7	1.13	86	1,250	344	5,000	185.4	7.30	0.73	0.49	12 ‡	Everswage
28.4	1.12	35.3	1.39	68	1,000	275	4,000	279.4	11.00	0.97	0.65	12 ‡	Everswage
less Ste	el Braid												
4.8	0.19	8.6	0.34	206	3,000	827	12,000	38.1	1.50	0.12	0.08	28	Everswage
7.9	0.31	11.7	0.46	172	2,500	689	10,000	88.9	3.50	0.18	0.12	28 ‡	Everswage
10.4	0.41	14.7	0.58	103	1,500	414	6,000	114.3	4.50	0.22	0.15	28 ‡	Everswage
15.7	0.62	20.1	0.78	86	1,250	345	5,000	152.4	6.00	0.34	0.23	28 ‡	Everswage
22.4	0.88	27.2	1.07	62	900	248	3,600	228.6	9.00	0.46	0.31	12 ‡	Everswage
	3.2 4.8 6.4 7.9 10.4 12.7 15.7 22.4 28.4 Bess Stee 4.8 7.9 10.4 15.7	3.2 0.13 4.8 0.19 6.4 0.25 7.9 0.31 10.4 0.41 12.7 0.50 15.7 0.62 22.4 0.88 22.4 0.88 28.4 1.12 Image: Steel Braid 4.8 0.19 7.9 0.31 10.4 0.41 15.7 0.62	3.2 0.13 6.8 4.8 0.19 8.6 6.4 0.25 10.2 7.9 0.31 11.7 10.4 0.41 14.7 12.7 0.50 17.3 15.7 0.62 20.3 22.4 0.88 28.7 28.4 1.12 35.3 Iess Steel Braid 4.8 0.19 8.6 7.9 0.31 11.7 10.4 0.41 14.7 15.7 0.62 20.3 22.4 0.88 28.7 28.4 1.12 35.3 35.3 35.3 35.3 10.4 0.19 8.6 7.9 0.31 11.7 10.4 0.41 14.7 15.7 0.62 20.1	3.2 0.13 6.8 0.27 4.8 0.19 8.6 0.34 6.4 0.25 10.2 0.4 7.9 0.31 11.7 0.46 10.4 0.41 14.7 0.58 12.7 0.50 17.3 0.68 15.7 0.62 20.3 0.8 22.4 0.88 27.2 1.07 22.4 0.88 28.7 1.13 28.4 1.12 35.3 1.39 Iess Steel Braid 4.8 0.19 8.6 0.34 7.9 0.31 11.7 0.46 10.4 0.41 14.7 0.58 15.7 0.62 20.1 0.78	3.2 0.13 6.8 0.27 241 4.8 0.19 8.6 0.34 206 6.4 0.25 10.2 0.4 206 7.9 0.31 11.7 0.46 172 10.4 0.41 14.7 0.58 137 12.7 0.50 17.3 0.68 120 15.7 0.62 20.3 0.8 103 22.4 0.88 27.2 1.07 68 22.4 0.88 28.7 1.13 86 28.4 1.12 35.3 1.39 68 Ess Steel Braid 4.8 0.19 8.6 0.34 206 7.9 0.31 11.7 0.46 172 10.4 0.41 14.7 0.58 103 15.7 0.62 20.1 0.78 86 22.4 0.88 27.2 1.07 62	3.2 0.13 6.8 0.27 241 3,500 4.8 0.19 8.6 0.34 206 3,000 6.4 0.25 10.2 0.4 206 3,000 6.4 0.25 10.2 0.4 206 3,000 7.9 0.31 11.7 0.46 172 2,500 10.4 0.41 14.7 0.58 137 2,000 12.7 0.50 17.3 0.68 120 1,750 15.7 0.62 20.3 0.8 103 1,500 22.4 0.88 27.2 1.07 68 1,000 22.4 0.88 28.7 1.13 86 1,250 28.4 1.12 35.3 1.39 68 1,000 Less Steel Braid H H H H H H H H H H H H H H H H H H <th< td=""><td>3.2$0.13$$6.8$$0.27$$241$$3,500$$965$$4.8$$0.19$$8.6$$0.34$$206$$3,000$$827$$6.4$$0.25$$10.2$$0.4$$206$$3,000$$827$$7.9$$0.31$$11.7$$0.46$$172$$2,500$$689$$10.4$$0.41$$14.7$$0.58$$137$$2,000$$551$$12.7$$0.50$$17.3$$0.68$$120$$1,750$$482$$15.7$$0.62$$20.3$$0.8$$103$$1,500$$413$$22.4$$0.88$$27.2$$1.07$$68$$1,000$$275$$22.4$$0.88$$28.7$$1.13$$86$$1,250$$344$$28.4$$1.12$$35.3$$1.39$$68$$1,000$$275$Iss Steel Braid$4.8$$0.19$$8.6$$0.34$$206$$3,000$$827$$7.9$$0.31$$11.7$$0.46$$172$$2,500$$689$$10.4$$0.41$$14.7$$0.58$$103$$1,500$$414$$15.7$$0.62$$20.1$$0.78$$86$$1,250$$345$$22.4$$0.88$$27.2$$1.07$$62$$900$$248$</td><td>3.2 0.13 6.8 0.27 241 3,500 965 14,000 4.8 0.19 8.6 0.34 206 3,000 827 12,000 6.4 0.25 10.2 0.4 206 3,000 827 12,000 7.9 0.31 11.7 0.46 172 2,500 689 10,000 10.4 0.41 14.7 0.58 137 2,000 551 8,000 12.7 0.50 17.3 0.68 120 1,750 482 7,000 15.7 0.62 20.3 0.8 103 1,500 413 6,000 22.4 0.88 27.2 1.07 68 1,000 275 4,000 28.4 1.12 35.3 1.39 68 1,000 275 4,000 28.4 1.12 35.3 1.39 68 1,000 275 4,000 1ess Steel Braid </td><td>3.2 0.13 6.8 0.27 241 3,500 965 14,000 25.4 4.8 0.19 8.6 0.34 206 3,000 827 12,000 38.1 6.4 0.25 10.2 0.4 206 3,000 827 12,000 50.8 7.9 0.31 11.7 0.46 172 2,500 689 10,000 88.9 10.4 0.41 14.7 0.58 137 2,000 551 8,000 114.3 12.7 0.50 17.3 0.68 120 1,750 482 7,000 127.0 15.7 0.62 20.3 0.8 103 1,500 413 6,000 152.4 22.4 0.88 28.7 1.13 86 1,250 344 5,000 185.4 28.4 1.12 35.3 1.39 68 1,000 275 4,000 279.4 Braid U U<!--</td--><td>3.2 0.13 6.8 0.27 241 3,500 965 14,000 25.4 1.00 4.8 0.19 8.6 0.34 206 3,000 827 12,000 38.1 1.50 6.4 0.25 10.2 0.4 206 3,000 827 12,000 50.8 2.00 7.9 0.31 11.7 0.46 172 2,500 689 10,000 88.9 3.50 10.4 0.41 14.7 0.58 137 2,000 551 8,000 114.3 4.50 12.7 0.50 17.3 0.68 120 1,750 482 7,000 127.0 5.00 15.7 0.62 20.3 0.8 103 1,500 413 6,000 152.4 6.00 22.4 0.88 28.7 1.13 86 1,250 344 5,000 185.4 7.30 28.4 1.12 35.3 1.39 68 1,00</td><td>3.2 0.13 6.8 0.27 241 3,500 965 14,000 25.4 1.00 0.07 4.8 0.19 8.6 0.34 206 3,000 827 12,000 38.1 1.50 0.12 6.4 0.25 10.2 0.4 206 3,000 827 12,000 50.8 2.00 0.13 7.9 0.31 11.7 0.46 172 2,500 689 10,000 88.9 3.50 0.18 10.4 0.41 14.7 0.58 137 2,000 551 8,000 114.3 4.50 0.22 12.7 0.50 17.3 0.68 120 1,750 482 7,000 127.0 5.00 0.30 15.7 0.62 20.3 0.8 103 1,500 413 6,000 152.4 6.00 0.34 22.4 0.88 28.7 1.13 86 1,250 344 5,000 185.4 <td< td=""><td>3.2 0.13 6.8 0.27 241 3,500 965 14,000 25.4 1.00 0.07 0.05 4.8 0.19 8.6 0.34 206 3,000 827 12,000 38.1 1.50 0.12 0.08 6.4 0.25 10.2 0.4 206 3,000 827 12,000 50.8 2.00 0.13 0.09 7.9 0.31 11.7 0.46 172 2,500 689 10,000 88.9 3.50 0.18 0.12 10.4 0.41 14.7 0.58 137 2,000 551 8,000 114.3 4.50 0.22 0.15 12.7 0.50 17.3 0.68 120 1,750 482 7,000 127.0 5.00 0.30 0.20 15.7 0.62 20.3 0.8 103 1,500 413 6,000 152.4 6.00 0.34 0.23 22.4 0.88 28.7 1.13 86 1,250 344 5,000 185.4 7.30 0.7</td><td>3.2 0.13 6.8 0.27 241 3,500 965 14,000 25.4 1.00 0.07 0.05 28 4.8 0.19 8.6 0.34 206 3,000 827 12,000 38.1 1.50 0.12 0.08 28 6.4 0.25 10.2 0.4 206 3,000 827 12,000 50.8 2.00 0.13 0.09 28 7.9 0.31 11.7 0.46 172 2,500 689 10,000 88.9 3.50 0.18 0.12 28 ‡ 10.4 0.41 14.7 0.58 137 2,000 551 8,000 114.3 4.50 0.22 0.15 28 ‡ 12.7 0.50 17.3 0.68 120 1,750 482 7,000 127.0 5.00 0.30 0.20 28 ‡ 15.7 0.62 20.3 0.8 103 1,500 413 6,000 152.4 6.00 0.34 0.23 28 ‡ 22.4 0.88 28.7 1.13</td></td<></td></td></th<>	3.2 0.13 6.8 0.27 241 $3,500$ 965 4.8 0.19 8.6 0.34 206 $3,000$ 827 6.4 0.25 10.2 0.4 206 $3,000$ 827 7.9 0.31 11.7 0.46 172 $2,500$ 689 10.4 0.41 14.7 0.58 137 $2,000$ 551 12.7 0.50 17.3 0.68 120 $1,750$ 482 15.7 0.62 20.3 0.8 103 $1,500$ 413 22.4 0.88 27.2 1.07 68 $1,000$ 275 22.4 0.88 28.7 1.13 86 $1,250$ 344 28.4 1.12 35.3 1.39 68 $1,000$ 275 Iss Steel Braid 4.8 0.19 8.6 0.34 206 $3,000$ 827 7.9 0.31 11.7 0.46 172 $2,500$ 689 10.4 0.41 14.7 0.58 103 $1,500$ 414 15.7 0.62 20.1 0.78 86 $1,250$ 345 22.4 0.88 27.2 1.07 62 900 248	3.2 0.13 6.8 0.27 241 3,500 965 14,000 4.8 0.19 8.6 0.34 206 3,000 827 12,000 6.4 0.25 10.2 0.4 206 3,000 827 12,000 7.9 0.31 11.7 0.46 172 2,500 689 10,000 10.4 0.41 14.7 0.58 137 2,000 551 8,000 12.7 0.50 17.3 0.68 120 1,750 482 7,000 15.7 0.62 20.3 0.8 103 1,500 413 6,000 22.4 0.88 27.2 1.07 68 1,000 275 4,000 28.4 1.12 35.3 1.39 68 1,000 275 4,000 28.4 1.12 35.3 1.39 68 1,000 275 4,000 1ess Steel Braid	3.2 0.13 6.8 0.27 241 3,500 965 14,000 25.4 4.8 0.19 8.6 0.34 206 3,000 827 12,000 38.1 6.4 0.25 10.2 0.4 206 3,000 827 12,000 50.8 7.9 0.31 11.7 0.46 172 2,500 689 10,000 88.9 10.4 0.41 14.7 0.58 137 2,000 551 8,000 114.3 12.7 0.50 17.3 0.68 120 1,750 482 7,000 127.0 15.7 0.62 20.3 0.8 103 1,500 413 6,000 152.4 22.4 0.88 28.7 1.13 86 1,250 344 5,000 185.4 28.4 1.12 35.3 1.39 68 1,000 275 4,000 279.4 Braid U U </td <td>3.2 0.13 6.8 0.27 241 3,500 965 14,000 25.4 1.00 4.8 0.19 8.6 0.34 206 3,000 827 12,000 38.1 1.50 6.4 0.25 10.2 0.4 206 3,000 827 12,000 50.8 2.00 7.9 0.31 11.7 0.46 172 2,500 689 10,000 88.9 3.50 10.4 0.41 14.7 0.58 137 2,000 551 8,000 114.3 4.50 12.7 0.50 17.3 0.68 120 1,750 482 7,000 127.0 5.00 15.7 0.62 20.3 0.8 103 1,500 413 6,000 152.4 6.00 22.4 0.88 28.7 1.13 86 1,250 344 5,000 185.4 7.30 28.4 1.12 35.3 1.39 68 1,00</td> <td>3.2 0.13 6.8 0.27 241 3,500 965 14,000 25.4 1.00 0.07 4.8 0.19 8.6 0.34 206 3,000 827 12,000 38.1 1.50 0.12 6.4 0.25 10.2 0.4 206 3,000 827 12,000 50.8 2.00 0.13 7.9 0.31 11.7 0.46 172 2,500 689 10,000 88.9 3.50 0.18 10.4 0.41 14.7 0.58 137 2,000 551 8,000 114.3 4.50 0.22 12.7 0.50 17.3 0.68 120 1,750 482 7,000 127.0 5.00 0.30 15.7 0.62 20.3 0.8 103 1,500 413 6,000 152.4 6.00 0.34 22.4 0.88 28.7 1.13 86 1,250 344 5,000 185.4 <td< td=""><td>3.2 0.13 6.8 0.27 241 3,500 965 14,000 25.4 1.00 0.07 0.05 4.8 0.19 8.6 0.34 206 3,000 827 12,000 38.1 1.50 0.12 0.08 6.4 0.25 10.2 0.4 206 3,000 827 12,000 50.8 2.00 0.13 0.09 7.9 0.31 11.7 0.46 172 2,500 689 10,000 88.9 3.50 0.18 0.12 10.4 0.41 14.7 0.58 137 2,000 551 8,000 114.3 4.50 0.22 0.15 12.7 0.50 17.3 0.68 120 1,750 482 7,000 127.0 5.00 0.30 0.20 15.7 0.62 20.3 0.8 103 1,500 413 6,000 152.4 6.00 0.34 0.23 22.4 0.88 28.7 1.13 86 1,250 344 5,000 185.4 7.30 0.7</td><td>3.2 0.13 6.8 0.27 241 3,500 965 14,000 25.4 1.00 0.07 0.05 28 4.8 0.19 8.6 0.34 206 3,000 827 12,000 38.1 1.50 0.12 0.08 28 6.4 0.25 10.2 0.4 206 3,000 827 12,000 50.8 2.00 0.13 0.09 28 7.9 0.31 11.7 0.46 172 2,500 689 10,000 88.9 3.50 0.18 0.12 28 ‡ 10.4 0.41 14.7 0.58 137 2,000 551 8,000 114.3 4.50 0.22 0.15 28 ‡ 12.7 0.50 17.3 0.68 120 1,750 482 7,000 127.0 5.00 0.30 0.20 28 ‡ 15.7 0.62 20.3 0.8 103 1,500 413 6,000 152.4 6.00 0.34 0.23 28 ‡ 22.4 0.88 28.7 1.13</td></td<></td>	3.2 0.13 6.8 0.27 241 3,500 965 14,000 25.4 1.00 4.8 0.19 8.6 0.34 206 3,000 827 12,000 38.1 1.50 6.4 0.25 10.2 0.4 206 3,000 827 12,000 50.8 2.00 7.9 0.31 11.7 0.46 172 2,500 689 10,000 88.9 3.50 10.4 0.41 14.7 0.58 137 2,000 551 8,000 114.3 4.50 12.7 0.50 17.3 0.68 120 1,750 482 7,000 127.0 5.00 15.7 0.62 20.3 0.8 103 1,500 413 6,000 152.4 6.00 22.4 0.88 28.7 1.13 86 1,250 344 5,000 185.4 7.30 28.4 1.12 35.3 1.39 68 1,00	3.2 0.13 6.8 0.27 241 3,500 965 14,000 25.4 1.00 0.07 4.8 0.19 8.6 0.34 206 3,000 827 12,000 38.1 1.50 0.12 6.4 0.25 10.2 0.4 206 3,000 827 12,000 50.8 2.00 0.13 7.9 0.31 11.7 0.46 172 2,500 689 10,000 88.9 3.50 0.18 10.4 0.41 14.7 0.58 137 2,000 551 8,000 114.3 4.50 0.22 12.7 0.50 17.3 0.68 120 1,750 482 7,000 127.0 5.00 0.30 15.7 0.62 20.3 0.8 103 1,500 413 6,000 152.4 6.00 0.34 22.4 0.88 28.7 1.13 86 1,250 344 5,000 185.4 <td< td=""><td>3.2 0.13 6.8 0.27 241 3,500 965 14,000 25.4 1.00 0.07 0.05 4.8 0.19 8.6 0.34 206 3,000 827 12,000 38.1 1.50 0.12 0.08 6.4 0.25 10.2 0.4 206 3,000 827 12,000 50.8 2.00 0.13 0.09 7.9 0.31 11.7 0.46 172 2,500 689 10,000 88.9 3.50 0.18 0.12 10.4 0.41 14.7 0.58 137 2,000 551 8,000 114.3 4.50 0.22 0.15 12.7 0.50 17.3 0.68 120 1,750 482 7,000 127.0 5.00 0.30 0.20 15.7 0.62 20.3 0.8 103 1,500 413 6,000 152.4 6.00 0.34 0.23 22.4 0.88 28.7 1.13 86 1,250 344 5,000 185.4 7.30 0.7</td><td>3.2 0.13 6.8 0.27 241 3,500 965 14,000 25.4 1.00 0.07 0.05 28 4.8 0.19 8.6 0.34 206 3,000 827 12,000 38.1 1.50 0.12 0.08 28 6.4 0.25 10.2 0.4 206 3,000 827 12,000 50.8 2.00 0.13 0.09 28 7.9 0.31 11.7 0.46 172 2,500 689 10,000 88.9 3.50 0.18 0.12 28 ‡ 10.4 0.41 14.7 0.58 137 2,000 551 8,000 114.3 4.50 0.22 0.15 28 ‡ 12.7 0.50 17.3 0.68 120 1,750 482 7,000 127.0 5.00 0.30 0.20 28 ‡ 15.7 0.62 20.3 0.8 103 1,500 413 6,000 152.4 6.00 0.34 0.23 28 ‡ 22.4 0.88 28.7 1.13</td></td<>	3.2 0.13 6.8 0.27 241 3,500 965 14,000 25.4 1.00 0.07 0.05 4.8 0.19 8.6 0.34 206 3,000 827 12,000 38.1 1.50 0.12 0.08 6.4 0.25 10.2 0.4 206 3,000 827 12,000 50.8 2.00 0.13 0.09 7.9 0.31 11.7 0.46 172 2,500 689 10,000 88.9 3.50 0.18 0.12 10.4 0.41 14.7 0.58 137 2,000 551 8,000 114.3 4.50 0.22 0.15 12.7 0.50 17.3 0.68 120 1,750 482 7,000 127.0 5.00 0.30 0.20 15.7 0.62 20.3 0.8 103 1,500 413 6,000 152.4 6.00 0.34 0.23 22.4 0.88 28.7 1.13 86 1,250 344 5,000 185.4 7.30 0.7	3.2 0.13 6.8 0.27 241 3,500 965 14,000 25.4 1.00 0.07 0.05 28 4.8 0.19 8.6 0.34 206 3,000 827 12,000 38.1 1.50 0.12 0.08 28 6.4 0.25 10.2 0.4 206 3,000 827 12,000 50.8 2.00 0.13 0.09 28 7.9 0.31 11.7 0.46 172 2,500 689 10,000 88.9 3.50 0.18 0.12 28 ‡ 10.4 0.41 14.7 0.58 137 2,000 551 8,000 114.3 4.50 0.22 0.15 28 ‡ 12.7 0.50 17.3 0.68 120 1,750 482 7,000 127.0 5.00 0.30 0.20 28 ‡ 15.7 0.62 20.3 0.8 103 1,500 413 6,000 152.4 6.00 0.34 0.23 28 ‡ 22.4 0.88 28.7 1.13

316 Stainless braided hose can be used in marine applications and other environments where corrosion is an issue. WARNING: These hoses can be used to convey hazardous chemicals, steam, hot liquids or other dangerous materials which can cause death, serious bodily injury including burns, pressure wounds or chemical exposure if released accidentally. They should, therefore, only be handled or worked on by personnel properly trained in the safe handling of the materials or chemicals conveyed in the hoses.

◊ "Z" Designates a double braid of 304 stainless steel wire.

- * The operating pressure of 1/2" I.D. hoses are lowered to 1500 psi and 5/8" I.D. hoses are lowered to 1250 psi when Brass Everswage fittings are used.
- * Maximum negative pressure for -16 and larger are suitable for hose which has suffered no external damage or kinking. If greater negative pressures are required for -16 and larger hoses, the use of an internal support coil is recommended. Use of an internal support coil in -06 and larger hose is recommended for tube support where extended or continuous service at high temperature together with low or negative pressure is expected. For a list of internal support coils available, see page G-3.

SC-Series

Smooth Bore Static Dissipating

SC-Series** hose is identical to the S-Series with one exception. SC hose has an internal conductive static dissipating tube that provides a path to the hose

Construction

- Conductive Teflon inner tube
- One or two layers of stainless steel braid
- A minimum wall thickness of .040".

end fittings for applications where flow induced electrostatic charges can occur. The minimum bend radius is measured in inches to the inside bend. Multiply

Applications

- Steam
- Compressor discharge
- Chemical transfer

the bend radius by 1.25 for dynamic applications.

** Carbon black used meets the requirements of 21CFR178.3297 for FDA compliance.

Temperature Range

-54°C to +230°C (-65°F to + 450°F)

Number	Hose I.D.		Hose O.D.		Worki Pressu		Min. Burst		Min. Bend		Hose Weight		Vacuum Service	Hose Ends
	mm	in	mm	in	bar	psi	bar	psi	mm	in	Kg/m	lbs/ft	In/HG	
SC-3	3.2	0.13	6.8	0.27	241	3,500	965	14,000	25.4	1.00	0.07	0.05	28	Everswage
SC-4	4.8	0.19	8.6	0.34	206	3,000	827	12,000	38.1	1.50	0.12	0.08	28	Everswage
SC-5	6.4	0.25	10.2	0.4	206	3,000	827	12,000	50.8	2.00	0.13	0.09	28	Everswage
SC-6	7.9	0.31	11.7	0.46	172	2,500	689	10,000	88.9	3.50	0.18	0.12	28 ‡	Everswage
SC-8	10.4	0.41	14.7	0.58	137	2,000	551	8,000	114.3	4.50	0.22	0.15	28 ‡	Everswage
SC-10 *	12.7	0.50	17.3	0.68	120	1,750	482	7,000	127.0	5.00	0.30	0.20	28 ‡	Everswage
SC-12 *	15.7	0.62	20.3	0.8	103	1,500	413	6,000	152.4	6.00	0.34	0.23	28 ‡	Everswage
SC-16	22.4	0.88	27.2	1.07	68	1,000	275	4,000	228.6	9.00	0.46	0.31	12 ‡	Everswage
316 Stair	iless Ste	el Braid												
SC316-4	4.8	0.19	8.6	0.34	206	3,000	827	12,000	38.1	1.50	0.12	0.08	28	Everswage
SC316-6	7.9	0.31	11.7	0.46	172	2,500	689	10,000	88.9	3.50	0.18	0.12	28 ‡	Everswage
SC316-8	10.4	0.41	14.7	0.58	103	1,500	414	6,000	114.3	4.50	0.22	0.15	28 ‡	Everswage
SC316-12	15.7	0.62	20.1	0.78	86	1,250	345	5,000	152.4	6.00	0.34	0.23	28 ‡	Everswage
SC316-16	22.4	0.88	27.2	1.07	62	900	248	3,600	228.6	9.00	0.46	0.31	12 ‡	Everswage

316 Stainless braided hose can be used in marine applications and other environments where corrosion is an issue.

WARNING: These hoses can be used to convey hazardous chemicals, steam, hot liquids or other dangerous materials which can cause death, serious bodily injury including burns, pressure wounds or chemical exposure if released accidentally. They should, therefore, only be handled or worked on by personnel properly trained in the safe handling of the materials or chemicals conveyed in the hoses.

* The operating pressure of 1/2" I.D. hoses are lowered to 1500 psi and 5/8" I.D. hoses are lowered to 1250 psi when Brass Everswage fittings are used.

4 Maximum negative pressure for -16 and larger are suitable for hose which has suffered no external damage or kinking. If greater negative pressures are required for -16 and larger hoses, the use of an internal support coil is recommended. Use of an internal support coil in -06 and larger hose is recommended for tube support where extended or continuous service at high temperature together with low or negative pressure is expected. For a list of internal support coils available, see page G-3.

В

S-TW Series

Smooth Bore

S-TW Series

Smooth Bore Non-Dissipating

* Working Pressure Ratings with Flat Crimped E-Series Fittings Only

> 3,500 psi 2,750 psi

2,250 psi

2,000 psi

1,500 psi

1,200 psi

1,200 psi

S-4TW S-6TW

S-8TW

S-10TW

S-12TW

S-16TW

S-18ZTW

Everflex S-TW Series tube is reinforced with 304 or 316 stainless steel wire and has a minimum wall thickness of .030". S-TW hose is available as an alternative

Construction

- Non-conductive Teflon
 inner tube
- One or two layers of stainless steel wire braid

where competitors' thin wall products are specified and S-Series hose can not be substituted. The minimum bend radius is measured in inches to the inside bend.

Applications

- Steam
- Compressor discharge
- Chemical transfer
- Meets SAE 100R14A

Multiply the bend radius by 1.25 for dynamic applications. 316 Stainless braid has can be used in marine and other environments where corrosion is an issue.

Temperature Range

-54°C to +230°C (-65°F to +450°F)

Number	Hose I.D.		Hose O.D.		Working Pressure		Min. Burst	Min. Mir Burst Ber			Hose	Weight	Vacuum Service	Hose Ends
	mm	in	mm	in	bar	psi	bar	psi	mm	in	Kg/m	lbs/ft	In/HG	
S-4TW	4.8	0.19	8.2	0.32	207 *	3,000 *	827	12,000	50.8	2.00	0.09	0.06	28	Everswage
														Field Attachable
														E-Series/ER-Series
S-5TW	6.4	0.25	10.1	0.40	207	3,000	827	12,000	76.2	3.00	0.12	80.0	28	Everswage
														Field Attachable
														E-Series
S-6TW	7.9	0.31	11.6	0.46	172 *	2,500 *	689	10,000	101.6	4.00	0.15	0.10	28 ‡	Everswage
														Field Attachable
														E-Series/ER-Series
S-7TW	9.6	0.38	13.4	0.53	138	2,000	552	8,000	127.0	5.00	0.16	0.11	28 ‡	E-Series
S-8TW	10.4	0.41	14.3	0.56	138 *	2,000 *	552	8,000	127.0	5.00	0.18	0.12	28‡	Everswage
														Field Attachable
														E-Series/ ER-Series
														ER-Series
S-10TW*	12.7	0.50	16.8	0.66	121 *	1,750 *	483	7,000	165.1	6.50	0.25	0.17	28‡	Everswage
														Field Attachable
														E-Series/ER-Series
S-12TW*	15.7	0.62	20.1	0.79	103 *	1,500 *	414	6,000	190.5	7.50	0.28	0.19	28‡	Everswage
										-				Field Attachable
														E-Series/ER-Series
S-14TW	19.1	0.75	23.3	0.92	69	1,000	276	4,000	215.9	8.50	0.37	0.25	28‡	E-Series
S-16TW	22.4	0.88	26.9	1.06	69 *	1,000 *	276	4,000	228.6	9.00	0.40	0.27	12 ‡	Everswage
														Field Attachable
S-18ZTW ◊	25.4	1.00	31.6	1.24	69	1,000	276	4,000	304.8	12.00	0.79	0.53	12 ‡	E-Series
B16 Stainles	s Steel B	Braid								-				
S-4TW316SS	4.8	0.19	8.2	0.32	207	3,000	827	12,000	50.8	2.00	0.09	0.06	28	Everswage
														Field Attachable
														E-Series
S-16TW316SS	22.4	0.88	26.9	1.06	62	900	248	3,600	228.6	9.00	0.40	0.27	12 ‡	Everswage
														Field Attachable
														E-Series

WARNING: These hoses can be used to convey hazardous chemicals, steam, hot liquids or other dangerous materials which can cause death, serious bodily injury including burns, pressure wounds or chemical exposure if released accidentally. They should, therefore, only be handled or worked on by personnel properly trained in the safe handling of the materials or chemicals conveyed in the hoses.

◊ "Z" Designates a double braid of 304 stainless steel wire.

* The operating pressure of 1/2" I.D. hoses are lowered to 1500psi and 5/8" I.D. hoses are lowered to 1250 psi when Brass Everswage fittings are used. ‡ Maximum negative pressure for -16 and larger are suitable for hose which has suffered no external damage or kinking. If greater negative pressures are required for -16 and larger hoses, the use of an internal support coil is recommended. Use of an internal support coil in -06 and larger hose is recommended for tube support where extended or continuous service at high temperature together with low or negative pressure is expected. For a list of internal support coils available, see page G-3.

SC-TW Series

Smooth Bore Static Dissipating

SC-TW Series** hose is identical to the SC-TW Series with one exception. SC-TW hose has an internal conductive static dissipating tube that

provides a path to the hose end fittings for applications where flow induced electrostatic charges can occur. The minimum bend

Applications

- Steam •
- Compressor discharge
- Chemical transfer •
- Meets 100R14B

radius is measured in inches to the inside bend. Multiply the bend radius by 1.25 for dynamic applications.

** Carbon black used meets the requirements of 21CFR178.3297 for FDA compliance.

Temperature Range

-54°C to +230°C (-65°F to +450°F)

* Working Pressure Ratings with F	lat
Crimped E-Series Fittings Only	

3,500 psi	
2,750 psi	
2,250 psi	
2,000 psi	
1,500 psi	
1,200 psi	
1,200 psi	
	2,750 psi 2,250 psi 2,000 psi 1,500 psi 1,200 psi

onotraotron	
Conductive	Teflon

Construction

- One or two layers of 304 stainless steel wire braid

Number	Hose I.D.		Hose O.D.		Workin Pressu		Min. Burst		Min. Bend		Hose Weigh	t	Vacuum Service	Hose Ends
	mm	in	mm	in	bar	psi	bar	psi	mm	in	Kg/m	lbs/ft	In/HG	
SC-4TW	4.8	0.19	8.2	0.32	207 *	3,000 *	827	12,000	50.8	2.00	0.09	0.06	28	Everswage
														Field Attachable
														E-Series/ ER-Series
SC-5TW	6.4	0.25	10.1	0.40	207	3,000	827	12,000	76.2	3.00	0.12	0.08	28	Everswage
														Field Attachable
														E-Series
SC-6TW	7.9	0.31	11.6	0.46	172 *	2,500 *	689	10,000	101.6	4.00	0.15	0.10	28 ‡	Everswage
														Field Attachable
														E-Series/ER-Series
SC-7TW	9.6	0.38	13.4	0.53	138	2,000	552	8,000	127.0	5.00	0.16	0.11	28 ‡	E-Series
SC-8TW	10.4	0.41	14.3	0.56	138 *	2,000 *	552	8,000	127.0	5.00	0.18	0.12	28‡	Everswage
														Field Attachable
														E-Series/ER-Series
SC-10TW *	12.7	0.50	16.8	0.66	121 *	1,750 *	483	7,000	165.1	6.50	0.25	0.17	28 ‡	Everswage
														Field Attachable
														E-Series\ER-Series
SC-12TW *	15.7	0.62	20.1	0.79	103 *	1,500 *	414	6,000	190.5	7.50	0.28	0.19	28 ‡	Everswage
														Field Attachable
														E-Series/ER-Series
SC-14TW	19.1	0.75	23.3	0.92	69	1,000	276	4,000	215.9	8.50	0.37	0.25	28 ‡	E-Series
SC-16TW	22.4	0.88	26.9	1.06	69 *	1,000 *	276	4,000	228.6	9.00	0.40	0.27	12 ‡	Everswage
														Field Attachable
														E-Series/ER-Series
SC-18ZTW ◊	25.4	1.00	31.6	1.24	69	1,000	276	4,000	304.8	12.00	0.79	0.53	12 ‡	E-Series
316 Stainless	Steel B	raid												
SC-4TW316SS	4.8	0.19	8.2	0.32	207	3,000	827	12,000	50.8	2.00	0.09	0.06	28	Everswage, E-Series
														Field Attachable
SC-16TW316SS	22.4	0.88	26.9	1.06	62	900	248	3,600	228.6	9.00	0.40	0.27	12 ‡	Everswage, E-Series
														Field Attachable

MARNING: These hoses can be used to convey hazardous chemicals, steam, hot liquids or other dangerous materials which can cause death, serious bodily injury including burns, pressure wounds or chemical exposure if released accidentally. They should, therefore, only be handled or worked on by personnel properly trained in the safe handling of the materials or chemicals conveyed in the hoses. * The operating pressure of 1/2" I.D. hoses are lowered to 1500 psi and 5/8" I.D. hoses are lowered to 1250 psi when Brass Everswage fittings are used.

◊ "Z" Designates a double braid of 304 stainless steel wire.

+ Maximum negative pressure for -16 and larger are suitable for hose which has suffered no external damage or kinking. If greater negative pressures are required for -16 and larger hoses, the use of an internal support coil is recommended. Use of an internal support coil in -06 and larger hose is recommended for tube support where extended or continuous service at high temperature together with low or negative pressure is expected. For a list of internal support coils available, see page G-3.

В

B-Series and M-Series

Smooth Bore

B-Series

Bronze Braid Smooth Bore Non-Dissipating

Everflex B-Series is reinforced with bronze wire. All sizes have a minimum

Construction

- Non-conductive inner tube
- One layer of a single Bronze braid

of 0.040" thick wall of virgin Teflon resin. Everflex B-Series hose has

Applications

For use in any application requiring higher abrasion resistance.

traditionally been used in applications which require additional abrasion resistance.

Temperature range

-54°C to +204°C (-65°F to +400°F)

Number	Hose I.D.			Hose O.D.		Working Pressure		Min. Burst		Min. Bend		Hose Weight	
	mm	in	mm	in	bar	psi	bar	psi	mm	in	Kg/m	lbs/ft	
B-4	4.8	0.19	8.6	0.34	86	1,250	344	5,000	38.1	1.50	0.12	0.08	Everswage
B-5	6.4	0.25	10.2	0.4	77	1,125	310	4,500	50.8	2.00	0.13	0.09	Everswage
B-6	7.9	0.31	11.7	0.46	72	1,050	289	4,200	88.9	3.50	0.18	0.12	Everswage
B-8	10.4	0.41	14.7	0.58	68	1,000	275	4,000	114.3	45.00	0.25	0.17	Everswage
B-10	12.7	0.50	17.3	0.68	62	900	248	3,600	127.0	5.00	0.31	0.21	Everswage
B-12	15.7	0.62	20.3	0.8	51	750	206	3,000	152.4	6.00	0.40	0.27	Everswage
B-16	22.4	0.88	27.2	1.07	43	625	172	2,500	228.6	9.00	0.63	0.43	Everswage
D-10	ZZ.4	0.88	21.2	1.07	43	020	172	2,500	228.0	9.00	0.03	0.43	_

M-Series

Monel Braid

Smooth Bore Non-Dissipating

Everflex M-Series is reinforced with a Monel braid rather than the typical stainless steel braid. The inner tube is constructed

Construction

- Non-conductive inner tube
- One layer of a single Monel braid

of virgin Teflon resin with a minimum wall thickness of .040". The corrosion resistant Monel wire braid is designed for use in chlorine

Applications

- Acids
- Chemical transfer

transfer applications, and is suited for hydrochloric and hydroflouric acid applications as well.

Temperature Range

-54°C to +230°C (-65°F to +450°F)

Number	Hose I.D.		Hose O.D.		Worki Press		Min. Burst	:	Min. Bend		Hose Weight		Hose Ends
	mm	in	mm	in	bar	psi	bar	psi	mm	in	Kg/m	lbs/ft	
M-4	4.8	0.19	8.6	0.34	103	1,500	482	7,000	38.1	1.50	0.12	0.08	Everswage

WARNING: These hoses can be used to convey hazardous chemicals, steam, hot liquids or other dangerous materials which can cause death, serious bodily injury including burns, pressure wounds or chemical exposure if released accidentally. They should, therefore, only be handled or worked on by personnel properly trained in the safe handling of the materials or chemicals conveyed in the hoses.

S3-PVC Series

Smooth Bore Non-Dissipating

S3 with a PVC cover is a Everflex hose which can be used for DOT 571.106 hydraulic brake line applications.

Construction

- Non-conductive inner tube
- One layer of 304 stainless steel wire braid
- PVC cover

PVC cover is on the exterior in 0.020" thickness. The PVC cover provides durability in an abrasive environment.

Applications

Hydraulic brake lines

Temperature Range

-40°C to +93°C (-40°F to + 200°F)

Number	Hose I.D.		Hose O.D.		Worki Pressu		Min. Burst		Min. Bend		Hose Weight		Hose Ends
	mm	in	mm	in	bar	psi	bar	psi	mm	in	Kg/m	lbs/ft	
S-3020CLPVCUV	3.6	0.14	7.9	0.31	210	3,000	840	12,000	25.4	1.00	0.09	0.06	Everswage ***

Please contact Eaton in regard to hose assemblies. Colored PVC covers and printing options may be available.

WARNING: These hoses can be used to convey hazardous chemicals, steam, hot liquids or other dangerous materials which can cause death, serious bodily injury including burns, pressure wounds or chemical exposure if released accidentally. They should, therefore, only be handled or worked on by personnel properly trained in the safe handling of the materials or chemicals conveyed in the hoses.

*** PVC Cover must be removed from hose where fitting is attached.

Disclaimer: The customer is responsible for approving the finished assembly to DOT 571.106.

Hi-PSI Series

Smooth Bore Static Dissipating

Hi-PSI Series hose is a heavy wall Everflex hose for very high pressure applications. The reinforcement is braided and not spiraled allowing for better hose flexibility.

Construction

- Conductive Teflon
 inner tube
- One or two layers of 304 stainless steel wire braid

Applications

Steam

•

- Compressor discharge
- Chemical transfer

Temperature Range

-54°C to +204°C (-65°F to + 400°F)

Number	Hose I.D.		Hose O.D.		Worki Press	ng ure at 72°	Work Press 400°	ing sure at	Min. Burst		Min. Bend		Hose Weight		Hose Ends
	mm	in	mm	in	bar	psi	bar	psi	bar	psi	mm	in	Kg/m	lbs/ft	
H504	5.6	0.22	9.8	0.39	345	5,000	207	3,000	1103	16,000	38.1	1.50	0.15	0.10	Factory crimp only
H506	8.0	0.31	13.1	0.52	345	5,000	207	3,000	1103	16,000	63.5	2.50	0.25	0.17	Factory crimp only
H508	10.3	0.41	16	0.63	345	5,000	207	3,000	1103	16,000	73.7	2.90	0.36	0.24	Factory crimp only
H510	12.7	0.50	19.3	0.76	345	5,000	207	3,000	1103	16,000	83.8	3.30	0.51	0.34	Factory crimp only
H512	16.5	0.65	25.1	0.99	345	5,000	207	3,000	1103	16,000	101.6	4.00	1.02	0.68	Factory crimp only
H516	22.2	0.88	33.4	1.32	345	5,000	207	3,000	1103	16,000	127.0	5.00	1.72	1.16	Factory crimp only
H520	28.6	1.13	41.1	1.62	345	5,000	207	3,000	1103	16,000	304.8	12.00	2.47	1.66	Factory crimp only
H524	34.9	1.38	47.5	1.87	276	4,000	207	3,000	827	12,000	355.6	14.00	2.97	1.99	Factory crimp only

Hose assemblies must be assembled by Eaton. Standard Stainless Steel JIC fittings are available.

Hose/Tube Size	Insert Part Number	Collar Part Number	Female JIC Thread Size	Hose Assembly Part Number
-4	H20004-4-316/4	H70000-4-304	7/16-20	FK4650EEE-Length
-6	H20006-6-316/4	H70000-6-304	9/16-18	FK4650GGG-Length
-8	H20008-8-316/4	H70000-8-304	3/4-16	FK4650HHH-Length
-10	H20010-10-316/4	H70000-10-304	7/8-14	FK4650JJJ-Length
-12*	H20012-12-316/4	H70000-12-304	1-1/16-12	FK4650KKK-Length
-16*	H20016-16-316/4	H70000-16-304	1-5/16-12	FK4650MMM-Length
-20**	H20020-20-316/4	H70000-20-304	1-5/8-12	FK4650NNN-Length
-24**	H20024-24-316/4	H70000-24-304	1-7/8-12	FK4650PPP-Length

* 55' Max length

** 25' Max length

FC493

Smooth Bore Static Dissipating

The FC493 hose has conductive inner tube and incorporates a fire resistant polyester blend cover which also provides extra abrasion resistance. The hose

Construction

- Static dissipating inner tube
- One layer of stainless steel Hi-PAC wire braid
- Fire resistant polyester blend cover

fittings come in a variety of configurations and materials based on specific application needs. The high pressure wire braid allows operating pressures up to 4,500 psi.

Applications

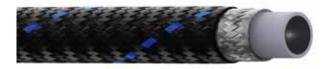
- High Pressure air lines
- SCBA equipment

Applications include gage lines on self contained breathing apparatus (SCBA) units for emergency use.

Temperature Range

-60°C to +148°C (-65°F to + 300°F)

Number	Hose I.D.		Hose O.D.		Workir Pressu		Min. Burst		Min. Bend		Hose Weight		Hose Ends
	mm	in	mm	in	bar	psi	bar	psi	mm	in	Kg/m	lbs/ft	
FC493-03	3.5	0.14	9.5	0.37	310.3	4,500	1241.4	18,000	38.1	1.50	0.12	0.08	Factory crimp only
FC493-04	5.6	0.22	11.2	0.44	310.3	4,500	1241.4	18,000	38.1	1.50	0.21	0.14	Factory crimp only


WARNING: These hoses can be used to convey hazardous chemicals, steam, hot liquids or other dangerous materials which can cause death, serious bodily injury including burns, pressure wounds or chemical exposure if released accidentally. They should, therefore, only be handled or worked on by personnel properly trained in the safe handling of the materials or chemicals conveyed in the hoses.

FC740 and FC742

Smooth Bore

FC740

Smooth Bore Static Dissipating

FC740 is a conductive Everflex hose made from extruded Teflon resin with one layer of stainless steel

Construction

- Static dissipating inner tube
- One layer of stainless steel wire braid
- Fire resistant black polyester blend cover with a blue tracer

wire braid and covered with a black fire resistant polyester blend yarn cover.

Applications

- Steam
- ٠ Compressor Discharge
- Chemical Transfer

The polyester cover also provides extra abrasion resistance.

В

Temperature Range -40°C to +260°C

(-40°F to +500°F)

Number	Hose I.D.		Hose O.D.		Worki Pressu		Min. Burst		Min. Bend		Hose Weight		Hose Ends
	mm	in	mm	in	bar	psi	bar	psi	mm	in	Kg/m	lbs/ft	
FC740-03	3.2	0.13	9.4	0.37	210	3,000	840	12,000	38.1	1.50	0.10	0.07	Factory crimp only
FC740-04	4.8	0.19	10.7	0.42	210	3,000	840	12,000	50.8	2.00	0.12	0.08	Factory crimp only
FC740-05	6.4	0.25	12.1	0.48	210	3,000	840	12,000	76.2	3.00	0.15	0.10	Factory crimp only
FC740-06	7.9	0.31	13.6	0.54	175	2,500	700	10,000	101.6	4.00	0.18	0.12	Factory crimp only
FC740-08	10.3	0.41	16.4	0.65	140	2,000	560	8,000	133.4	5.25	0.24	0.16	Factory crimp only

FC742

Smooth Bore Static Dissipating

FC742 is a conductive Everflex hose made from extruded Teflon resin with

Construction

- ٠ Full bore inner tube
- One layer of stainless steel wire braid
- Fire retardant silicone cover

one layer of stainless steel wire braid and covered with a brown fire retardant silicone

Applications

- Steam
- Chemical transfer
- Wash-down environments •

cover. Other cover colors are also available.

Temperature Range

-54°C to +204°C (-65°F to +400°F)

Number	Hose I.D.		Hose O.D.		Worki Press		Min. Burst		Min. Bend		Hose Weight		Hose Ends
	mm	in	mm	in	bar	psi	bar	psi	mm	in	Kg/m	lbs/ft	
FC742-06	7.8	0.31	17.5	0.69	276	4,000	1103	16,000	63.5	2.50	0.40	0.26	Factory crimp only

MARNING: These hoses can be used to convey hazardous chemicals, steam, hot liquids or other dangerous materials which can cause death, serious bodily injury including burns, pressure wounds or chemical exposure if released accidentally. They should, therefore, only be handled or worked on by personnel properly trained in the safe handling of the materials or chemicals conveyed in the hoses.

SC-GTW LP Gas Hose

Smooth Bore

SC-GTW Series

Smooth Bore Static Dissipating

The is SC-GTW Series of hose designed for LPG applications. Eaton is excited to offer this hose as an Australian Gas Association approved hose with the lowest extractable

Construction

- Reduced bore inner tube
- One layer of 304 stainless steel wire braid
- Fire resistant black polyester blend cover with a blue tracer

and permeation rate. The hose construction consists of a tube made with Teflon® resin, a single stainless steel wire braid, and a black and blue fire retardant polyester cover.

Application

• LPG Fuel lines

The exceptional flexibility and low permeation rate make the SC-GTW the ideal solution for mobile markets such automotive, forklift, light and medium duty truck, and transfer.

Temperature Range

-20°C to +125°C (-4°F to +257°F)

Number	Hose I.D.		Hose O.D.			Working Pressure		Min. Burst		Min. Bend			Hose Ends
	mm	in	mm	in	bar	psi	bar	psi	mm	in	Kg/m	lbs/ft	
SC-4GTW	4.3	0.19	10.7	0.42	2.6	377	10.4	1,508	50.8	2.00	0.12	0.08	See Chart Below
SC-6GTW	7.9	0.31	13.6	0.54	2.6	377	10.4	1,508	101.6	4.00	0.18	0.12	See Chart Below
SC-8GTW	10.6	0.42	16.4	0.65	2.6	377	10.4	1,508	133.4	5.25	0.24	0.16	See Chart Below
SC-10GTW	12.7	0.50	19.1	0.75	2.6	377	10.4	1,508	165.1	6.50	0.27	0.18	See Chart Below
00100100	12.7	0.00	10.1	0.70	2.0	0//	10.4	1,000	100.1	0.00	0.27	0.10	000 0110

Authorized Hose Fittings For Use With SC-GTW Hose

Part Number	Description	Thread Size
For SC-4GTW		
EJ7258-06045	3/16" SAE 45° Straight Female Swivel	5/8 -18
For SC-6GTW		
05E-406	5/16" SAE 45° Straight Female Swivel	5/8 - 18
05E-CB06	5/16" SAE 45°, 45° Elbow Female Swivel	5/8 - 18
05E-F06	5/16" SAE 45°, 90° Elbow Female Swivel	5/8 - 18
For SC8GTW		
06E-406	7/16" SAE 45° Straight Female Swivel	5/8 - 18
For SC-10GTW		
08E-406	1/2" SAE 45° Straight Female Swivel	5/8 - 18
08E-CB06	1/2" SAE 45°, 45° Elbow Female Swivel	5/8 - 18
08E-F06	1/2" SAE 45°, 90° Elbow Female Swivel	5/8 - 18

Assembly Instructions

- 1. Measure hose to desired length. Wrap cut-off point with tape and mark. Desired length is determined by subtracting cut-off factor from assembly overall length.
- 2. Cut hose squarely to the desired length with a fine-tooth hacksaw or a cut-off wheel. Clean the hose bore after cutting.
- Remove adhesive tape. Choose the correct fittings to assemble. Push hose on the fitting until the fitting bottoms.
- Slide the pusher to the back position. Using the crimp specification, select the proper collet assembly and spacer ring.
- 5. Lubricate the inside cone base die ring and the outside cone of the die ring adapter plate. Place the die ring adapter plate into the base die ring. Lubricate the external surfaces of collet assembly halves with a highefficiency PTFE-base lubricant. Insert the collet assembly into the die ring adapter.
- Insert the hose assembly through the bottom of the base die ring and between the two collet assembly halves. Align the fitting with the top of the collet halves as referenced on the crimp specification.
- Place the spacer ring in the appropriate position on top of the collet assembly (either flat-side up or flat side down as referenced in the crimp specification).
- 8. Pull the pusher forward into the detent holding position with the pusher positioning handle.
- **9.** Begin crimping by actuating the pump. When the spacer ring bottoms out against the base die ring, the crimping is complete. Visually inspect the crimp and verify the correct crimp diameter and length. The crimp should be located ± 1.5 mm from the scribe line.
- **10.** Ensure the hose identifying label is securely attached at the completion of the assembly procedure.

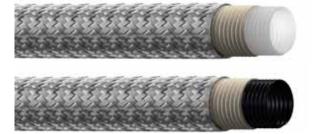
WARNING: These hoses can be used to convey hazardous chemicals, steam, hot liquids or other dangerous materials which can cause death, serious bodily injury including burns, pressure wounds or chemical exposure if released accidentally. They should, therefore, only be handled or worked on by personnel properly trained in the safe handling of the materials or chemicals conveyed in the hoses.

В

Convoluted Hose and Hose Ends

Everflex Conv-O-Crimp 8000 and 8500 Series hose provides excellent performance, reliability and durability with tighter bend radii than smooth wall hose. When compared with large diameter rubber hose, Conv-O-Crimp is dramatically lighter weight, more flexible, and more resistant to heat and chemicals. The tube is fabricated with tape of Teflon and reinforced with 304 stainless steel wire. The result is a product ideally suited for applications in truck and bus, chemical processing, food processing, hydraulics, pharmaceutical, tire manufacturing, steel mills, and many others. In addition to the standard 8000 Series virgin white tube of Teflon, the 8500 Series has an internal conductive static dissipating black liner that provides a path to the hose end fitting for applications where flow induced electrostatic charges can occur.

Table of Contents


Conv-O-Crimp Hose	C-2
Conv-O-Crimp Hose Ends	C-3

Convoluted Hose Conv-O-Crimp Hose

Convoluted Hose

Non-Conductive and Conductive

Construction

 Convoluted Teflon tube with 304 stainless steel wire braid reinforcement

Temperature Range

-54°C to + 204°C (-65°F to + 400°F)

Industrial Applications

- Automotive
- Platen Presses
- Pharmaceutical
- Bus & Truck
- Reverse Osmosis
- Hydraulics
- Chemical Processing

- Steam, Air, Water
- Tire Manufacturing
- Electronics
- Steel Mills
- Food Processing
- Tank Truck Transfer

	Hose Size	Hose I.D.	Part Number	Nominal I.D.	Max Nominal O.D.	Burst Operating Pressure	Pressure Rm. Temp.	Min. Bend Radius	Hose Vacuum	Weight
				In	In	psi	psi	in	in / hg	lb. / ft
Non-Conductive										
	-8	1/2	8008	.57	.81	1500	6000	1.5	28	.23
	-12	3/4	8012	.83	1.10	1250	5000	2.5	28	.31
	-16	1	8016	1.06	1.34	900	3600	3.0	20	.42
	-20	1-1/4	8020	1.31	1.60	900	3600	3.5	12	.52
	-24	1-1/2	8024	1.58	1.83	750	3000	4.5	10	.59
	-32	2	8032	2.06	2.38	500	2000	6.0	5	.86
Conductive										
	-8	1/2	8508	.57	.81	1500	6000	1.5	28	.23
	-12	3/4	8512	.83	1.10	1250	5000	2.5	28	.31
	-16	1	8516	1.06	1.34	900	3600	3.0	20	.42
	-20	1-1/4	8520	1.31	1.60	900	3600	3.5	12	.52
	-24	1-1/2	8524	1.58	1.83	750	3000	4.5	10	.59
	-32	2	8532	2.06	2.38	500	2000	6.0	5	.86
A	-									

WARNING: These hoses can be used to convey hazardous chemicals, steam, hot liquids or other dangerous materials which can cause death, serious bodily injury including burns, pressure wounds or chemical exposure if released accidentally. They should, therefore, only be handled or worked on by personnel properly trained in the safe handling of the materials or chemicals conveyed in the hoses.

Convoluted Hose Ends

Conv-O-Crimp Hose Ends

Material Code:

A= Insert - 316 S.S., Nut & Collar - 304 S.S.

B= Insert - 316 S.S., Nut - 304 S.S., Collar - Carbon Steel

C= All Components -Carbon Steel

The unique Everflex Conv-O-Crimp hose end are shipped with factory-installed Teflon sleeves on the insert. This eliminates the time consuming, costly and subjective step of wrapping the hose end with Teflon tape before assembly. The end result is a hose assembly system that is second to none in ease of assembly fabrication. Common industrial configurations are available in carbon steel and 316 stainless steel (wetted surfaces). Finished assemblies can be acquired from an authorized Everflex distributor or the factory.

← A	\
_	ALL DE LE DE
The second s	COMPANY OF STREET,

Male Pipe (NPT)

Hose Size	Hose I.D.	Part Number	Part No. Suffix Letter	Thread NPT	A Overall Length In.	Hose Cut-Off Factor†	Nominal I.D. In.
-8	1/2	8-108	A,B,C	1/2-14	2.33	1.38	.406
-12	3/4	12-112	A,B,C	3/4-14	2.48	1.38	.625
-16	1	16-116	A,B,C	1 11-1/2	2.95	1.76	.828
-20	1-1/4	20-120	A,B,C	1 1/4-11-1/2	2.98	1.79	1.078
-24	1-1/2	24-124	A,B,C	1 1/2-11-1/2	3.01	1.82	1.305
-32	2	32-132	A,B,C	2 11-1/2	3.43	1.98	1.781

Male Pipe Inserts with Teflon Sleeves Installed

Hose Size	Carbon Steel Insert	Stainless Steel Insert	Carbon Steel Collar	Stainless Steel Collar
-8	800108-8-CZ	800108-8-316	870000-8-CZ	870000-8-304
-12	800112-12-CZ	800112-12-316	870000-12-CZ	870000-12-304
-16	800116-16-CZ	800116-16-316	870000-16-CZ	870000-16-304
-20	800120-20-CZ	800120-20-316	870000-20-CZ	870000-20-304
-24	800124-24-CZ	800124-24-316	870000-24-CZ	870000-24-304
-32	800132-32-CZ	800132-32-316	870000-32-CZ	870000-32-304

WARNING: Selection of the proper end fitting for the hose end application is essential to the proper operation and safe use of the hose and related equipment. Inadequate attention to the selection of the end fittings for your application can result in leaking or the hose end blowing off the hose, leading to serious personal injury, death or property damage.

Convoluted Hose Ends

Conv-O-Crimp Hose Ends

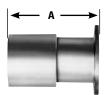
Material Code:

A= Insert - 316 S.S., Nut & Collar - 304 S.S.

B= Insert - 316 S.S. Nut - 304 S.S., Collar - Carbon Steel

C= All components -Carbon Steel

JIC 37° Swivel (NPT)



Hose Size	Hose I.D.	Catalog Number	Part No. Suffix Letter	Thread NPT	A Overall Length In.	Hose Cut-Off Factor [†]	Nominal I.D. In.
-8	1/2	8-608	A,B,C	3/4-16	1.82	1.32	.406
-12	3/4	12-612	A,B,C	1 1/6-12	2.01	1.46	.625
-16	1	16-616	A,B,C	1 5/16-12	2.14	1.55	.828
-20	1-1/4	20-620	A,B,C	1 5/8-12	2.20	1.64	1.078
-24	1-1/2	24-624	A,B,C	1 7/8-12	2.27	1.81	1.305
-32	2	32-632	A,B,C	2 1/2-12	2.62	2.10	1.781

JIC 37° Swivel Inserts with PTFE Sleeves Installed

Hose Size	Carbon Steel Insert	Stainless Steel Insert	Carbon Steel Collar	Stainless Steel Collar
-8	820008-8-CZ	820008-8-316	870000-8-CZ	870000-8-304
-12	820012-12-CZ	820012-12-316	870000-12-CZ	870000-12-304
-16	820016-16-CZ	820016-16-316	870000-16-CZ	870000-16-304
-20	820020-20-CZ	820020-20-316	870000-20-CZ	870000-20-304
-24	820024-24-CZ	820024-24-316	870000-24-CZ	870000-24-304
-32	820032-32-CZ	820032-32-316	870000-32-CZ	870000-32-304

Flange Retainer

Hose Size	Hose I.D.	Catalog Number	Part No. Suffix Letter	A Overall Length In.	Hose Cut-Off Factor†	Nominal I.D. In.
-8	1/2	8-F00	A,B	2.13	1.31	.406
-12	3/4	12-F00	A,B	2.43	1.43	.625
-16	1	16-F00	A,B	2.58	1.50	.828
-20	1-1/4	20-F00	A,B	2.60	1.56	1.078
-24	1-1/2	24-F00	A,B	2.72	1.62	1.305
-32	2	32-F00	A,B	3.11	1.81	1.781

Flange ordered separately. See chart.

Sanitary Tri-Clamp

Hose Size	Hose I.D.	Catalog Number	Part No. Suffix Letter	A Overall Length In.	Hose Cut-Off Factor [†]	Nominal I.D. In.
-16	1	16-S16	А	2.14	1.06	.828
-24	1-1/2	24-S24	А	2.14	1.06	1.305
-32	2	32-S32	А	2.40	1.06	1.781

WARNING: Selection of the proper end fitting for the hose end application is essential to the proper operation and safe use of the hose and A related equipment. Inadequate attention to the selection of the end fittings for your application can result in leaking or the hose end blowing off the hose, leading to serious personal injury, death or property damage.

Everswage Hose Ends, Components and Fittings

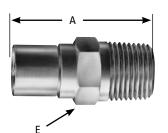
Everswage hose ends are permanently attached to Everflex Smooth Bore hose using a swaging process. The unique design of the Everswage collar allows a hose assembly fabricator to slide several collars at once on the hose. This significantly reduces the time required to fabricate an assembly. The most popular industrial fitting configurations, male pipe (NPT) and female JIC (SAE) swivels, are available in 300 Series stainless steel, carbon steel, or brass.

Table of Contents

Everswage Hose Ends	D-2
Everswage Components	D-6
Everswage Fitting Bill of Material Cross-Reference	D-8

For use with Everflex Hoses STW, SCTW, B, M, S, SC

Part Number Example: B-1104-1


B = Brass

C = Carbon Steel

S = Stainless Steel

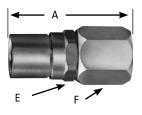
Note: The operating pressure of $1/2^{\prime\prime}$ I.D. hoses are lowered to 1500psi and 5/8 $^{\prime\prime}$ I.D. hoses are lowered to 1250 psi when Brass Everswage fittings are used.

Male Pipe (NPT)

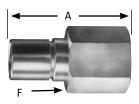
Hose I.D.	Part No. Pre-Fix Letter	Part Number	Tube Size	Thread Size	А	Hose Cut-off Factor [†]	E
5/32	B,S	1103	1/8	1/8-27	1.19	3/4	1/2
3/16	B,C,S	1104-1	1/8	1/8-27	1.34	3/4	1/2
3/16	B,C,S	1104-2	1/4	1/4-18	1.47	7/8	9/16
1/4	B,C,S	1105-1	1/4	1/4-18	1.47	7/8	9/16
1/4	В, С	1105-1/8	1/8	1/8	1.34	15/16	9/16
5/16	B,C,S	1106-1	1/4	1/4-18	1.47	7/8	11/16
5/16	B,C,S	1106-2	3/8	3/8-18	1.53	15/16	11/16
5/16	B,S	1106-3	1/2	1/2	1.75	1-1/8	7/8
13/32	B,C,S	1108-1	3/8	3/8-18	1.84	1	3/4
13/32	B,C,S	1108-2	1/2	1/2-14	1.97	1-1/8	7/8
1/2	B,C,S	1110	1/2	1/2-14	1.97	1-3/16	7/8
5/8	B,C,S	1112	3/4	3/4-14	2.14	1-5/16	1-1/16
7/8	B,C,S	1116	1	1-11.5	2.94	1-5/8	1-3/8
7/8	B,C,S	1116Z‡	1	1-11.5	2.94	1-5/8	1-3/8
1-1/8	B,C,S	1120Z‡	1-1/4	1-1/4-11.5	3.03	1-3/4	1-3/4

37° JIC Swivel

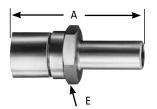
Hose I.D.	Part No. Pre-Fix Letter	Part Number	Tube Size	Thread Size	А	Hose Cut-off Factor†	E	F
5/32	B,S	1303	3/16	3/8-24	1.38	0.85		1/2
5/32	В	1303-4	1/4	7/16-20	1.38	0.90	1/2	9/16
3/16	B,C,S	1304	1/4	7/16-20	1.50	0.90	1/2	9/16
1/4	B,C,S	1305	5/16	1/2-20	1.63	0.94	9/16	5/8
5/16	B,C,S	1306	3/8	9/16-18	1.63	0.99	5/8	11/16
13/32	B,C,S	1308	1/2	3/4-16	2.00	1.18	3/4	7/8
1/2	B,C,S	1310	5/8	7/8-14	2.00	1.30	7/8	1
5/8	B,C,S	1312	3/4	1-1/6-12	2.25	1.38	1-1/16	1-1/4
7/8	B,C,S	1316	1	1-5/16-12	2.88	1.51	1-3/8	1-1/2
7/8	B,C,S	1316Z‡	1	1-5/16-12	2.88	1.51	1-3/8	1-1/2
1-1/8	B,C,S	1320Z‡	1-1/4	1-5/8-12	3.13	1.26	1-3/4	2


WARNING: Selection of the proper end fitting for the hose end application is essential to the proper operation and safe use of the hose and related equipment. Inadequate attention to the selection of the end fittings for your application can result in leaking or the hose end blowing off the hose, leading to serious personal injury, death or property damage.

Hose Ends


For use with Everflex Hoses STW, SCTW, B, M, S, SC

45° Brass Swivel


Hose I.D.	Part Number	Tube Size	Thread Size	А	Hose cut-off Factor [†]	E	F
3/16	Fitt. #30	1/4	7/16-20	1.50	0.90	1/2	9/16
1/4	Fitt. #31	5/16	1/2-20	1.50	0.94	9/16	5/8
5/16	Fitt. #32	3/8	5/8-18	1.63	0.96	5/8	3/4
13/32	Fitt. #33	1/2	3/4-16	2.00	1.18	3/4	7/8
1/2	Fitt. #34	5/8	7/8-14	2.13	1.30	7/8	1
5/8	Fitt. #35₅	3/4	1-1/16-14	2.25	1.38	1-1/16	1-1/4

Female Pipe (NPT)

Hose I.D.	Part No. Pre-Fix Letter	Part Number	Tube Size	Thread Size	А	Hose Cut-off Factor†	F
3/16	В	2104-1	1/8	1/8-27	1.28	11/16	9/16
3/16	В	2104-2	1/4	1/4-18	1.41	13/16	3/4
1/4	B,S	2105	1/4	1/4-18	1.41	13/16	3/4

Stainless Steel Tube Stub

Hose I.D.	Part Number	Tube Size	Connector	А	Hose Cut-off Factor†	E
3/16	STE4-4	1/4″0.D.	0.188	1.50	1-1/8	9/16
1/4	STE4-5	1/4″0.D.	0.203	1.50	7/8	9/16
5/16	STE6-6	3/8″0.D.	0.266	1.63	1	11/16
13/32	STE8-8	1/2″0.D.	0.359	2.25	1-3/8	7/8
5/8	STE12-12	3/4″0.D.	0.578	2.38	1-1/2	1-1/16
7/8	STE16-16	1-"0.D.	0.813	3.00	1-11/16	1-3/8

Brass Laundry Flange

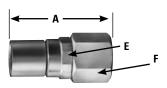
(Flange is plated carbon steel, copper gasket included)

Hose I.D.	Part Number	Nominal ID	А	Hose Cut-off Factor†
5/16	B-6LFC	17/64	1	5/16

WARNING: Selection of the proper end fitting for the hose end application is essential to the proper operation and safe use of the hose and related equipment. Inadequate attention to the selection of the end fittings for your application can result in leaking or the hose end blow-ing off the hose, leading to serious personal injury, death or property damage.

For use with Everflex Hoses STW, SCTW, B, M, S, SC

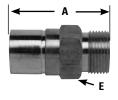
Brass Tire Mold Flange



Hose I.D.	Part Number	Nominal ID	А	Hose Cut-off Factor†	E	
5/8	FITT. #60	37/64	2.63	1-5/8	1-1/16	

(Flange is plated carbon steel)

D


Carbon Steel Paint Spray Swivel

Hose I.D.	Part Number	Thread Size	А	Cut-Off Factor†	E	F	
1/4	C-5PS	1/4 NPSM	1.50	0.82	9/16	5/8	

Hose

SAE Brass Male
Compression

SAE Brass Female Compression

Hose I.D.	Part Number	Tube Size	Thread Size	А	Hose Cut-Off Factor [†]	E	
1/2	FITT. #40	5/8	13/16-18	1.75	29/32	7/8	

Hose I.D.	Part Number	Tube Size	Thread Size	А	Hose Cut-Off Factor†	E	
1/2	FITT. #41	5/8	13/16-18	2.00	1-3/16	15/16	

-		- A			-
			178		
	-	M	6 1	-	
		Contraction of the	Section 1		 Е

1/2	FITT. #41	5/8	13/16-18	2.00	1-3/16	15/16

Stainless Steel Power Trim, Straight

(316 Stainless Steel Wetted Parts.)

Hose I.D.	Part Number	Tube Size	Thread Size	A	Hose Cut-Off Factor†	E
3/16	PT-S-4	3/16	3/8-24	1.88	1-7/16	3/8

...

WARNING: Selection of the proper end fitting for the hose end application is essential to the proper operation and safe use of the hose and related equipment. Inadequate attention to the selection of the end fittings for your application can result in leaking or the hose end blowing off the hose, leading to serious personal injury, death or property damage.

Hose Ends

For use with Everflex Hoses STW, SCTW, B, M, S, SC

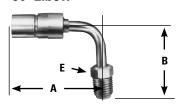
Stainless Steel Power Trim, 45° Elbow	Hose I.D.	Part Number	Tube Size	Thread Size	А	Hose Cut-Off Factor†	В	E
	3/16	PT-45-4	3/16	3/8-24	2.75	2	3/4	3/8
	- - 							
(316 Stainless Steel wetted parts.)								

Tube Size

3/16

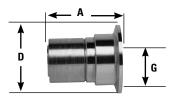
Thread Size

3/8-24


Stainless Steel Power Trim, 90° Elbow

Hose I.D.

3/16


Part Number

PT-90-4

(316 Stainless Steel wetted parts.)

Sanitary Tri Clamp

(316 Stainless Steel wetted parts.)

Hose I.D.	Part Number	Nominal I.D.	А	Hose Cut-Off Factor†	D	G
1/2	10-S.37-316	.45	1.5	.6875	.985	.375
7/8	16-S.87-316	.81	2.0	.6875	1.984	.86

Δ

2.00

Hose Cut-Off Factor†

1-1/2

в

1

Е

3/8

WARNING: Selection of the proper end fitting for the hose end application is essential to the proper operation and safe use of the hose and related equipment. Inadequate attention to the selection of the end fittings for your application can result in leaking or the hose end blowing off the hose, leading to serious personal injury, death or property damage.

For use with Everflex Hoses STW, SCTW, B, M, S, SC

Swage Collars

Hose I.D.	Part Number	Part No. Suffix Letter	JIC Size	
3/16	NC-4	B,C,S	1/4	
1/4	NC-5	B,C,S	5/16	
5/16	NC-6	B,C,S	3/8	
13/32	NC-8	B,C,S	1/2	
1/2	NC-10	B,C,S	5/8	
5/8	NC-12	B,C,S	3/4	
7/8	NC-16	B,C,S	1	
7/8	NC-16Z	B,C,S	1	
1-1/8	NC-20Z	B,C,S	1-1/4	

Male Pipe Insert

Part Number	Part No. Suffix Letter	Tube Size	
NM2-4	B,C,S	1/8	
NM4-4	B,C,S	1/4	
NM4-5	B,C,S	5/16	
NM4-6	B,C,S	1/4	
NM6-6	B,C,S	3/8	
NM6-8	B,C,S	3/8	
NM8-8	B,C,S	1/2	
NM8-10	B,C,S	1/2	
NM12-12	B,C,S	1	
NM16-16	B,C,S	1	
NM20-20	B,C,S	1-1/4	
	Number NM2-4 NM4-4 NM4-5 NM4-6 NM6-6 NM6-8 NM8-8 NM8-10 NM12-12 NM16-16	Number Suffix Letter NM2-4 B,C,S NM4-4 B,C,S NM4-5 B,C,S NM4-6 B,C,S NM6-6 B,C,S NM6-8 B,C,S NM8-8 B,C,S NM8-10 B,C,S NM12-12 B,C,S NM16-16 B,C,S	Number Suffix Letter Size NM2-4 B,C,S 1/8 NM4-4 B,C,S 1/4 NM4-5 B,C,S 5/16 NM4-6 B,C,S 1/4 NM6-6 B,C,S 3/8 NM6-8 B,C,S 3/8 NM8-8 B,C,S 1/2 NM8-10 B,C,S 1/2 NM12-12 B,C,S 1 NM16-16 B,C,S 1

For use with Everflex Hoses STW, SCTW, B, M, S, SC

37° JIC Female Insert

Part Number	Part No. Suffix Letter	JIC Size	
NJ-4	C,S	1/4	
NJ-5	B,C,S	5/16	
NJ-6	B,C,S	3/8	
NJ-8	B,C,S	1/2	
NJ-10	B,C,S	5/8	
NJ-12	B,C,S	3/4	
NJ-16	B,C,S	1	
NJ-20	B,C,S	1-1/4	
	Number NJ-4 NJ-5 NJ-6 NJ-8 NJ-10 NJ-12 NJ-16	Number Suffix Letter NJ-4 C,S NJ-5 B,C,S NJ-6 B,C,S NJ-8 B,C,S NJ-10 B,C,S NJ-12 B,C,S NJ-16 B,C,S	Number Suffix Letter Size NJ-4 C,S 1/4 NJ-5 B,C,S 5/16 NJ-6 B,C,S 3/8 NJ-8 B,C,S 1/2 NJ-10 B,C,S 5/8 NJ-12 B,C,S 3/4 NJ-16 B,C,S 1

37° JIC Female **Short Collars**

1.11	1	
	1	
1000	-89	
li i		
	Sec.	1.00

Hose I.D.	Part Number	Part No. Suffix Letter	JIC Size	
3/16	NJC-4	B,C,S	1/4	
1/4	NJC-5	B,C,S	5/16	
5/16	NJC-6	B,C,S	3/8	
13/32	NJC-8	B,C,S	1/2	
1/2	NJC-10	B,C,S	5/8	
5/8	NJC-12	B,C,S	3/4	
7/8	NJC-16	B,C,S	1	
1-1/8	NJC-20	B,C,S	1-1/4	

WARNING: Selection of the proper end fitting for the hose end application is essential to the proper operation and safe use of the hose and related equipment. Inadequate attention to the selection of the end fittings for your application can result in leaking or the hose end blowing off the hose, leading to serious personal injury, death or property damage.

37° JIC Female Nuts

Part Number	Part No. Suffix Letter	JIC Size	
NNJ-4	B,C,S	1/4	
NNJ-5	B,C,S	5/16	
NNJ-6	B,C,S	3/8	
NNJ-8	B,C,S	1/2	
NNJ-10	B,C,S	5/8	
NNJ-12	B,C,S	3/4	
NNJ-16	B,C,S	1	
NNJ-20	B,C,S	1-1/4	
	Number NNJ-4 NNJ-5 NNJ-6 NNJ-8 NNJ-10 NNJ-12 NNJ-16	NumberSuffix LetterNNJ-4B,C,SNNJ-5B,C,SNNJ-6B,C,SNNJ-8B,C,SNNJ-10B,C,SNNJ-12B,C,SNNJ-16B,C,S	Number Suffix Letter Size NNJ-4 B,C,S 1/4 NNJ-5 B,C,S 5/16 NNJ-6 B,C,S 3/8 NNJ-8 B,C,S 1/2 NNJ-10 B,C,S 5/8 NNJ-12 B,C,S 3/4 NNJ-16 B,C,S 1

WARNING: Selection of the proper end fitting for the hose end application is essential to the proper operation and safe use of the hose and related equipment. Inadequate attention to the selection of the end fittings for your application can result in leaking or the hose end blowing off the hose, leading to serious personal injury, death or property damage.

Everswage Fittings Bill of Material Cross Reference

Top Assembly Catalog Number	Insert Part Number*	Collar Part Number	Top Assembly Catalog Number	Insert Part Number	Collar Part Number
B-1112	NM12-12-B	NC-12-B	B-1303	NJIC-3-B	NC-3-B
C-1112	NM12-12-C	NC-12-C	S-1303	NJIC-3-S	NC-3-S
S-1112	NM12-12-S	NC-12-S	B-1303-4	NJIC4-3-B	NC-3-B
B-1116	NM16-16-B	NC-16-B	S-1303-4	NJIC4-3-S	NC-3-S
C-1116	NM16-16-C	NC-16-C	B-1304	NJICSAE-4-B	NC-4-B
S-1116	NM16-16-S	NC-16-S	C-1304	NJIC-4-C	NC-4-C
B-1103	NM2-3-B	NC-3-B	S-1304	NJIC-4-S	NC-4-S
S-1103	NM2-3-S	NC-3-S	B-1305	NJIC-5-B	NC-5-B
B-1104-1	NM2-4-B	NC-4-B	C-1305	NJIC-5-C	NC-5-C
C-1104-1	NM2-4-C	NC-4-C	S-1305	NJIC-5-S	NC-5-S
S-1104-1	NM2-4-S	NC-4-S	B-1306	NJIC-6-B	NC-6-B
B-1105-1/8	NM2-5-B	NC-5-B	C-1306	NJIC-6-C	NC-6-C
B-1116Z	NM16-16-B	NC-16Z-B	S-1306	NJIC-6-S	NC-6-S
C-1116Z	NM16-16-C	NC-16Z-C	B-1308	NJIC-8-B	NC-8-B
S-1116Z	NM16-16S	NC-16Z-S	C-1308	NJIC-8-C	NC-8-C
B-1120Z	NM20-20-B	NC-20Z-B	S-1308	NJIC-8-S	NC-8-S
C-1120Z	NM20-20-C	NC-20Z-C	B-1310	NJIC-10-B	NC-10-B
S-1120Z	NM20-20-S	NC-20Z-S	C-1310	NJIC-10-C	NC-10-C
B-1104-2	NM4-4-B	NC-4-B	S-1310	NJIC-10-S	NC-10-S
C-1104-2	NM4-4-C	NC-4-C	B-1312	NJIC-12-B	NC-12-B
S-1104-2	NM4-4-S	NC-4-S	C-1312	NJIC-12-C	NC-12-C
B-1105	NM4-5-B	NC-5-B	S-1312	NJIC-12-S	NC-12-S
C-1105	NM4-5-C	NC-5-C	B-1316	NJIC-16-B	NC-16-B
S-1105	NM4-5-S	NC-5-S	C-1316	NJIC-16-C	NC-16-C
B-1106-1	NM4-6-B	NC-6-B		NJIC-16-S	NC-16-S
C-1106-1	NM4-6-C	NC-6-C	B-1316Z	NJIC-16-B	NC-16Z-B
S-1106-1	NM4-6-S	NC-6-S	C-1316Z	NJIC-16-C	NC-16Z-C
B-1106-2	NM6-6-B	NC-6-B		NJIC-16-S	NC-16Z-S
C-1106-2	NM6-6-C	NC-6-C	B-1320Z	NJIC-20-B	NC-20Z-B
S-1106-2	NM6-6-S	NC-6-S	C-1320Z	NJIC-20-C	NC-20Z-C
B-1108-1	NM6-8-B	NC-8-B	<u>S-1320Z</u>	NJIC-20-S	NC-20Z-S
C-1108-1	NM6-8-C	NC-8-C	013202	1010 20 0	NO 202 0
S-1108-1	NM6-8-S	NC-8-S	B-2104-1	NF2-4-B	NC-4-B
B-1110	NM8-10-B	NC-10-B	B-2104-2	NF4-4-B	NC-4-B
C-1110	NM8-10-C	NC-10-C	B-2105	NF4-5-B	NC-5-B
	NM8-10-S	NC-10-S	S-2105	NF4-5-S	NC-5-S
S-1110 B-1106-3	NM8-6-B	NC-6-B	<u> </u>	1114-0-0	110-3-0
C-1106-3	NM8-6-C	<u>NC-6-С</u>		NMC-10-B	NC-10-P
S-1106-3	NM8-6-S	NC-6-S	FITT. #40		NC-10-B
B-1108-2	NM8-8-B	NC-8-B	PT-S-4	NPTS-4-S	NC-4-S
C-1108-2		NC-8-C	F1-0-4	INF 10-4-0	110-4-0
	NM8-8-C				
S-1108-2	NM8-8-S	NC-8-S	PT-45-4	NPT45-4-S	NC-4-S
C-5PS	NPS-5-C	NC-5-C	PT-90-4	NPT90-4-S	NC-4-S
	NSAE-4-B	NC-4-B	* Insert Part Number	er includes nut and short o	collar
Fitt. #32	NSAE-6-B	NC-6-B			
Fitt. #33	NSAE-8-B	NC-8-B			
Fitt. #24					

Fitt. #34

Fitt. #35

EATON Everflex Hose Catalog E-HOEV-MC001-E5 February 2014

NC-10-B

NC-12-B

NSAE-10-B

NSAE-12-B

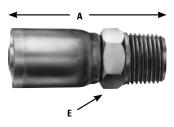
E-Series Crimp Hose Ends and Fittings

E-Series crimp hose ends are permanently attached to Everflex smooth bore hoses using a crimping process. These one-piece hose ends eliminate the need for handling inserts and collars separately which reduces assembly fabrication time. The wide variety of carbon steel end configurations, including 45° and 90° elbows, open opportunities in applications where hose assembly routing space is very tight, such as transit buses and many high temperature hydraulic setups. E-SERIES FITTINGS ARE AVAILABLE FOR SPECIFIC SIZES OF 0.030" WALL HOSE ONLY.

Table of Contents

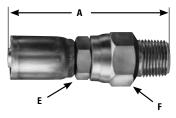
E-Series Crimp Hose Ends

E-2



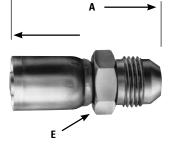
E-Series Crimp

Hose Ends


For use with Everflex Hoses S-TW and SC-TW

Male Pipe Rigid (NPT)

Hose I.D.	Carbon Steel Number	Stainless Steel Number	Tube Size	Thread Size	A	Hose Cut-Off Factor†	Hole Dia.	Hex E
3/16	03E-102		1/8	1/8–27	1.58	.75	.09	7/16
3/16	03E-104	03ER-104	1/4	1/4—18	1.83	1.00	.09	9/16
1/4	04E-102		1/8	1/8–27	1.60	.75	.16	7/16
1/4	04E-104		1/4	1/4—18	1.79	1.00	.16	9/16
1/4	04E-106		3/8	3/8–18	1.82	1.00	.16	11/16
5/16	05E-104	05ER-104	1/4	1/4—18	1.86	.94	.22	9/16
5/16	05E-106		3/8	3/8–18	1.89	1.00	.22	11/16
3/8	06E-104		1/4	1/4—18	1.90	1.00	.27	9/16
3/8	06E-106		3/8	3/8–18	1.93	1.00	.27	11/16
3/8	06E-108		1/2	1/2–14	2.17	1.25	.27	7/8
13/32	07E-106	07ER-106	3/8	3/8–18	1.93	0.98	0.30	11/16
1/2	08E-106		3/8	3/8–18	2.02	1.00	.38	3/4
1/2	08E-108	08ER-108	1/2	1/2-14	2.27	1.25	.38	7/8
5/8	10E-112	10ER-112	3/4	3/4–14	2.28	1.45	0.50	1-1/16
3/4	12E-112		3/4	3/4–14	2.51	1.31	.61	1-1/16
7/8	14E-116	14ER-116	1	1–11-1/2	2.87	1.59	0.75	1-3/8
1	16E-116		1	1-11-1/2	2.95	1.63	.84	1-3/8


Male Pipe Swivel (NPT)

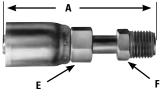
Hose I.D.	Part Number	Tube Size	Thread Size	А	Hose Cut-Off Factor†	Hole Dia.	Hex E	Hex F
1/4	04E-J04	1/4	1/4-18	2.68	1-7/8	.16	5/8	13/16
5/16	05E-J04	1/4	1/4-18	2.74	1-7/8	.22	5/8	13/16
3/8	06E-J06	3/8	3/8-18	2.79	1-13/16	.27	11/16	7/8
1/2	08E-J08	1/2	1/2-14	3.03	2-1/16	.38	3/4	7/8
3/4	12E-J12	3/4	3/4-14	3.73	2-9/16	.61	1-1/4	1-1/4

(Not for temperatures above 212°F with nitrile o-rings.)

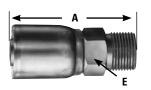
SAE 37° (JIC) Male Rigid

Hose I.D.	Part Number	Tube Size	Thread Size	А	Hose Cut-Off Factor†	Hole Dia.	Hex E
1/4	04E-504	1/4	7/16-20	1.78	15/16	.16	1/2
1/4	04E-505	5/16	1/2-20	1.78	15/16	.16	9/16
1/4	04E-506	3/8	9/16-18	1.82	1	.16	5/8
5/16	05E-505	5/16	1/2-20	1.86	1	.22	9/16
3/8	06E-506	3/8	9/16-18	1.92	1	.27	5/8
3/8	06E-508	1/2	3/4-16	2.08	13/16	.27	13/16
1/2	08E-508	1/2	3/4-16	2.18	13/16	.38	13/16
1/2	08E-510	5/8	7/8-14	2.31	1-1/4	.38	15/16
3/4	12E-512	3/4	1-1/16-12	2.63	1-7/16	.61	1-1/8
1	16E-516	1	1-5/16-12	2.83	1-1/2	.84	1-3/8

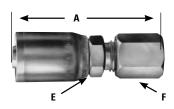
WARNING: Selection of the proper end fitting for the hose end application is essential to the proper operation and safe use of the hose and A related equipment. Inadequate attention to the selection of the end fittings for your application can result in leaking or the hose end blowing off the hose, leading to serious personal injury, death or property damage.


† To determine the correct length of hose, subtract the cut-off factor for each end fitting from the overall length of assembly.

Hose Ends


For use with Everflex Hoses S-TW and SC-TW

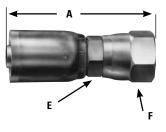
Inverted Male Swivel Straight


Hose I.D.	Part Number	Tube Size	Thread Size	А	Hose Cut-Off Factor†	Hole Dia.	Hex E	Hex F
1/4	04E-B03	3/16	3/8-24	3.06	2-3/16	.12	7/16	3/8
1/4	04E-B04	1/4	7/16-24	2.44	1-5/8	.15	7/16	7/16
1/4	04E-B05	5/16	1/2-20	3.71	2-7/8	.21	7/16	1/2
3/8	06E-B05	5/16	1/2-20	2.56	1-9/16	.21	9/16	1/2
3/8	06E-B06	3/8	5/8-18	2.18	1-13/16	.24	5/8	5/8
1/2	08E-B08	1/2	3/4-18	3.14	2-1/16	.33	3/4	3/4

Air Brake Connection -Tube

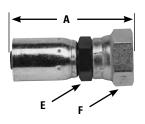
Hose I.D.	Part Number	Tube Size	Thread Size	А	Hose Cut-Off Factor†	Hole Dia.	Hex E	
1/2	08E-Y58	1/2	11/16-20	2.12	1-1/16	.38	3/4	
1/2	08E-Y60	5/8	13/16-18	2.18	1-1/8	.38	7/8	
3/4	12E-Y60	5/8	13/16-18	2.33	1-1/8	.61	1	
3/4	12E-Y62	3/4	1-18	2.40	1-3/16	.61	1	

Flareless Tube Rigid

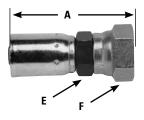

Hose I.D.	Part Number	Tube Size	Thread Size	А	Hose Cut-Off Factor†	Hole Dia.	Hex E	Hex F
5/16	05E-756	3/8	9/16-18	1.88	1	.22	5/8	11/16
3/8	06E-755	5/16	1/2-20	1.78	7/8	.23	9/16	5/8
3/8	06E-756	3/8	9/16-18	1.82	15/16	.27	5/8	11/16
1/2	08E-758	1/2	3/4-16	2.08	1-1/16	.38	13/16	7/8

WARNING: Selection of the proper end fitting for the hose end application is essential to the proper operation and safe use of the hose and related equipment. Inadequate attention to the selection of the end fittings for your application can result in leaking or the hose end blowing off the hose, leading to serious personal injury, death or property damage.

E-Series Crimp Hose Ends


For use with Everflex Hoses S-TW and SC-TW

SAE 37° (JIC) Female Swivel


Hose I.D.	Carbon Steel Number	Stainless Steel Number	Tube Size	Thread Size	A	Hose Cut-Off Factor†	Hole Dia.	Hex E	Hex F
3/16	03E-6041	03ER-604	1/4	7/16-20	1.89	1-1/32	.09	7/16	9/16
1/4	04E-6041		1/4	7/16-20	1.92	1-1/8	.16	7/16	9/16
1/4	04E-6051		5/16	1/2-20	2.00	1-3/16	.16	1/2	5/8
1/4	04E-6061		3/8	9/16-18	2.05	1-1/4	.16	9/16	11/16
5/16	05E-6051		5/16	1/2-20	2.07	1-3/16	.22	1/2	5/8
5/16	05E-406 ²		3/8	5/8-18	2.06	1-1/8	.22	9/16	3/4
5/16	05E-606 ³	05ER-606	3/8	9/16-18	2.15	1-1/4	.22	9/16	11/16
3/8	06E-406 ²		3/8	5/8-18	2.06	1-1/8	.27	9/16	3/4
3/8	06E-6063		3/8	9/16-18	2.19	1-1/4	.27	9/169	11/16
3/8	06E-6081		1/2	3/4-16	2.30	1-3/8	.27	3/4	7/8
13/13	07E-606	07ER-606	3/8	9/16-18	2.15	1-3/16	0.30	9/16	11/16
1/2	08E-6081	08ER-608	1/2	3/4-16	2.45	1-1/2	.38	3/4	7/8
1/2	08E-6101		5/8	7/8-14	2.56	1-1/2	.38	7/8	1
5/8	10E-612	10ER-612	3/4	1-1/16-12	2.50	1-11/16	0.50	1	1-1/4
3/4	12E-412 ²		3/4	1-1/16-14	2.98	1-11/16	.61	1-1/8	1-3/8
7/8	12E-612 ³		3/4	1-1/16-12	2.75	1-9/16	.61	1	1-1/4
7/8	14E-616	14ER-616	1	1-5/16-12	3.09	1-13/16	0.75	1-1/4	1-1/2
1	16E-616 ³		1	1-5/16-12	3.08	1-3/4	.84	1-1/4	1-1/2

British Standard (BSPP) 60° Cone Female Pipe Swivel

Hose I.D.	Part Number	Tube Size	Thread Size	Α	Hose Cut-Off Factor†	Hole Dia.	Hex E	Hex F
3/16	03E-354	1/4	G-1/4-19 •	2.01	1-1/32	.16	9/16	11/16
1/4	04E-354	1/4	G-1/4-19 •	1.88	1-1/32	.16	9/16	11/16
3/8	06E-356	3/8	G-3/8-19 •	2.09	1-1/8	.27	3/4	7/8
3/8	06E-358	1/2	G-1/2-14 •	2.47	1-1/2	.27	13/16	1
1/2	08E-358	1/2	G-1/2-14 •	2.56	1-1/2	.39	13/16	1
1/2	08E-360	5/8	G-5/8-14 •	2.70	1-21/32	.39	7/8	1-3/16
3/4	12E-362	3/4	G-3/4-14 •	2.94	19/32	.61	1	1-1/4
1	16E-366	1	G-1-11•	3.38	2-1/32	.84	1-1/4	1-1/2

Female Swivel JIS 30° Flare

Hose I.D.	Part Number	Tube Size	Thread Size	А	Hose Cut-Off Factor†	Hole Dia.	Hex E	Hex F
1/4	04E-04L	1/4	1/4-19	1.83	1	.16	9/16	3/4
3/8	06E-06L	3/8	3/8-19	2.07	1-1/8	.27	11/16	7/8
1/2	08E-08L	1/2	1/2-14	2.03	1-1/4	.39	13/16	1-1/16
3/4	12E-12L	3/4	3/4-14	2.75	1-17/32	.61	1	1-5/16
1	16E-16L	1	1-11	3.05	1-23/32	.84	1-1/4	1-5/8

WARNING: Selection of the proper end fitting for the hose end application is essential to the proper operation and safe use of the hose and
related equipment. Inadequate attention to the selection of the end fittings for your application can result in leaking or the hose end blowing off
the hose, leading to serious personal injury, death or property damage.

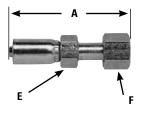
† To determine the correct length of hose, subtract the cut-off factor for each end fitting from the overall length of assembly.

• G in thread size is ISO designation for parallel thread.

1 - Swivel nuts are universal- Both SAE 45° and JIC 37° connections

2 - SAE 45°Flare connection only

3 - JIC 37°Flare connection only

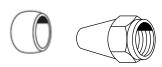

Ε

Hose Ends

For use with Everflex Hoses S-TW and SC-TW

Female For-Seal[®] (ORS) Swivel Straight

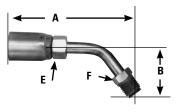
Part Number	Thread Size	А	Cut-Off Factor†	Hole Dia.	Hex E	Hex F
04E-S64	9/16-18	2.14	1-15/16	.15	5/8	11/16
04E-S66	11/16-16	2.20	1-3/8	.16	5/8	13/16
05E-S66	11/16-16	2.28	1-3/8	.22	9/16	13/16
06E-S66	11/16-16	2.37	1-7/16	.24	9/16	13/16
06E-S68	13/16-16	2.65	1-11/16	.24	5/8	15/16
08E-S68	13/16-16	2.74	1-11/16	.33	3/4	15/16
08E-S70	1-14	2.83	1-13/16	.39	3/4	1-1/8
12E-S72	1-3/16-12	2.98	1-3/4	.59	1	1-3/8
16E-S76	1-7/16-12	3.31	2	.76	1-1/4	1-5/8
	Number 04E-S64 04E-S66 05E-S66 06E-S66 06E-S68 08E-S68 08E-S70 12E-S72	Number Size 04E-S64 9/16-18 04E-S66 11/16-16 05E-S66 11/16-16 06E-S68 13/16-16 08E-S68 13/16-16 08E-S70 1-14 12E-S72 1-3/16-12	Number Size A 04E-S64 9/16-18 2.14 04E-S66 11/16-16 2.20 05E-S66 11/16-16 2.28 06E-S66 11/16-16 2.37 06E-S68 13/16-16 2.65 08E-S68 13/16-16 2.74 08E-S70 1-14 2.83 12E-S72 1-3/16-12 2.98	NumberSizeAFactor†04E-S649/16-182.141-15/1604E-S6611/16-162.201-3/805E-S6611/16-162.281-3/806E-S6611/16-162.371-7/1606E-S6813/16-162.651-11/1608E-S6813/16-162.741-11/1608E-S701-142.831-13/1612E-S721-3/16-122.981-3/4	Number Size A Factor† Dia. 04E-S64 9/16-18 2.14 1-15/16 .15 04E-S66 11/16-16 2.20 1-3/8 .16 05E-S66 11/16-16 2.28 1-3/8 .22 06E-S66 11/16-16 2.37 1-7/16 .24 06E-S68 13/16-16 2.65 1-11/16 .33 08E-S68 13/16-16 2.74 1-11/16 .33 08E-S70 1-14 2.83 1-13/16 .39 12E-S72 1-3/16-12 2.98 1-3/4 .59	Number Size A Factor† Dia. E 04E-S64 9/16-18 2.14 1-15/16 .15 5/8 04E-S66 11/16-16 2.20 1-3/8 .16 5/8 05E-S66 11/16-16 2.28 1-3/8 .22 9/16 06E-S66 11/16-16 2.37 1-7/16 .24 9/16 06E-S68 13/16-16 2.65 1-11/16 .24 5/8 08E-S68 13/16-16 2.74 1-11/16 .33 3/4 08E-S70 1-14 2.83 1-13/16 .39 3/4 12E-S72 1-3/16-12 2.98 1-3/4 .59 1


Hose

Straight Tube Brass

Hose I.D.	Part Number	Tube Size	Thread Size	А	Hose Cut-Off Factor [†]	Hole Dia.	Hex E
1/2	08E-T58	1/2	11/16-20	3.32	2.31	.39	3/4
1/2	08E-T60	5/8	13/16-18	3.45	2.44	.47	3/4
3/4	12E-T60	5/8	13/16-18	3.66	2.44	.47	1
3/4	12E-T62	3/4	1-18	4.00	2.81	.61	1

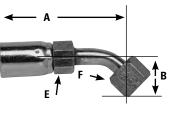
Sleeve - Nut



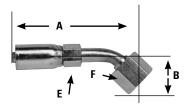
Tube I.D.	Part Number Sleeve	Part Number Nut	
3/8	1360X6	1361X6	
1/2	1360X8	1361X8	
5/8	1360X10	1361X10	
3/4	1360X12	1361X12	

E-Series Crimp Hose Ends

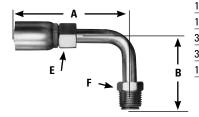
For use with Everflex Hoses S-TW and SC-TW


Inverted Male Swivel 45° **Tube Elbow**

Hose I.D.	Part Number	Tube Size	Thread Size	A	В	Hose Cut-Off Factor†	Hole Dia.	Hex E	Hex F
1/4	04E-B43	3/16	3/8-24	2.79	.69	1-5/16	.12	7/16	3/8
1/4	04E-B44	1/4	7/16-24	2.74	.93	1-15/16	.15	7/16	7/16
3/8	06E-B45	5/16	1/2-20	3.37	1.14	2-7/16	.21	9/16	1/2
3/8	06E-B46	3/8	5/8-18	3.63	1.34	2-11/16	.24	5/8	5/8
1/2	08E-B48	1/2	3/4-18	4.32	1.58	3-1/4	.33	3/4	3/4


SAE 37° (JIC) Female Swivel 45° Tube Elbow

Ε


Hose I.D.	Part Number	Tube Size	Thread Size	А	в	Hose Cut-Off Factor†	Hole Dia.	Hex E	Hex F
1/4	04E-6841	1/4	7/16-20	2.37	.33	1-9/16	.15	7/16	9/16
1/4	04E-6851	5/16	1/2-20	2.50	.36	1-5/8	.16	7/16	5/8
5/16	05E-686 ³	3/8	9/16-18	2.65	.39	1-11/16	.22	9/16	11/16
3/8	06E-6863	3/8	9/16-18	2.74	.39	1-3/4	.24	5/8	11/16
3/8	06E-6881	1/2	3/4-16	2.99	.55	2	.27	5/8	7/8
1/2	08E-6881	1/2	3/4-16	3.08	.55	2	.33	3/4	1
1/2	08E-6901	5/8	7/8-12	3.28	.63	2-1/4	.37	3/4	1
3/4	12E-692 ³	3/4	1-1/16-12	3.69	.78	2-7/16	.58	1	1-1/4
1	16E-696 ³	1	1-5/16-12	4.09	.89	2-3/4	.84	1-1/4	1-1/2

Female For-Seal[®] Swivel 45° Tube Elbow

Hose I.D.	Part Number	Thread Size	А	в	Hose Cut-Off Factor†	Hole Dia.	Hex E	Hex F	
1/4	04E-L64	9/16-18	2.46	.41	1-5/8	.15	7/16	11/16	
3/8	04E-L66	11/16-16	2.69	.43	1-3/4	.15	5/8	13/16	
3/8	06E-L66	11/16-16	2.79	.43	1-13/16	.24	5/8	13/16	
1/2	08E-L68	13/16-16	3.14	.60	2-1/8	.33	3/4	15/16	
3/4	12E-L72	1-3/16-12	3.38	.83	2-5/8	.59	1	1-3/8	
1	16E-L76	1-7/16-12	4.31	.94	3	.76	1-1/4	1-5/8	

Inverted Male Swivel 90° **Tube Elbow**

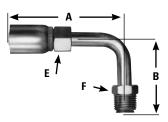
Part Number	Tube Size	Thread Size	A	в	Cut-Off Factor†	Hose Hole Dia.	Hex E	Hex F
04E-B63	3/16	3/8-24	2.16	1.06	1-5/16	.12	7/16	3/8
04E-B64	1/4	7/19-24	2.18	1.36	1-5/16	.15	7/16	7/16
06E-B65	5/16	1/2-20	2.58	1.16	1-5/8	.21	9/16	1/2
06E-B66	3/8	5/8-18	2.92	1.97	1-15/16	.24	5/8	5/8
08E-B68	1/2	3/4-18	3.03	2.32	1-15/16	.33	3/4	3/4
	Number 04E-B63 04E-B64 06E-B65 06E-B66	Number Size 04E-B63 3/16 04E-B64 1/4 06E-B65 5/16 06E-B66 3/8	Number Size Size 04E-B63 3/16 3/8-24 04E-B64 1/4 7/19-24 06E-B65 5/16 1/2-20 06E-B66 3/8 5/8-18	Number Size Size A 04E-B63 3/16 3/8-24 2.16 04E-B64 1/4 7/19-24 2.18 06E-B65 5/16 1/2-20 2.58 06E-B66 3/8 5/8-18 2.92	Number Size Size A B 04E-B63 3/16 3/8-24 2.16 1.06 04E-B64 1/4 7/19-24 2.18 1.36 06E-B65 5/16 1/2-20 2.58 1.16 06E-B66 3/8 5/8-18 2.92 1.97	Number Size Size A B Factor† 04E-B63 3/16 3/8-24 2.16 1.06 1-5/16 04E-B64 1/4 7/19-24 2.18 1.36 1-5/16 06E-B65 5/16 1/2-20 2.58 1.16 1-5/8 06E-B66 3/8 5/8-18 2.92 1.97 1-15/16	Part Number Tube Size Thread Size A B Cut-Off Factor [†] Hole Dia. 04E-B63 3/16 3/8-24 2.16 1.06 1-5/16 .12 04E-B64 1/4 7/19-24 2.18 1.36 1-5/16 .15 06E-B65 5/16 1/2-20 2.58 1.16 1-5/8 .21 06E-B66 3/8 5/8-18 2.92 1.97 1-15/16 .24	Part Number Tube Size Thread Size A B Cut-Off Factor [†] Hole Dia. Hex E 04E-B63 3/16 3/8-24 2.16 1.06 1-5/16 .12 7/16 04E-B64 1/4 7/19-24 2.18 1.36 1-5/16 .15 7/16 06E-B65 5/16 1/2-20 2.58 1.16 1-5/8 .21 9/16 06E-B66 3/8 5/8-18 2.92 1.97 1-15/16 .24 5/8

WARNING: Selection of the proper end fitting for the hose end application is essential to the proper operation and safe use of the hose and related equipment. Inadequate attention to the selection of the end fittings for your application can result in leaking or the hose end blowing off the hose, leading to serious personal injury, death or property damage.

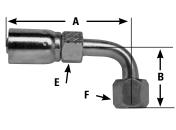
† To determine the correct length of hose, subtract the cut-off factor for each end fitting from the overall length of assembly.

1 - Swivel nuts are universal- Both SAE 45° and JIC 37° connections

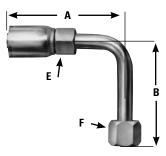
2 - SAE 45°Flare connection only


3 - JIC 37°Flare connection only

Hose Ends


For use with Everflex Hoses S-TW and SC-TW

Inverted Male Swivel 90° Tube Elbow


Hose I.D.	Part Number	Tube Size	Thread Size	А	в	Cut-Off Factor†	Hose Hole Dia.	Hex E	Hex F
1/4	04E-B63	3/16	3/8-24	2.16	1.06	1-5/16	.12	7/16	3/8
1/4	04E-B64	1/4	7/19-24	2.18	1.36	1-5/16	.15	7/16	7/16
3/8	06E-B65	5/16	1/2-20	2.58	1.16	1-5/8	.21	9/16	1/2
3/8	06E-B66	3/8	5/8-18	2.92	1.97	1-15/16	.24	5/8	5/8
1/2	08E-B68	1/2	3/4-18	3.03	2.32	1-15/16	.33	3/4	3/4

SAE 37° (JIC) Female Swivel 90° Tube Elbow

Hose I.D.	Part Number	Tube Size	Thread Size	А	в	Hose Cut-Off Factor†	Hole Dia.	Hex E	Hex F
1/4	04E-6641	1/4	7/16-20	2.27	.68	1-7/16	.15	7/16	9/16
1/4	04E-6651	5/16	1/2-20	2.51	.77	1-5/8	.16	7/16	5/8
5/16	05E-6651	5/16	1/2-20	2.58	.77	1-5/8	.18	9/16	5/8
5/16	05E-6663	3/8	9/16-18	2.63	.85	1-11/16	.22	9/16	11/16
3/8	06E-466 ³	3/8	5/8-18	2.27	.85	1-3/4	.24	5/8	11/16
3/8	06E-6663	3/8	9/16-18	2.72	.85	1-3/4	.24	5/8	11/16
3/8	06E-6681	1/2	3/4-16	2.83	1.09	1-3/4	.27	5/8	7/8
1/2	08E-6681	1/2	3/4-16	2.93	1.09	1-7/8	.33	3/4	7/8
1/2	08E-6701	5/8	7/8-14	3.54	1.23	1-7/8	.38	3/4	1
3/4	12E-672 ³	3/4	1-1/16-12	3.56	1.82	2-5/16	.58	1	1-1/4
1	16E-676 ³	1	1-5/16-12	4.06	2.14	2-5/16	.84	1-1/4	1-1/2

SAE 37° (JIC) Female Swivel Long Drop 90° Tube Elbow

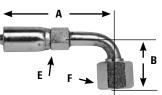
Hose I.D.	Part Number	Tube Size	Thread Size	А	в	Hose Cut-Off Factor†	Hole Dia.	Hex E	Hex F
1/4	04E-6641	1/4	7/16-20	2.40	1.80	1-7/16	.15	7/16	9/16
1/4	04E-6451	5/16	1/2-20	2.51	1.80	1-5/8	.16	7/16	5/8
5/16	05E-646 ³	3/8	9/16-18	2.63	2.18	1-11/16	.22	9/16	11/16
3/8	06E-646 ³	3/8	9/16-18	2.72	2.18	1-3/4	.24	5/8	11/16
3/8	06E-6481	1/2	3/4-16	2.83	2.43	1-7/8	.27	5/8	11/16
1/2	08E-6481	1/2	3/4-16	2.92	2.43	1-7/8	.33	3/4	7/8
1/2	08E-6501	5/8	7/8-14	3.09	2.57	2-1/16	.38	3/4	1
1/2	2E-652 ³	5/8	1-1/16-12	3.60	3.60	2-3/8	.58	1	1-1/4
1	16E-656 ³	1	1-5/16-12	4.20	4.20	2-13/16	.84	1-1/4	1-1/2

WARNING: Selection of the proper end fitting for the hose end application is essential to the proper operation and safe use of the hose and related equipment. Inadequate attention to the selection of the end fittings for your application can result in leaking or the hose end blowing off the hose, leading to serious personal injury, death or property damage.

t To determine the correct length of hose, subtract the cut-off factor for each end fitting from the overall length of assembly.

1 - Swivel nuts are universal- Both SAE 45° and JIC 37° connections

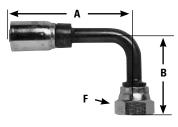
2 - SAE 45°Flare connection only


3 - JIC 37°Flare connection only

.....

For use with Everflex Hoses S-TW and SC-TW

Female For-Seal[®] (ORS) Swivel Short Drop 90° Tube Elbow



be	Hose I.D.	Part Number	Thread Size	A	в	Hose Cut-Off Factor†	Hole Dia.	Hex E	Hex F
	1/4	04E-A24	9/16-18	2.35	.81	1-1/2	.21	7/16	11/16
	1/4	04E-A26	11/16-16	2.54	.90	1-11/16	.16	5/8	13/16
	3/8	06E-A26	11/16-16	2.71	.90	1-3/4	.24	5/8	13/16
_	3/8	06E-A28	13/16-16	2.81	1.15	1-7/8	.27	5/8	15/16
_	1/2	08E-A28	13/16-16	2.90	1.15	1-7/8	.33	3/4	15/16
В	3/4	12E-A32	1-3/16-12	3.70	1.88	2-1/2	.59	1	1-3/8
	1	16E-A36	1-7/16-12	4.11	2.21	2-3/4	.76	1-1/4	1-5/8

Female For-Seal® (ORS) Swivel Long Drop 90° Tube Elbow A E^{\uparrow} F BF D

be	Hose I.D.	Part Number	Thread Size	А	в	Hose Cut-Off Factor†	Hole Dia.	Hex E	Hex F	
	1/4	04E-A64	9/16-18	2.41	1.80	1-9/16	.21	7/16	11/16	
	5/16	05E-A66	11/16-18	2.73	2.12	1-13/16	.22	9/16	13/16	
_	3/8	06E-A66	11/16-16	2.82	2.21	1-7/8	.24	5/8	13/16	
-	3/8	06E-A68	13/16-16	2.80	2.50	1-7/8	.27	5/8	15/16	
	1/2	08E-A68	13/16-16	2.89	2.50	1-7/8	.33	3/4	15/16	

British Standard (BSPP) 60° Cone Female Pipe Swivel 90° Elbow

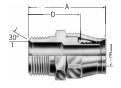
Hose I.D.	Part Number	BSPP Tube Size	Thread Size	А	в	Hose Cut-Off Factor†	Hole Dia.	Hex E	Hex F
1/4	04E-74P	1/4	G-1/4-19 •	2.81	1.45	1-13/16	.16	7/16	11/16
3/8	06E-76P	3/8	G-3/8-19 •	2.96	1.67	2	.27	5/8	7/8
1/2	08E-78P	1/2	G-1/2-14 •	2.95	1.73	1-29/32	.37	3/4	1-1/4
3/4	12E-82P	3/4	G-3/4-14 •	3.83	2.43	1-19/32	.61	1	1-1/4

WARNING: Selection of the proper end fitting for the hose end application is essential to the proper operation and safe use of the hose and related equipment. Inadequate attention to the selection of the end fittings for your application can result in leaking or the hose end blowing off the hose, leading to serious personal injury, death or property damage.

† To determine the correct length of hose, subtract the cut-off factor for each end fitting from the overall length of assembly.

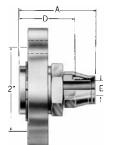
• G in thread size is ISO designation for parallel thread.

Ε

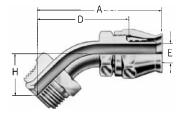

Table of Contents

Fittings for use with Everflex Hoses S-TW and SC-TW

For use with Everflex Hose S-TW and SC-TW


Male Pipe NPTF

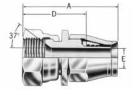
Part Number	Thread	Hose I.D.	Α	D	Eø
38–190627–					
2–4*	1/8-27	3/16	1.35	.89	.16
4-4*	1/4-18	3/16	1.54	1.08	.16
4–5*	1/4-18	1/4	1.58	1.07	.23
4–6*	1/4-18	5/16	1.66	1.13	.28
6–6*	3/8-18	5/16	1.66	1.13	.28
6–8*	3/8-18	13/32	1.79	1.16	.38
8–10*	1/2-14	1/2	2.13	1.46	.47
12–12*	3/4-14	5/8	2.26	1.61	.59
16–16*	1-11-1/2	7/8	2.48	1.86	.83


* Also supplied in stainless steel. Add suffix "C" to part number and delete prefix "38". Example part number for stainless steel is 190627-4-5C.

2-Bolt Swivel Flange

Part Number	Flange Head Diameter	Hose I.D.	А	D	Eø
63–190626–					
6	2.88	5/16	1.78	1.26	.28
12	2.88	5/8	2.07	1.42	.56
16	2.88	7/8	2.18	1.49	.19

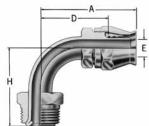
SAE Male Inverted Flare 45° Elbow



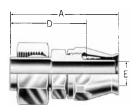
Part Number	Thread	Hose I.D.	Α	D	Eø	н
FC9063-						
0505S	1/2-20	1/4	2.46	1.94	.23	.96
0506S	1/2-20	5/16	2.50	1.97	.21	.96
0606S	5/8-18	5/16	2.50	1.97	.28	.96
0808S	3/4-18	13/32	2.66	2.04	.38	.93
1010S	7/8-18	1/2	2.96	2.29	.47	1.03
1212S	11/16-16	5/8	3.10	2.44	.59	1.10

F

For use with Everflex Hose S-TW and SC-TW

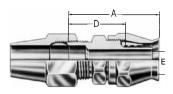

SAE 37° (JIC) Swivel

Part Number	Thread	Hose I.D.	А	D	Eø
63–190600–					
4*	7/16-20	3/16	1.58	1.13	.16
5*	1/2-20	1/4	1.68	1.17	.23
6*	9/16-18	5/16	1.74	1.22	.26
8*	3/4-16	13/32	1.98	1.35	.38
10*	7/8-14	1/2	2.22	1.54	.47
12*	1-1/16-12	5/8	2.33	1.67	.59
16*	1-15/16-12	7/8	2.52	1.91	.83

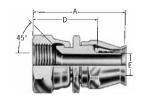

* Also supplied in stainless steel. Add suffix "C" to part number and delete prefix "63". Example part number for stainless steel is 190600-6C.

SAE Male Inverted Flare 90° Elbow

Part Number	Thread	Hose I.D.	A	D	Eø	н
190950-						
4S	7/16-24	3/16	2.04	1.57	.16	1.69
5S	1/2-20	1/4	2.08	1.57	.23	1.69
5-6S	1/2-20	5/16	2.12	1.60	.21	1.69
6S	5/8-18	5/16	2.12	1.60	.28	1.73
8S	3/4-18	13/32	2.32	1.69	.38	1.74
10S	7/8-18	1/2	2.66	1.99	.47	2.21
12S	1-1/16-16	5/8	2.73	2.07	.59	2.35

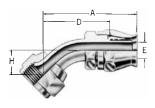

SAE Ball Sleeve

Thread	Hose I.D.	Α	D	Eø
11/16-20	13/32	2.07	1.44	.38
13/16-18	13/32	2.07	1.44	.38
13/16-18	1/2	2.16	1.49	.48
1-18	5/8	2.42	1.76	.59
	11/16-20 13/16-18 13/16-18	Thread I.D. 11/16-20 13/32 13/16-18 13/32 13/16-18 1/2	Thread I.D. A 11/16-20 13/32 2.07 13/16-18 13/32 2.07 13/16-18 1/2 2.16	Thread I.D. A D 11/16-20 13/32 2.07 1.44 13/16-18 13/32 2.07 1.44 13/16-18 1/2 2.16 1.49

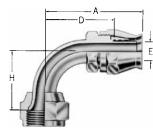

For use with Everflex Hose S-TW and SC-TW

Compression Ball Sleeve

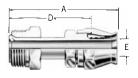
Hose I.D.	А	D	Eø	
13/32	1.66	1.04	.38	
1/2	1.85	1.18	.47	
5/8	2.08	1.41	.59	
	I.D. 13/32 1/2	I.D. A 13/32 1.66 1/2 1.85	I.D. A D 13/32 1.66 1.04 1/2 1.85 1.18	I.D. A D Eø 13/32 1.66 1.04 .38 1/2 1.85 1.18 .47


SAE 45° Swivel

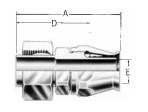
Part Number	Thread	Hose I.D.	А	D	Eø
63–190990–					
4	7/16-20	3/16	1.58	1.12	.16
5	1/2-20	1/4	1.68	1.17	.23
6	5/8-18	5/16	1.77	1.25	.28
8	3/4-16	13/32	1.98	1.36	.38
10	7/8-14	1/2	2.22	1.54	.47
12	1-1/16-14	5/8	2.33	1.67	.59


For use with Everflex Hose S-TW and SC-TW

45° Elbow


Part Number	Thread	Hose I.D.	А	D	Eø	h
190773-	Universal					
4S	7/16-20	3/16	1.51	1.05	.16	.33
5S	1/2-20	1/4	1.62	1.11	.23	.36
6S	9/16-18	5/16	1.72	1.20	.28	.39
8S	3/4-16	13/32	2.27	1.64	.38	.55
10S	7/8-14	1/2	2.46	1.79	.47	.64
12S	11/16-12	3/8	2.86	2.21	.59	.78
16S	15/16-12	7/8	3.30	2.68	.83	1.07
FC9341-	SAE 45° Swivel					
0606S	5/8-18	5/16	1.72	1.20	.28	.39
1212S	1-1/16-14	5/8	2.86	2.21	.59	.78

90° Elbow


Part Number	Thread	Hose I.D.	A	D	Eø	h
190772-	Universal					
4S	7/16-20	3/16	1.41	.95	.16	.68
5S	1/2-20	1/4	1.52	1.00	.23	.77
6S	9/16-18	5/16	1.62	1.10	.28	.85
8S	3/4-16	13/32	2.03	1.41	.38	1.09
10S	7/8-14	1/2	2.16	1.49	.47	1.23
10-12S	7/8-14	5/8	2.23	1.57	.46	1.23
12S	1-1/16-12	5/8	2.82	2.17	.59	1.82
12-16S	1-1/16-14	7/8	2.87	2.22	.58	1.82
16S	1-5/16-12	7/8	3.10	2.49	.82	2.39
FC9171-	SAE 45° Swivel					
0606S	5/8-18	5/16	1.62	1.10	.28	.85
1212S	1-1/16-14	5/8	2.80	2.19	.59	1.82

SAE Male Inverted Flare Straight

Part Number	Thread	Hose I.D.	А	D	Eø
FC9062-					
0404S	7/16-24	3/16	2.13	1.66	.16
0505S	1/2-20	1/4	2.17	1.66	.23
0506S	1/2-20	5/16	2.21	1.69	.21
0606S	5/8-18	5/16	2.21	1.69	.28
0808S	3/4-18	13/32	2.47	1.84	.38
1010S	7/8-18	1/2	2.78	2.11	.47
1212S	1-1/16-16	5/8	3.02	2.37	.59

Special Ball Sleeve

Part Number	Thread	Hose I.D.	А	D	Eø
190742-					
10S	7/8-18	1/2	2.16	1.49	.48

Table of Contents

Firesleeve and Chafe Sleeve	G-2
Spring Guards	G-3
Guardian Sleeve	G-4

Firesleeve and Chafe Sleeve

Tubular Fire Sleeve

Everflex tubular firesleeve has a coating of specially compounded silicone rubber bonded to a low density, high bulk fiberglass sleeve. This combination

offers a temporary barrier to flame penetration and provides long term mechanical and environmental protection. Ideal applications include steel

plants, foundries, glass plants, and welding/cutting shops.

Operating	Hose Size	Hose I.D.	Assembly Part Number
temperatures:	-4	3/16	SFS-1/2
Continuous:	-5	1/4	SFS-1/2
-65° to +500°F	-6	5/16	SFS-11/16
Intermittent:	-8	13/32	SFS-11/16
-65° to +2000°F	-10	1/2	SFS-11/16
	-12	5/8	SFS-15/16
Tested in accordance with: UL-73, NFPA-250,	-16	7/8	SFS-1 1/4
ASTM-E84	-16Z‡	7/8	SFS-1 1/4
	-20Z‡	1-1/8	SFS-1 1/2

Heat Shrinkable Chafe Sleeve

Operating temperature: -65° to +275°F

Everflex heat shrink chafe sleeve is made of black flame retardant polyolefin. In addition to providing excellent chafe resistance, the sleeve can also be

wiped clean. This problem solver is ideal for any application where the assembly is subjected to abuse through abrasion.

Hose Size	Hose I.D.	Assembly Part Number
-4	3/16	HSP-1/2
-5	1/4	HSP-1/2
-6	5/16	HSP-3/4
-8	13/32	HSP-5/8
-10	1/2	HSP-1
-12	5/8	HSP-1
-16	7/8	HSP-1 1/2
-16Z‡	7/8	HSP-1 1/2
-20Z‡	1-1/8	HSP-1 1/2

‡ The 16Z, and 20Z sizes have a double stainless steel wire reinforcement.

Spring Guards

Spring Guard

Everflex spring guard is available in hot dipped galvanized carbon steel. This method of protection is well suited for applications where rough handling, abrasion and severe flexing will occur. Spring guards are required on some fuel dispensing applications.

Hose Size	Hose I.D.	Assembly Part Number	
-4	3/16	2004	
-5	1/4	2005	
-6	5/16	2006	
-8	13/32	2008	
-10	1/2	2010	
-12	5/8	2012	
-16	7/8	2016	
-16Z‡	7/8	2016Z	
-20Z‡	1-1/8	2020Z	

Tight Pitch Spring Guard

Everflex spring guard is available in hot dipped galvanized carbon steel. This method of protection is well suited for applications where rough handling, abrasion and severe flexing will occur. Tight pitch spring guard is widely accepted in maintenance applications on rubber tire manufacturing presses.

Hose Size	Hose I.D.	Assembly Part Number
-4	3/16	2004T
-5	1/4	2005T
-6	5/16	2006T
-8	13/32	2008T
-10	1/2	2010T
-12	5/8	2012T
-16	7/8	2016T
-16Z‡	7/8	2016ZT
-20Z‡	1-1/8	2020ZT

302 Stainless Steel Internal Support Coil

Everflex internal support coil is available in 302 stainless steel.

Hose Size	Hose I.D.	Assembly Part Number
-5*	1/4	20051
-8	13/32	20081
-16	7/8	2016
-20Z‡	1-1/8	2020ZI

‡ The 16Z, and 20Z sizes have a double stainless steel wire reinforcement.

* Closed pitch coil with round wire.

Guardian Sleeve

Guardian Sleeve

Eaton's Guardian Sleeve is

protection against hydraulic

pressure and fluids that may

escape during a hose burst

line of sight sleeving which

meets industry standards.

both equipment operators

guarded from the effects of

and the environment are

hose failures.

G

or pinhole leak. With this

hose failure by containing

designed to provide

- Meets new line of sight operator specification EN982 ISO norm 833 EN414 and ISO 3457
- The ultra tight weave resists oil spillage from hose failure
- Meets ASTM D6770 for abrasion resistance of textile webbing
- Meets abrasion standard ISO 6945
- Meets Fed-STD191-Test Method 5309 for abrasion
- Densely twisted polyamide
 6 yarn offers optimum UV
 and abrasion protection
- MSHA approved # IC-234/0 – Meets standard application procedures for acceptance of Flame Resistance Solid Products taken into mines
- Meets Conductivity Requirements of ISO 8031
- Tight, smooth surface resists wear

Chemical Compatibility Chart for Guardian Sleeving

Chemical	Compatibility
Gasoline	Very Good
Oil	Very Good
Mineral and Vegetable Oil	Very Good
Ionic Metallic Solutions	Very Good
Alcohols	Very Good
Diluted Bases	Very Good
Diluted acids	Good
Benzene	Very Good
Acetone	Very Good
Ether	Very Good
Carbon Tetrachloride	Very Good
Chlorine Based Solvent	Very Good
Mold, Bacteria, Moths	Very Good
*	

*Strong and concentrated acids; ie. Hcl or Formic Acid may have some corrosive action.

Denier: 1260

Melting Point: 215°C/420°F

Material: Polyamide 6, made with pre-dyed yarn

Dim. Stability: Great resistance to sun, atmospheric agents and aging

Toxicity: Non-Toxic **Color:** Black

Packing Requirements: Eaton Guardian Sleeve comes in a 300 foot roll with no more than 3 cuts per roll and no piece shorter than 30 feet.

* Slide sleeve onto the hose before assembling the ends. After assembly, clamp the hose onto the fitting using a metal banding product.

Properties	Specication	Description
Burst Pressure	16,000 psi	Capable to contain hose burst up to 16,000 psi
Pin Hole Leak Pressure	4,000 psi	Sustained 4,000 psi pin hole deflection from focused 1mm pin hole
Abrasion Cycles	250,000	Holds up to 250,000 Abrasion cycles per ISO 6945

General and Dimensional Information

Part Number	Nominal I.D. (in)	A – Flat Width (in) +/- 0.125	Weights in Ibs per 300 ft Roll	Rolls per Box
FF90754-68	0.68	1.290	7.43	8
FF90754-79	0.79	1.400	8.50	7
FF90754-91	0.91	1.590	9.70	6
F90754-98	0.98	1.590	10.13	6
FF90754-106	1.06	1.825	11.10	5
FF90754-122	1.22	2.076	12.60	4
FF90754-142	1.42	2.390	14.50	4
FF90754-157	1.57	2.650	16.10	3
FF90754-173	1.73	2.910	17.70	3
FF90754-185	1.85	3.100	18.80	3
FF90754-209	2.09	3.470	21.10	2
FF90754-219	2.19	3.630	22.10	2
FF90754-238	2.38	3.925	23.90	2
FF90754-288	2.88	4.714	28.60	2
FF90754-366	3.66	5.938	36.10	1

Guardian Sleeve Selection Chart

Suggested Sleeve Part Number	Sleeve I.D. (in)	Max Hose OD that Sleeve can accept (in)	Hose Size as a Ref.
FF90754-68	0.68	0.52	-4
FF90754-79	0.79	0.61	-4
FF90754-91	0.91	0.70	-6
FF90754-98	0.98	0.76	-6
FF90754-106	1.06	0.80	-6
FF90754-122	1.22	0.92	-8
FF90754-142	1.42	1.02	-10
FF90754-157	1.57	1.13	-10
FF90754-173	1.73	1.24	-12
FF90754-185	1.85	1.34	-16
FF90754-209	2.09	1.50	-16
FF90754-219	2.19	1.54	-20
FF90754-238	2.38	1.70	-20
FF90754-288	2.88	2.00	-20
FF90754-366	3.66	2.40	-24

Assembly Equipment

Table of Contents

Everswage Equipment & Tooling	H-2
Everswage Tooling Selector Chart	H-3
E-Series Barrel Crimp Tooling Selector Chart	H-4
Conv-O-Crimp Equipment & Tooling	H-6
Field Attachable Fittings Assembly Equipment	H-7

T-400-1 Everswage Press

T-401-EF Fabricating Distributor Kit

Fabricating distributor kit including a press with master pusher, hydraulic pump, hose assembly, swage die holder, pusher adapters, and swage dies for 'S' Series, .040 wall hose -4 to -16.

T-400-71 Conversion Kit for Weatherhead T-400-1 Press

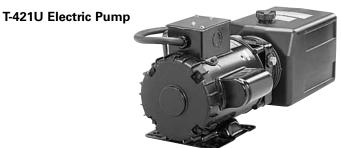
Conversion kit for Weatherhead T-400-1 press including master pusher, swage die holder, and pusher adapters.

T-400-89 Conversion Kit for Weatherhead T-400-1 Press

Conversion kit for Weatherhead T-400-1 press including master pusher, swage die holder, pusher adapter and swage dies for 'S' Series, .040 wall hose -4 to -16.

TE-Kit

Includes all tube expanders for smooth bore hose.


WARNING: You must hold the hose assembly in place from below throughout the swage or crimping operation. Do not place fingers or hands at the swage or crimping point during operation. Failure to follow this procedure could result in serious injury to your hand or finger.

The use or intermixing of fittings and hose not specifically engineered and designed for use with the Everflex equipment may result in the production of an unsafe or unreliable hose assembly. The Everflex limited warranty is contingent upon the fact that only Everflex end fittings and Everflex hose be used on Everflex assembly equipment.

Model #	Description	
T-400-1EF	Everswage Press w/ Master Pusher*	
T-400-16	Hose Assembly	
T-400-72	Pusher Adapter	
T-400-73	Pusher Adapter	
T-400-74	Pusher Adapter	
T-400-75	Pusher Adapter	
T-400-76	Pusher Adapter	
T-400-77	Pusher Adapter	
T-400-78	Pusher Adapter	
T-400-79	Pusher Adapter	
T-400-80	Pusher Adapter	
T-400-81	Pusher Adapter	
T-400-82	Pusher Adapter	
PT-Pusher	Power Trim Fitting Pusher	
T-400-84	Master Pusher	
T-400-85	Swage Die Holder	
T-421U	Hydraulic Pump	
T-400-BB	Convert switch for T-421U Pump	
TE-3	Tube Expander for -3	
TE-4	Tube Expander for -4	
TE-5	Tube Expander for -5	
TE-6	Tube Expander for -6	
TE-8	Tube Expander for -8	
TE-10	Tube Expander for -10	
TE-12	Tube Expander for -12	

Model #	Description
TE-16	Tube Expander for -16
TE-20	Tube Expander for -20
T-400-ED	Pusher Selector Decal
.040" Wall	Swage Dies
SD-3-15	Swage Die 1/8"
SD-4-15	Swage Die 3/16"
SD-5-15	Swage Die 1/4"
SD-6-15	Swage Die 5/16"
SD-8-15	Swage Die 13/32"
SD-10-15	Swage Die 1/2"
SD-12-15	Swage Die 5/8″
SD-16-15	Swage Die 7/8"
SD-20Z-15	Swage Die 1-1/8"
.030 Wall	Swage Dies
SD-4TW-15	Swage Die 3/16" TW
SD-5TW-15	Swage Die 1/4" TW
SD-6TW-15	Swage Die 5/16" TW
SD-8TW-15	Swage Die 13/32" TW
SD-10TW-15	Swage Die 1/2" TW
SD-12TW-15	Swage Die 5/8" TW
SD-16TW-15	Swage Die 7/8" TW
EFH-135X	50 Drawer Cabinet
EFS-100	Blank Labels for EFH-135X

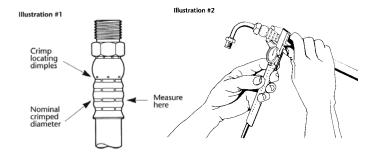
* Requires the T-421U pump

Dimensions	7 1/2" high, 10" wide, 22" long
Weight	66 lbs.
Reservoir Size	145 cu. in.
Outlet Port Size	3/4"-16 Straight Thread Orb
Motor	1 H.P., 3450 RPM, 115/220 Volts, 60 Cycles, Single Phase
Hydraulic Oil	Gulf Harmony 100 AW Gulf Harmony 64 or 68, SAE 10 Grade, ISO-32, SAE 20 Grade, Sunvis 931, Mobil DTE 26 or, Mobil DTE 24 (30°F Below)
Reservoir Capacity	3 Quarts
Flow	0.5 GPM

Everswage Tooling Selector Chart

					B, M, S, SC Series	STW, SCTW Series
lose .D.	Hose End	0.040" Wall Hose Swage Die	0.030″ Wall Hose Swage Die	Pusher Adapter	0.040″ Wall Hose Dia	0.030″ Wall Hose Dia
/32	1103	SD-3-15	NA	T-400-73	.308	.367
/16	1104-1	SD-4-15	SD-4TW-15	T-400-73	.382	.367
/16	1104-2	SD-4-15	SD-4TW-15	T-400-72	.382	.453
/4	1105	SD-5-15	SD-5TW-15	T-400-72	.468	.453
/4	1105-1/8	SD-5-15	SD-5TW-15	T-400-73	.468	.453
/16	1106-1	SD-6-15	SD-6TW-15	T-400-72	.533	.527
6/16	1106-2	SD-6-15	SD-6TW-15	T-400-80	.533	.527
5/16	1106-3	SD-6-15	SD-6TW-15	T-400-78	.533	.527
3/32	1108-1	SD-8-15	SD-8TW-15	T-400-79	.632	.614
3/32	1108-2	SD-8-15	SD-8TW-15	T-400-78	.632	.614
/2	1110	SD-10-15	SD-10TW-15	T-400-77	.739	.724
; 5/8	1112	SD-12-15	SD-12TW-15	T-400-76	.883	.875
/8	1116	SD-16-15	SD-16TW-15	T-400-74	1.194	1.179
/8	1116Z	SD-16-15	NA	T-400-74	1.194	NA
-1/8	1120Z	SD-20Z-15	NA	Not Needed	1.423	NA
/32	1303	SD-3-15	NA	T-400-81	.308	NA
/32	1303	SD-3-15	NA	T-400-81	.308	NA
/32	1303-4	SD-4-15	SD-4TW-15	T-400-81	.300	.367
/4	1304	SD-5-15	SD-5TW-15	T-400-72	.362	.307
-		SD-6-15		T-400-72		.405
i/16	1306		SD-6TW-15		.533	
3/32	1308	SD-8-15	SD-8TW-15	T-400-78	.632	.614
/2	1310	SD-10-15	SD-10TW-15	T-400-76	.739	.724
/8	1312	SD-12-15	SD-12TW-15	T-400-76	.883	.875
/8	1316	SD-16-15	SD-16TW-15	T-400-75	1.194	1.179
/8	1316Z	SD-16-15	NA	T-400-75	1.194	NA
-1/8	1320Z	SD-20Z-15	NA	T-400-74	1.423	NA
/16	#30	SD-4-15	SD-4TW-15	T-400-81	.382	.367
/4	#31	SD-5-15	SD-5TW-15	T-400-72	.468	.453
j/16	#32	SD-6-15	SD-6TW-15	T-400-72	.533	.518
3/32	#33	SD-8-15	SD-8TW-15	T-400-78	.632	.614
/2	#34	SD-10-15	SD-10TW-15	T-400-76	.739	.724
/8	#35	SD-12-15	SD-12TW-15	T-400-76	.883	.875
/16	2104-1	SD-4-15	SD-4TW-15	T-400-82	.382	.367
/16	2104-2	SD-4-15	SD-4TW-15	T-400-81	.382	.367
/4	2105	SD-5-15	SD-5TW-15	T-400-81	.468	.453
/16	STE4-4	SD-4-15	SD-4TW-15	TE4-4 With T-400-75	.382	.367
/4	STE4-5	SD-5-15	SD-5TW-15	TE4-5 With T-400-75	.468	.453
/16	STE6-6	SD-6-15	SD-6TW-15	TE6-6 With T-400-75	.533	.518
3/32	STE8-8	SD-8-15	SD-8TW-15	TE8-8 With T-400-75	.632	.614
/8	STE12-12	SD-12-15	SD-12TW-15	TE12-12 With T-400-75	.883	.875
/8	STE16-16	SD-16-15	SD-16TW-15	TE16-16 With T-400-75	1.194	1.179
/16	B-6LFC	SD-6-15	SD-6TW-15	T-400-73	.533	.518
/8	#60	SD-12-15	SD-12TW-15	Consult Factory	.883	.875
/8	#62	SD-16-15	SD-16TW-15	Consult Factory	1.194	1.179
/4	C-5PS	SD-5-15	SD-5TW-15	T-400-81	.468	.453
/16	PT-S-4	SD-4-15	SD-4TW-15	PT-Pusher	.382	.367
/16	PT-45-4	SD-4-15	SD-4TW-15	PT-Pusher	.382	.367
/16	PT-90-4	SD-4-15	SD-4TW-15	PT-Pusher	.382	.367
/2	10-S.37-316	SD-10-15	SD-10TW-15	T-400-82	.739	.724
//8	16-S.87-316	SD-16-15	SD-16TW-15	T-400-82	1.194	1.179
/2	#40	SD-10-15	Sd-10TW-15	40 With T-40-75	.739	.724
/2	#40	SD-10-15	SD-10TW-15	TE10-10 With T-400-75	.739	.724

E-Series Barrel Crimp Tooling


Selector Chart

Nominal Crimp Diameter Measurement

Measuring crimp diameters should be a part of the normal hose assembly procedure. To insure a proper crimp diameter reading, follow these steps.

- 1. Measure the diameter in the middle of the crimped portion of the hose end. (see illustration #1)
- Place the caliper in a position to allow a measurement in the horizontal depressions of the crimp spaced 180° apart. (see illustration #1 & #2)
- 3. See crimp diameters on the following chart.

Note: In the larger sizes, calipers may be used; however in the smaller sizes, a point micrometer will provide an accurate reading.

Model #	Decription		
T-400-30C Kit i	ncludes 1 each of all collets		
FS-1200	Label set/Layout Guide		
T-400-8	Die Ring		
T-432-15	Master Pusher		
T-400-37	Green Spacer Ring		
T-400-38	Red Spacer Ring		
T-400-112	Tan Spacer Ring		

E-Series Barrel Crimp Tooling	Hose Dash Size	Hose I.D.	Hose End Prefix	Collet	Spacer Ring Color	Spacer Ring Flat Size (Up Or Down)	Nominal Crimp Dia +/003"
For crimping E-Series hose ends using the Everswage Press or T-400	S-4TW	3/16	03E	T-400-113C	Tan	Up	.355
	S-5TW	1/4	04E	T-400-31C	Green	Up	.405
	S-6TW	5/16	05E	T-400-32C	Red	Up	.475
	S-7TW	3/8	06E	T-400-33C	Red	Up	.545
	S-10TW	1/2	08E	T-400-34C	Red	Up	.695
	S-14TW	3/4	12E	T-400-35C	Red	Up	.978
	S-18ZTW	1	16E	T-400-36C	Red	Un	1.225

NOTE: Spacer Rings not included in T-400-30C Kit.

E-Series Flat Crimp Tooling

For S-TW and SC-TW Hoses

Hose Size	E-Series Fitting	Crimp	Diameter "B"	Crimp Die Cage	Crimp Posi	tion "C"	
		mm	in		mm	in	<u>"C"</u>
-4 PTFE Hose	03E-xxx / 03ER-xxx	9.4 ± 0.10	.370 ± .005	FT1380-275-M090	14.5 ± 0.76	.57 ± .030	
-6 PTFE Hose	05E-xxx / 05ER-xxx	12.3 ± 0.10	.485 ± .005	FT1380-275-M120	19.6 ± 0.76	.77 ± .030	н "b" -
-8 PTFE Hose	07E-xxx / 07ER-xxx	14.9 ± 0.10	.587 ± .005	FT1380-200-M150	19.6 ± 0.76	.77 ± .030	
-10 PTFE Hose	08E-xxx / 08ER-xxx	17.9 ± 0.10	.705 ± .005	FT1380-200-M180	21.6 ± 0.76	.85 ± .030	
-12 PTFE Hose	10E-xxx / 10ER-xxx	20.75 ± 0.10	.816 ± .005	FT1380-200-M180	18.5 ± 0.76	.73 ± .030	1
-16 PTFE Hose	14E-xxx / 14ER-xxx	28.05 ± 0.10	1.105 ± .005	FT1380-200-M280	26.4 ± 0.76	1.04 ± .030	1

ET1000 Crimpers

			Spacer Ring		
E-Series Fitting	Collet Segment	Spacer Ring	Flat Side UP/DN	Spacer Ring Color	Adapter Die Ring
03E-xxx / 03ER-xxx	ET1000DC-M065S	T-400-10	UP	Black	ET1000AR-001
05E-xxx / 05ER-xxx	T-400-120C	T-400-10	DN	Black	ET1000AR-001
07E-xxx / 07ER-xxx	T-400-2C	T-400-62	UP	Yellow	ET1000AR-001
08E-xxx / 08ER-xxx	T-400-40C	T-400-10	UP	Black	ET1000AR-001
10E-xxx / 10ER-xxx	T-400-4C	ET1000SR-M215A	UP	Magenta	ET1000AR-001
14E-xxx / 14ER-xxx	T-400-5C	T-400-38	UP	Red	ET1000AR-001

T-400-1 or T-400-17 or T-407-1 or T-460 or T-462 or T-465 Crimpers

			Spacer Ring	
E-Series Fitting	Collet Segment	Spacer Ring	Flat Side UP/DN	Spacer Ring Color
03E-xxx / 03ER-xxx	ET1000DC-M065S	T-400-10	UP	Black
05E-xxx / 05ER-xxx	T-400-120C	T-400-10	DN	Black
07E-xxx / 07ER-xxx	T-400-2C	T-400-62	UP	Yellow
08E-xxx / 08ER-xxx	T-400-40C	T-400-10	UP	Black
10E-xxx / 10ER-xxx	T-400-4C	ET1000SR-M215A	UP	Magenta
14E-xxx / 14ER-xxx	T-400-5C	T-400-38	UP	Red

FT1380 or ET1280 Crimpers

E-Series Fitting	Crimp Die Cage
03E-xxx / 03ER-xxx	FT1380-275-M090
05E-xxx / 05ER-xxx	FT1380-275-M120
07E-xxx / 07ER-xxx	FT1380-200-M150
08E-xxx / 08ER-xxx	FT1380-200-M180
10E-xxx / 10ER-xxx	FT1380-200-M180
14E-xxx / 14ER-xxx	FT1380-200-M280

ET4020 Crimpers

Crimp Die Cage
FT1380-275-M090
FT1380-275-M120
FT1380-200-M150
FT1380-200-M180
FT1380-200-M180
FT1380-200-M280

ET4040 Crimpers

E-Series Fitting	Crimp Die Cage
3E-xxx / 03ER-xxx	FT1307-200-M090
05E-xxx / 05ER-xxx	FT1307-200-M120
07E-xxx / 07ER-xxx	FT1307-200-M150
08E-xxx / 08ER-xxx	FT1307-200-M180
10E-xxx / 10ER-xxx	FT1307-200-M180
14E-xxx / 14ER-xxx	FT1307-200-M280

Conv-O-Crimp Equipment and Tooling

T-440-1EF Conv-O-Crimp Press Only

Conv-O-Crimp tooling equipment allows you to make custom factory quality hose assemblies quickly, conveniently and economically. The T-440-1EF press offers the crimping capabilities of 1/2" through 2" I.D. convoluted PTFE hose.

T-440-1EFKIT:

Kit includes a press, hydraulic pump, hose assembly, and foot switch kit.

T-890021 Conversion Kit for Weatherhead T-410-1 Press

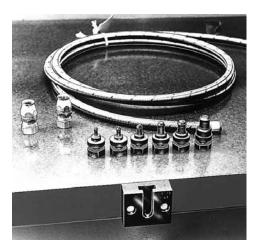
Kit includes new pusher halves and crimp locator

Model #	Description
T-440-1EF	Press
T-410-22	Hose Assembly
T-441	Electric Pump (two stage)
T-8000	Crimp Collet Kit (all 6 sizes)
T-8008	Collet - 1/2" I.D.
T-8012	Collet - 3/4" I.D.
T-8016	Collet - 1" I.D.
T-8020	Collet - 1 1/4" I.D.
T-8024	Collet - 1 1/2" I.D.
T-8032	Collet - 2" I.D.
T-890024	Tube Expander Kit (all six sizes)
T-890024-8	Tube Expander for -8 hose
T-890024-12	Tube Expander for -12 hose
T-890024-16	Tube Expander for -16 hose
T-890024-20	Tube Expander for -20 hose
T-890024-24	Tube Expander for -24 hose
T-890024-32	Tube Expander for -32 hose
T-890025	Flange Support Kit
T-890026	Foot Switch Kit
T-410-BB	Convert Switch for T-441 Pump

WARNING: You must hold the hose assembly in place from below throughout the swage or crimping operation. Do not place fingers or hands at the swage or crimping point during operation. Failure to follow this procedure could result in serious injury to your hand or finger.

The use or intermixing of fittings and hose not specifically engineered and designed for use with the Everflex equipment may result in the production of an unsafe or unreliable hose assembly. The Everflex limited warranty is contingent upon the fact that only Everflex end fittings and Everflex hose be used on Everflex assembly equipment.

T-441 Electric Pump



Dimensions	7 1/2" high, 10" wide, 22" long
Weight	75 lbs.
Pressure	5000 psi
Reservoir Capacity	6 quarts Outlet Port
Size	3/4-16 straight thread o-ring
Motor	1 HP, 3450RPM, 115.220 volts, 60 cycle, single phase.
Hydraulic Oil	Automatic Transmission Fluid (ATF)
Flow	2.5 GPM @ 750 psi 0.5 GPM @ 3500 psi

CAUTION: The T-441 electric pump has the relief valve set @ 4000 to 4200 psi. Damage to the press will result and the warranty may be voided if higher pressures are used.

Assembly Equipment

FT1081 Everflex Complete Tool Kit

Hose Specifications

Smooth Bore Everflex Hose, -03, -04, -05, -06, -08, -10 and -12 hose.

Features

- Seats Everflex tube against sleeve
- Inexpensive
- Easy to use

Ordering Instructions

FT1081 Complete tool kit.

Includes:

FT1081-3-1 mandrel holder FT1081-3-2-3 mandrel -3 hose FT1081-3-2-4 mandrel -4 hose FT1081-3-3-5 mandrel -5 hose FT1081-3-4-6 mandrel -6 hose FT1081-3-5-8 mandrel -8 hose FT1081-3-6-10 mandrel -10 hose FT1081-3-7-12 mandrel -12 hose

FT1038A Everflex Hose Tool

Hose Specifications

Smooth Bore Everflex Hose, -03, -04, -05, -06, -08, -10, -12

Features

- Used for sizing the ID of hoses made from Teflon resin
- Small
- Hand held tool

Table of Contents

Chemical Resistence Chart

1-2

Eaton Everflex Teflon Hoses: Wetted Surfaces Only

Partial List of Chemicals

This chart has been prepared as a guide only and is NOT a guarantee.

The number of variables present in any particular chemical environment makes firm ratings impossible. Testing under actual service conditions is advisable in all cases to establish suitability of hose for a given purpose.

End fitting material compatibility ratings are based on a fluid temperature of 70°

Media		End Fit			
Eaton Teflon	Everflex Hose	Brass	cs	303/304 S.S.	316SS
Acetaldehyde	1	1	1	1	1
Acetic Acid 10%	1	3	3	2	2
Acetic Acid 30%	1	3	3	2	2
Acetic Acid Glacial	1	2	0	2	2
Acetic Anhydride	1	3	3	2	2
Acetone	1	1	1	1	1
Acetylene	1	2	0	1	1
Acrylonitrile	1	0	1	1	1
Acetyl Chloride	0	0	0	0	0
Alcohols	1	0	3	1	1
Allyl Chloride	0	0	0	0	0
Alum, Ammonium					
Or Potassium	1	3	3	2	2
Aluminum Acetate	1	3	0	1	1
Aluminum Bromide	1	3	3	2	2
Aluminum Chloride	1	3	3	2	2
Aluminum Fluoride	1	3	3	2	2
Aluminum Hydroxide	1	1	0	1	1
Aluminum Nitrite	1	0	3	1	1
Aluminum Oxychloride	0	0	0	0	0
Aluminum Salts	1	0	0	1	2
Aluminium Sulfate	1	3	3	3	2
Ammonia, Anhydrous	1	0	1	1	1
Ammonia, Aqueous	1	3	0	1	1
Ammonium Acetate	0	0	0	0	0
Ammonium Carbonate	0	0	1	1	1
Ammonium Chloride	1	3	0	2	2
Ammonium Fluoride	0	0	0	0	0
Ammonium Hydroxide	1	3	2	1	1
Ammonium Metaphosphat	e 1	0	1	1	1
Ammonium Nitrate	1	3	1	1	1
Ammonium Nitrite	0	0	0	1	1
Ammonium Persulfate	0	0	0	1	1
Ammonium Phosphate	1	0	3	2	1
Ammonium Sulfate	1	3	1	1	1
Ammonium Thiocyanate	1	0	1	1	1
Amyl Acetate	1	1	3	1	1
Amyl Alcohol	1	1	1	1	1
Amyl Chloride	1	0	0	1	1

and higher temperatures may accelerate adverse affects.

Where unusual conditions exist, or where questions arise, please consult Eaton Technical Support for assistance.

KEY:

- B- Brass
- CS- Carbon Steel SS- Stainless Steel
- 1- Excellent
- 2- Good
- 3- Not Recommended
- 0- No Information -
- Test Before Using

Media		End Fit			
	Eaton Everflex Teflon Hose	Brass	cs	303/304 S.S.	316SS
Amyl Chloronaphtha	alene 1	0	0	1	1
Amyl Naphthalene	1	0	0	1	1
Aniline	1	3	2	1	1
Aniline Dyes	1	0	3	1	1
Aniline Hydroxide	1	3	0	3	3
Animal Fats	1	0	1	1	1
Antimony Chloride	0	0	0	0	0
Antimony Trochlorid	le O	0	0	0	0
Aqua Regia	1	0	0	3	3
Arsenic Acid	1	0	2	0	1
Askarel	0	1	1	1	1
Asphalt	1	2	1	1	1
Barium Carbonate	1	1	2	1	1
Barium Chloride	1	2	3	1	1
Barium Hydroxide	1	0	2	1	1
Barium Sulfate	1	2	1	1	1
Barium Sulfide	1	3	3	1	1
Beer	1	1	2	1	1
Beet Sugar Liquids	1	0	1	1	1
Benzene	1	1	1	1	1
Benzenesulfonic Ac	id O	0	3	0	2
Benzalsdehyde	1	0	1	0	0
Benzine	1	1	1	1	1
Benzyl Alcohol	1	0	1	1	1
Benzonic Acid	0	0	0	0	0
Benzoyl Chloride	0	0	0	0	0
Benzyl Benzoate	1	0	1	1	1
Benzyl Chloride	1	0	1	0	0
Bismuth Carbonate	1	0	1	1	1
Black Sulphate Liqu	ior 1	0	1	1	1
Blast Furnace Gas	1	1	1	1	1
Borax	1	1	2	2	1
Bordeaux Mixture	1	0	0	1	1
Boric Acid	1	3	3	2	1
Brine	1	2	2	1	1
Bromine Gas	1	3	3	3	3
Bromine Liquid	1	3	3	3	3
Bromine Water	1	3	3	3	3

1

1

1

Bunker Oil

1

1

Eaton Everflex Teflon Hoses: Wetted Surfaces Only

Media		End Fit	ting Mat	terial		Media		End Fitt	ing Ma	terial
	on Everflex	Brass	cs	303/304 S.S.	316SS		n Everflex on Hose	Brass	Brass CS 303	
Butadiene	1	1	0	1	1	Chlorobromomethane	1	1	1	1
Butane	1	1	1	1	1	Chloroform	1	1	1	1
Butter Oil	1	1	1	1	1	0-Chloronaphthalene	1	1	1	1
Butyric Acid	1	2	3	1	1	Chlorosulfonic Acid	1	0	3	(
Butyl Acetate	1	1	2	1	1	Chlorotoluene	1	1	1	1
Butyl Alcohol	1	1	1	1	1	Chromium Trioxide	0	0	0	(
Butyl Amine	0	1	1	1	1	Chromic Acid	1	3	3	3
Butyl Carbitol	1	1	1	1	1	Citric Acid	1	3	3	3
Butyl Chloride	0	0	0	0	0	Cod Liver Oil	1	1	1	1
Butyl Phenol	0	0	0	0	0	Code Oven Gas	1	0	1	1
Butyl Stearate	1	1	1	1	1	Copper Chloride	1	3	3	ç
Butyl Mercaptan	1	0	0	1	1	Copper Cyanide	1	3	0	•
Butyraldehyde	1	1	0	0	0	Copper Fluoride	0	0	0	
Cadmium Cyanide	0	0	0	0	0	Copper Nitrate	0	0	0	1
Calcium Acetate	1	1	1	1	1	Copper Sulfate	1	3	3	
Calcium Bisulfate	1	3	0	2	1	Corn Oil	1	1	1	
Calcium Carbonate	1	1	1	1	1	Corn Syrup	1	0	1	
Calcium Chlorate	1	0	0	2	1	Cottonseed Oil	1	1	1	
Calcium Chloride	1	2	3	2	1	Creosote	1	3	2	
Calcium Hydroxide	1	2	3	3	1	Cresol	1	0	2	
Calcium Hypochlorite	1	3	0	3	2	Cresylic Acid	0	0	0	(
Calcium Nitrate	1	1	1	1	1	Crude Wax	1	1	1	,
Calcium Silicate	1	1	1	1	1	Cutting Oil	1	1	1	
Calcium Sulfate	1	1	1	1	1	Cyclohexane	1	1	1	
Calcium Sulfide	1	0	1	1	1	Cyclohexanone	1	0	0	
Calcium Phosphate	0	0	0	0	0	Cymene	1	1	0	1
Cane Sugar Liquors	1	2	1	1	1	Decalin	1	1	0	
Capryllic Acid	0	0	0	0	0	Denatured Alcohol	1	1	1	
Carbonic Acid	1	3	3	1	1	Diacetone	1	1	1	
Carbon Dioxide	1	1	1	1	1	Diacetone Alcohol	1	1	1	
Carbon Disulfide	0	2	2	1	1	Dibenzyl Ether	1	1	1	
Carbonic Acid	1	3	3	1	1	Dibutyl Ether	1	1	1	
Carbon Monoxide	1	1	1	1	1	Dibutyl Phthalate	1	1	1	
Carbon Tetrachloride	1	2	3	2	2	Dibutyl Sebacate	1	1	0	(
Castor Oil	1	1	1	1	1	Dichlorethylene	0	0	0	
Caustic Soda	1	3	2	1	1	Dichlorobenzene	1	1	0	
Cellosolve, Acetate	1	0	1	1	1	Diesel Oil	1	1	1	
Cellosolve, Butyl	1	0	1	1	1	Diethylamine	1	3	0	
Cellulube	1	1	1	1	1	Diethyl Ether	1	1	1	
Cetyl Alcohol	0	0	0	0	0	Diethylene Glycol	1	1	1	
Chloroacetic Acid	1	2	3	3	3	Diethyl Phthalate	1	1	0	
Chloral Hydrate	0	0	0	0	<u>0</u>	Diethyl Sebacate	1	1	0	
Chlorine, Gaseous, Dry		2	2	3	3	Di-Isobutylene	0	1	0	
Chlorine, Gaseous, Dry		2	2	3	3	Di-Isopropyl Ketone	1	1	0	
Chlorine, Triflouride	0			0	 0	· · · · ·	1		0	
		0	3		3	Dimethyl Analine		1		
Chloroacetic, Acid	1	2	3	3		Dimethyl Formamide	0	0	1	
Chlorobenzine	1	1	1	1	1	Dimetyl Phthalate	1	1	0	
Chloribenzene Chloride	e 0	0	0	0	0	Dioctyl Phthalate	1	1	1	1

303/304 S.S. 316SS

Eaton Everflex Teflon Hoses: Wetted Surfaces Only

KEY:

- B- Brass CS- Carbon Steel
- SS- Stainless Steel
- 1- Excellent
- 2- Good
- 3- Not Recommended
- 0- No Information -

Test Before Using

Media		End Fit	ting Ma	terial		Media		End Fit	ting Ma	terial	
	aton Everflex eflon Hose	Brass	cs	303/304 S.S.	316SS	Eaton Teflon	Everflex Hose	Brass	cs	303/304 S.S.	316SS
Dioxane	1	1	1	1	1	Heptane	1	1	1	1	1
Dipentene	1	1	1	1	1	n-Hexaldehyde	1	1	1	1	1
Ethanolamine	1	1	1	1	1	Hexane	1	1	1	1	1
Ethers	1	1	1	1	1	Hexene	1	1	1	1	1
Ethyl Acetate	1	1	1	1	1	Hexyl Alcohol	1	2	1	1	1
Ethyl Acetoacetate	1	1	1	1	1	Hydraulic Oil, Petroleum	1	1	1	1	1
, Ethyl Acrylate	0	0	1	1	1	Hydrobromic Acid 10%	1	0	3	3	3
Ethyl Alcohol	1	2	1	1	1	Hydrobromic Acid 30%	1	0	3	3	3
Ethyl Benzene	1	1	1	1	1	Hydrochloric Acid 10%	1	3	3	3	3
Ethyl Bromide	0	0	0	0	0	Hydrochloric Acid 50%	1	3	3	3	3
Ethyl Cellulose	1	1	1	1	1	Hydrochloric Acid	•		0		
Ethyl Chloride	1	2	2	1	1	Concentrate	1	3	3	3	3
Ethyl Ether	1	1	2	1	1	Hydrocyanic Acid	1	0	3	0	1
•						Hydrofluoric Acid		-	-	-	
thyl Lactate	0	0	0	0	0	Concentrated	1	3	3	3	3
thyl Mercaptan	1	0	2	0	0	Hydrofluoric Acid 40%	1	3	3	3	3
thyl Pentochloroben		1	2	1	1	Hydrofluoric Acid 60%	1	3	3	3	3
Ethyl Silicate	1	1	1	1	1	Hydrofluosolicic Acid		3			
thylene Chloride	1	2	2	1	1		1		3	3	3
thylene Chlorohydrir	ı 1	0	0	0	0	Hydrogen Bromide	0	0	0	0	0
thylene Diamine	1	1	0	0	0	Hydrogen Gaseous	1	1	1	1	1
Ethylene Dichloride	1	1	3	3	3	Hydrogen Peroxide 70%	1	3	3	2	1
thylene Glycol	1	1	2	1	1	Hydrogen Sulfide Gaseous	1	3	3	2	1
thylene Oxide	0	0	0	0	0	Hydroquinone	0	0	0	1	1
atty Acids	1	0	0	1	1	Hydroxylamine Sulfate	0	0	0	0	0
erric Chloride	1	3	3	3	3	lodine	0	0	0	0	0
erric Nitrate	1	0	3	1	1	Isobutyl Alcohol	1	2	1	1	1
erric Sulfate	1	3	3	1	1	lso Octane	1	1	1	1	1
errous Chloride	1	2	3	1	2	Isopropyl Acetate	1	1	1	1	1
errous Nitrate	1	0	0	1	1	Isopropyl Alcohol	1	1	1	1	1
errous Sulfate	1	2	3	1	1	Isopropyl Ether	1	1	1	1	1
luorine	0	0	0	0	0	Kerosene	1	1	1	1	1
loroboric Acid	1	0	0	1	1	Ketones	0	0	0	1	1
Formaldehyde	1	1	0	1	1	Lacquers	1	1	3	3	1
Formic Acid	1	2	3	2	1	Lacquers Solvents	1	1	3	2	1
Freon 12	2	0	3	1	1	Lactic Acid	1	2	3	2	1
reon 114	2	0				-	1				1
			3	1 2	1 2	Lard Apotata		3	1 2	1	
uel Oil	1	1	2	2	2	Lead Acetate	1	1	2	1	1
umaric Acid	0	0	0	1	1	Lead Nitrate	1	1	2	1	1
uran Furfuran	1	1	1	1	1	Lyme Bleach	0	0	3	2	1
urfural	1	1	2	1	1	Linoleic Acid	1	0	0	0	0
Gallic Acid	1	0	3	1	1	Linseed Oil	1	2	2	1	1
Gasoline	1	1	2	1	1	Lubricating Oils, Petroleun	า 1	1	1	1	1
ilauber's Salt	0	0	1	1	1	Magnesium Chloride	1	2	3	2	1
Glucose	1	1	1	1	1	Magnesium Hydroxide	1	0	1	1	1
Blue	1	3	2	1	1	Magnesium Nitrate	0	0	0	0	0
Glycerin	1	1	2	1	1	Magnesium Sulfate	1	1	2	1	1
Glycerol	1	2	1	1	1	Malic Acid	1	0	2	2	1
Glycols	1	1	1	1	1	Mercuric Chloride	1	3	3	1	1
				•				5	5		

Eaton Everflex Teflon Hoses: Wetted Surfaces Only

Media		End Fit	erial		
Eaton Teflon	Everflex Hose	Brass	cs	303/304 S.S.	316SS
Mesityl Oxide	1	1	1	1	1
Methanol	1	1	0	1	1
Methyl Acetate	1	1	1	1	1
Methyl Acrylate	0	1	1	1	1
Methyl Alcohol	1	2	1	1	1
Vethyl Bromide	1	1	1	1	1
Vethyl Butyl Katone	0	1	1	1	1
Methyl Chloride	1	1	1	1	1
Vethylene Chloride	1	1	1	1	1
Methylethyl Ketone (MEK)	1	1	1	1	1
Methyl Formate	1	1	1	1	1
Vethyl Isobutyl Ketone	1	1	1	1	1
Methyl Methacrylate	1	0	1	1	1
Vethyl Salicylate	1	1	1	1	1
Methyl Sulphate	0	0	0	0	0
Viethyl Trichlorosilane	0	0	0	0	0
Vilk	1	3	3	1	1
Vineral Oil	1	1	1	1	1
Volasses	0	0	0	0	0
Aonochlorobenzene	1	1	1	1	1
Vonoethanolamine	0	1	1	1	1
laptha	1	1	2	1	1
Vapthalene	1	0	0	1	1
Vaphthenic Acid	1	0	0	2	1
Vatural Gas	1	2	1	1	
Nickel Acetate	1	1	1	1	1
Nickel Chloride	1	3	3	2	2
Nickel Nitrate	0	0	0	0	0
Nickel Sulfate	1	3	0	2	1
Niter Cake	0	0	3	2	1
Nitric Acid 5%	1	3	3	2	2
litric Acid 10%	1	3	3	2	2
Nitric Acid 30%	1	3	3	2	2
Nitric Acid above 30%	1	3	3	2	2
Nitric Acid, Red Fuming	1	3	3	2	2
Nitrobenzene	1	1	1	1	1
Vitroethane	1	1	0	1	1
Nitrogen, Gaseous	1	1	1	1	1
Nitrogen Tetroxide	0	0	0	0	2
litrous Acid	0	0	0	0	0
Nitrous Oxide	0	0	0	0	0
-Octane	0	1	1	1	1
Dctyl Alcohol	1	2	1	1	1
Dil, SAE	1	1	1	1	1
Dieic Acid	1	2	2	2	1
Dlive Oil	1	2	2	2	1
Dxalic Acid	1	3	3	2	1
Dxygen Gaseous	1	1	1	1	1
Dzone	1	1	1	1	1
	-	•	•		

Media	F (*	End Fit			
	Eaton Everflex Teflon Hose		cs	303/304 S.S.	316SS
Paint	1	1	0	1	1
Palmitic Acid	1	3	1	2	1
Peanut Oil	1	1	1	1	1
Perchloric Acid	1	0	0	2	1
Perchloroethylene	1	1	1	1	1
Petroleum	1	1	1	1	1
Phenol	1	3	3	1	1
Phorone	1	1	1	1	1
Phosgene	0	0	0	0	0
Phosphoric Acid 20%	1	3	3	0	2
Phosphoric Acid 100%	1	3	3	0	2
Picric Acid	1	3	3	1	1
Pinene	1	1	1	1	1
Pine Oil	1	0	1	1	1
Plating Solutions Brass	0	0	0	0	0
Cadmium	0	0	0	0	0
Chrome	1	0	0	3	3
Potassium Acetate	1	0	0	3 1	
Potassium Adetate	1	3	2	2	1
Potassium Cyanide	1	3	2	1	1
Potassium Dichromate	1	0	0	1	1
	•	3	-	1	1
Potassium Hydroxide 30%		-	3	1	
Potassium Hydroxide 100 Dete seiver Nitrete		2	3	-	1
Potassium Nitrate	1	2	3	1	1
Potassium Sulfate	1	2	2	1	1
Propane	1	1	1	1	1
Propyl Acetate	0	1	1	1	1
Propyl Alcohol	1	2	1	1	1
Pyridine 50%	1	1	0	1	1
Red Oil	1	2	2	2	1
Salicylic Acid	0	0	0	1	1
Salt Water	1	3	2	1	1
Sewage	1	1	3	1	1
Silicone Greases	0	1	1	1	1
Silicone Oils	0	1	1	1	1
Silver Cyanide	0	0	0	0	0
Silver Nitrate	1	2	2	1	1
Skydrol 500 & 7000	1	0	1	1	1
Soap Solutions	1	1	1	1	1
Soda Ash	0	2	1	1	1
Sodium Acetate	1	1	1	1	1
Sodium Benzoate	1	2	2	1	1
Sodium Bicarbonate	1	2	2	1	1
Sodium Bisulfate	1	0	1	1	1
Sodium Borate	1	0	1	1	1
Sodium Chloride	1	3	2	2	1
Sodium Cyanide	1	3	2	1	1
Sodium Chlorate	0	0	0	0	0
Sodium Hydroxide 30%	1	3	2	1	1

Eaton Everflex Teflon Hoses: Wetted Surfaces Only

KEY:

- B- Brass CS- Carbon Steel
- SS- Stainless Steel
- 1- Excellent
- 2- Good
- 3- Not Recommended
- 0- No Information -

Test Before Using

Media		End Fitting Material					
Eaton Teflon	Everflex Hose	Brass	cs	303/304 S.S.	316SS		
Sodium Hydroxide 40%	1	3	2	1	1		
Sodium Hydroxide 100%	1	3	2	2	1		
Sodium Chlorite	0	0	0	0	0		
Sodium Metaphosphate	1	3	3	1	1		
Sodium Nitrate	1	2	1	1	1		
Sodium Perborate	1	3	3	1	1		
Sodium Peroxide	1	3	3	1	1		
Sodium Phosphate	1	3	0	1	1		
Sodium Thiosulfate	1	3	3	1	1		
Soybean Oil	1	0	1	1	1		
Stannic Chloride	1	3	3	0	0		
Starch	0	0	0	0	0		
Steam	1	2	1	1	1		
Stearic Acid	1	3	3	2	1		
Stoddard Solvent	1	1	2	1	1		
Styrene	1	2	2	0	2		
Sucrose Solution	1	0	1	1	1		
Sulfur 200°F	1	3	2	2	1		
Sulfur Chloride	1	3	3	3	2		
Sulfur Dioxide	1	1	2	1	1		
Sulfur Dioxide Liquid	1	0	0	0	0		
Sulfur Dioxide Wet Gas	1	0	0	0	0		
Sulfur Monochloride	0	0	0	0	0		
Sulfur Trioxide	1	0	2	2	2		
Sulfur Trioxide Liquid	0	0	0	0	0		
Sulfur Trioxide Wet Gas	0	0	0	0	0		
Sulfuric Acid 10%	1	3	3	3	2		
96%	1	3	3	3	2		
98%	1	3	2	3	2		
100%	1	0	0	0	0		
Fuming	1	3	2	0	1		
Sulfurous Acid 10%	1	3	3	2	1		
Sulfurous Acid 75%	1	3	3	3	2		
Tallow	0	0	0	0	0		
Tannic Acid 10%	1	3	2	1	1		
Tar, Bituminous	1	2	1	1	1		
Tartaric Acid	1	0	0	2	2		
Tetrachloroethyene	0	0	0	0	0		
Terpineol	1	0	0	0	0		
Titanium Tetrachloride	0	3	1	2	2		
Toluene	1	1	1	1	1		
Toluene Disocyanate	0	0	0	0	0		
Transformer Oil	1	1	1	1	1		
Transmission Fluid Type A	1	1	1	1	1		
Tributoxyethyl Phosphate	1	0	1	0	0		
Tributyl Phosphate	1	0	1	0	0		
Trichloroacetic Acid 10%	0	0	0	0	0		
Trichloroacetic Acid 10%	0						
Inchioroacetic Acia 100%	U	0	0	0	0		

Media		End Fitting Material					
	Eaton Everflex Teflon Hose	Brass	CS	303/304 S.S.	316SS		
Trichlorethylene	1	1	3	0	1		
Trichloroethylene	1	0	3	0	1		
Trichlorophenol	0	0	0	0	0		
Tricresyl Phosphate	1	0	1	0	2		
Tung Oil	1	1	1	1	1		
Turpentine	1	2	0	1	1		
Urea Solution 50%	1	0	1	1	1		
Urine	1	0	0	0	0		
Varnish	0	2	2	1	1		
Vegetable Oils	1	0	1	1	1		
Versilube	1	1	1	1	1		
Vinegar	1	3	3	2	1		
Vinyl Acetate	0	0	0	0	0		
Vinyl Chloride	1	3	2	1	1		
Water	1	1	2	1	1		
Whiskey, Wines	1	3	3	2	1		
Xylene	1	0	3	2	2		
Zinc Acetate	1	1	1	1	1		
Zinc Chloride	1	3	3	2	1		
Zinc Sulfate	1	3	3	2	1		

Eaton Hydraulics Group USA 14615 Lone Oak Road Eden Prairie, MN 55344 USA Tel: 952-937-9800 Fax: 952-294-7722 www.eaton.com/hydraulics Eaton Hydraulics Group Europe Route de la Longeraie 7 1110 Morges Switzerland Tel: +41 (0) 21 811 4600 Fax: +41 (0) 21 811 4601 Eaton Hydraulics Group Asia Pacific Eaton Building No.7 Lane 280 Linhong Road Changning District, Shanghai 200335 China Tel: (+86 21) 5200 0099 Fax: (+86 21) 2230 7240

© 2014 Eaton All Rights Reserved Printed in USA Document No. E-HOEV-MC001-E5 February 2014