Hydraulic and lubrication oil filters
The importance of cleanliness

Contamination is any solid or liquid substance that is not part of a hydraulic system’s working fluid. There are three principal means through which contamination can occur in a typical hydraulic system: it can be incorporated during system assembly, generated during system operation, or ingested by the system during operation. Having a reliable way to manage contamination is vital to your operation.

- Provides maximum efficient productivity
- Reduces equipment downtime
- Minimizes safety hazards and prevents contamination-related failure
- Increases the life of system components, improves operating profitability and decreases maintenance costs

Eaton services

In addition to world-proven hydraulic and lubrication filter systems, Eaton provides a full range of services to help you maximize the potential of your operation.

- State-of-the-art testing lab facilities
- Equipment rentals
- Calibration services: certifications, software updates, test runs
- Field service: inspections, start-up, repair, replacement, and maintenance
- Extensive network of sales and service representatives
- Worldwide technical support
- Product specialists dedicated to providing application engineering

Eaton combines sales, engineering, manufacturing, customer service, and technical sales support into one focused business objective: Provide customers with optimum filtration solutions.
Filter media

Microglass (VG)

Features:
- Depth filtration
- High dirt holding capacity
- Compatible with mineral oils, emulsions and for most synthetic hydraulic fluids and lubrication oils
- Filter fineness, acc. filtration quotient \(b_x(c) \geq 200 \): 4µm, 5µm, 6µm, 10µm, 20µm
- Special filter element design for lubrication applications available (10 API and 25 API)

Paper (P)

Features:
- Depth filtration
- Consists of resin-reinforced cellulose fibers
- High burst strength
- Available in 10 µm

Stainless steel wire mesh (G)

Single or multilayer, pleated construction made with stainless steel wire mesh in different weaves, depending on retention ratings.

Features:
- Surface filtration
- Best resistance in all hydraulic and lubrication fluids
- Partially cleanable
- Available in 25 µm, 40 µm and 80 µm (other micron ratings on request)
Return-line filters
Series TEF, DTEF, TEFB, TRW
Application: Mounted on top or in the reservoir with the outlet port returning to the reservoir
Operating pressure: Up to 145 psi (10 bar)
Flow rates: Up to 1902 gpm (7200 l/min)
Filtration materials: Paper, microglass or stainless steel wire mesh
Benefits: Lightweight and easy to change, minimizes chance of oil spillage during element change and the resulting environmental concern

Return-line filters with suction connection
Series TRS, TNRS
Application: Tank-mounted return-line filters with suction connection for mobile hydraulic applications having a minimum of two independent hydraulic circuits
Operating pressure: 145 psi (10 bar)
Flow rate: Up to 119 gpm (450 l/min)
Filtration materials: Paper, microglass or stainless steel wire mesh
Benefits: Tank-top-mounted, in-line filters supply clean suction flow and prevent cavitation; custom designs available

Stainless steel pressure filters
Series EH, EHP, EHPF
Application: Mounted in pressure lines
Operating pressure: Up to 6090 psi (420 bar)

Series EHD, EDU, EDA\(^1\)
Application: Mount in suction, pressure, or return lines. The filter flow path can be switched to either of the two chambers
Operating pressure: Up to 4568 psi (315 bar)
Benefits: For continuous filtration without system shutdown, the duplex design is equipped with a three-way changeover valve. This makes it possible for the user to divert the flow to the second filter for servicing or changing

\(^1\) Designed according to ASME VIII Div. 1, U-Stamp option available
Duplex pressure filters

Series MDD, HDD

Application: For continuous operation. Mount in suction, pressure or return lines

Operating pressure: Up to 4567 psi (315 bar)

Flow rates: MDD up to 26.4 gpm (100 l/min), HDD up to 356 gpm (1350 l/min)

Filtration materials: Paper, microglass or stainless steel wire mesh

Benefits: For continuous filtration without system shutdown, the duplex design is equipped with a three-way changeover valve. This makes it possible for the user to divert the flow to the second filter for servicing or changing

Series DU, DUV, DSF

Application: For continuous operation. Mount in suction, pressure or return lines

Operating pressure:
- DU, DUV - 464 psi (32 bar)
- DSF - 363 psi (25 bar)

Flow rates: DU up to 1056 gpm (4000 l/min), DUV (vertical inlet/outlet) up to 528 gpm (2000 l/min), DSF (inline) up to 87 gpm (330 l/min)

Filtration materials: Paper, microglass or stainless steel wire mesh

Benefits: For continuous filtration without system shutdown, a rotary slide or ball valve is internally mounted. This makes it possible to switch from one filter to the other for servicing or changing filter while in the “off” position

Designed according to AD2000 with an option to provide ASME equivalent material and supporting calculations

Series DWF

Application: For continuous operation. Mount in suction, pressure or return lines

Operating pressures: 232 psi (16 bar)

Flow rates: Up to 1585 gpm (6000 l/min)

Filtration materials: Paper, microglass or stainless steel wire mesh

Benefits: For continuous filtration without system shutdown, the duplex design is equipped with a three-way changeover valve. This makes it possible for the user to divert the flow to the second filter for servicing or changing

Designed according to ASME VIII Div. 1, U-Stamp option available

Series DA

Application: For continuous operation. Mount in suction, pressure or return lines

Operating pressure: 580 psi (40 bar)

Flow rates: Up to 528 gpm (2000 l/min)

Filtration materials: Paper, microglass or stainless steel wire mesh

Benefits: For continuous filtration without system shutdown, the duplex design is equipped with a three-way changeover valve. This makes it possible for the user to divert the flow to the second filter for servicing or changing

Designed according to ASME VIII Div. 1, U-Stamp option available
Pressure filters
PN < 1450 psi (100 bar)

Series LF

Application: Mounted in suction, pressure and return lines

Operating pressure: 464 psi (32 bar)

Flow rate: Up to 1057 gpm (4000 l/min)

Filtration materials: Paper, microglass or stainless steel wire mesh

Benefits: LF-series filters have side inlets and bottom outlets on the same level

Pressure filters
PN > 1450 psi (100 bar)

Series ML, MNL, MF, MFO, MLO

Application: Mounted in pressure lines; threaded design

Operating pressure: Up to 2320 psi (160 bar)

Flow rate: Up to 119 gpm (450 l/min)

Filtration materials: Microglass or stainless steel wire mesh

Benefits: Economical, lightweight filter used for low to medium pressure applications. Filter requires minimal clearance during element change, saving valuable space
Pressure filters
PN > 1450 psi (100 bar)

Series HP3
Application: High pressure filters
Operating pressure: Up to 6000 psi (420 bar)
Flow rates: Up to 357 gpm (1350 l/min)
Filtration materials: Paper, microglass or stainless steel wire mesh
Benefits: In-line or flange mounting; various port and \(\Delta P \) indicator options. Possible to accommodate very high flow rates with a single housing

Manifold mounted pressure filters
PN > 1450 psi (100 bar)

Series HPF, HPP
Application: Flange or manifold mounted in pressure lines
Operating pressure: 2320 psi (160 bar), 4568 psi (315 bar)
Flow rates: Up to 357 gpm (1350 l/min)
Filtration materials: Paper, microglass or stainless steel wire mesh
Benefits: Simplified mounting saves valuable space and provides filtration directly at the point needed. Prevents contaminants from passing downstream during element changes
Manifold mounted pressure filters, PN > 1450 psi (100 bar)

Series HPZ

Application: Manifold mounted in pressure lines

Operating pressure: Up to 4568 psi (315 bar)

Flow rates: Up to 24 gpm (90 l/min)

Filtration materials: Paper, microglass or stainless steel wire mesh

Benefits: Simplified mounting saves valuable space and provides filtration directly at the point needed. Prevents contaminants from passing downstream during element changes

Tank mounted suction filters

Series AS, TS, TSW

Application: Mounted to the side of the reservoir below oil levels. It is positioned vertically in the TS Series or horizontally in the TSW Series. The suction side faces the reservoir; a check valve prevents oil from draining from the reservoir during servicing

Flow rate: Up to 185 gpm (700 l/min)

Filtration materials: Paper, microglass or stainless steel wire mesh

Benefits: Suction filters can be serviced from the outside of the reservoir with no additional check valve needed

Off-line filters

Series NF

Application: Off-line filter for fine filtration of hydraulic and lubrication circuits; supplements the main filter

Operating pressure: 232 psi (16 bar)

Flow rate: Up to 264 gpm (1000 l/min)

Filtration materials: Paper, microglass or stainless steel wire mesh

Water absorption elements are also available

Benefits: Offers a large filtration area in a compact size allowing for high dirt-holding capacity even with small grades of filter fineness. Filter element can be changed quickly and without tools
Suction strainers

Series ASF

Application: Filters coarse particles to prevent pump damage
Operating temperature: -20 to 210°F (-28 to 100°C)
Flow rates: Up to 100 gpm (380 l/min)

Tank breathers

Series NBF, EBF, TBF, BFD, BF-WP

Application: Assures that no contamination reaches the tank through air exchange or water condensation in the reservoir
Flow rates: Up to 925 gpm (3500 l/min)
Filtration materials:
- NBF, BF-WP - Paper, microglass
- EBF, TBF - Paper
- BFD - Silica gel, microglass
Benefits: Protects system from airborne debris and/or moisture

Clogging indicators

Series AE, AOR/AOC, OP/OE, O, E, VS

Application: Wide range of clogging indicators for hydraulic and lubrication systems
Types: Optical, electrical, optical-electrical, electronic. Available variations include: block and threaded design, versions with explosion-proof, reset function and control function
Benefits: Easy integration into automatic control systems, allows for continuous contamination control and pressure differential measuring, early identification of increased contamination, and optimal utilization of filter elements
Filter efficiency data

Multi-pass performance according to ISO 16889

Filtration quotient $\beta_{x \mu m(c)}$ for filter materials

<table>
<thead>
<tr>
<th>particle size $[\mu m(c)]$</th>
<th>filtration quotient $\beta_{x \mu m(c)}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1VG</td>
</tr>
<tr>
<td>4</td>
<td>3VG</td>
</tr>
<tr>
<td>6</td>
<td>6VG</td>
</tr>
<tr>
<td>10</td>
<td>10VG</td>
</tr>
<tr>
<td>16</td>
<td>16VG</td>
</tr>
<tr>
<td>25</td>
<td>25VG</td>
</tr>
<tr>
<td>10API</td>
<td>10API</td>
</tr>
<tr>
<td>25API</td>
<td>25API</td>
</tr>
</tbody>
</table>

Calculation of the filtration quotient $\beta_{x \mu m(c)}$

$$\beta_{x \mu m(c)} = \frac{\text{amount of particles of the size } \geq x \mu m(c) \text{ before the filter}}{\text{amount of particles of the size } \geq x \mu m(c) \text{ after the filter}}$$

Conversion of filtration quotient $\beta_{x \mu m(c)}$ into filtration efficiency (in %)

$$\frac{\text{filtration quotient} - 1}{\text{filtration quotient}} \times 100 = \%$$

e.g. $\beta_{10 \mu m(c)} = 200 \rightarrow \frac{(200-1)}{200} \times 100 = 99.5\%$
Systems sensitivity and optimal cleanliness class

The cleanliness of the oil in a hydraulic system is determined by the micron rating of the filter element, the type of contamination, and the size and distribution of the particles in the fluid.

This table presents standard data values. To determine the quality of the oil, it should be analyzed using established procedures.

<table>
<thead>
<tr>
<th>System types Application case</th>
<th>Required class according to ISO 4406:99</th>
<th>Required class according to NAS 1638</th>
<th>Recommended Eaton filter material</th>
</tr>
</thead>
<tbody>
<tr>
<td>Against fine soiling and gumming up of sensitive systems</td>
<td>16/12/8</td>
<td>2-3</td>
<td>1 VG</td>
</tr>
<tr>
<td></td>
<td>17/13/9</td>
<td>3-4</td>
<td>3 VG</td>
</tr>
<tr>
<td>Heavy-duty servo motor systems; high pressure systems with long service life</td>
<td>19/15/11</td>
<td>4-6</td>
<td>6 VG</td>
</tr>
<tr>
<td>Proportional valves; industrial hydraulics with high operating safety</td>
<td>20/16/13</td>
<td>7-8</td>
<td>10 VG</td>
</tr>
<tr>
<td>Heavy industries; low pressure systems; mobile hydraulics</td>
<td>23/19/15</td>
<td>9-11</td>
<td>25 VG</td>
</tr>
</tbody>
</table>

In addition, Eaton's wide range of filter elements enables trouble-free operation of standard fluids, but also when filtering abrasive fluids, cooling lubricants or water-based fluids and are designed to achieve cleanliness class requirements. We can perform fluid analysis capabilities on-site or in our lab to determine the best filter element for your hydraulic and lubrication system requirements.

In addition to proprietary tests developed by Eaton, filter elements are tested according to several ISO standards:

- **ISO 2941**: Verification of collapse/burst pressure rating
- **ISO 2942**: Verification of fabrication integrity
- **ISO 2943**: Verification of material compatibility with fluids
- **ISO 3723**: Method for end load test
- **ISO 3724**: Determination of resistance to flow fatigue using particulate contaminant
- **ISO 3968**: Evaluation of pressure drop versus flow characteristics
- **ISO 16889**: Multi-pass method for evaluating filtration performance