Series EDA 406
NPS 2” CLASS 150-300 PSI

1) Connection for the potential equalization, only for application in the explosive area.

Switch lever standard in the front.

2) On request:
The switch lever can be moved to backside of the changeover valve, opposite to the inlet and outlet.

Please specify this configuration on the order.

Assignment of connections and functions:
A: process inlet SAE 2” 3000 PSI
B: process outlet SAE 2” 3000 PSI
C1/C2: air bleeding NPT ¾”
D1/D2: drain, dirt side NPT ¼”
E1/E2: drain, clean side NPT ¼”
F1: measuring connection BSPP ¼” dirt side
F2: measuring connection BSPP ¼” clean side

Position I: Filter 1 in operation
Position II: Filter 2 in operation

Weight: approx. 298 lbs.

Dimensions: inches

Designs and performance values are subject to change.
Description:

Stainless steel-pressure filter series EDA 406 have a working pressure up to 580 PSI. Pressure peaks can be absorbed with a sufficient safety margin.

A changeover ball valve between the two filter housings makes it possible to switch from the dirty filter side to the clean filter side without interrupting operation.

The filter element consists of star-shaped, pleated filter material which is supported on the inside by a perforated core tube and is bonded to the end caps with a high-quality adhesive. The flow direction is from outside to inside.

For cleaning the mesh element or changing the microglass element, remove the cover and take out the element. The mesh elements are not guaranteed to maintain 100% performance after cleaning.

For filtration finer than 40 μm use disposable elements made of microglass. Filter elements as fine as 5 μm(c) are available; finer filter elements are available upon request.

Eaton filter elements are known for a high intrinsic stability and an excellent filtration capability, a high dirt-retaining capacity and a long service life.

Eaton filter are suitable for all petroleum based fluids, HW-emulsions, most synthetic hydraulic fluids and lubrication oils.

Ship classifications available upon request.

Type index:

Complete filter: (ordering example)

EDA 406. 10VG. 30. E. P. VA. FS. 8. - VA.

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>IS21. AB. OE</td>
<td></td>
</tr>
</tbody>
</table>

1) series:
EDA = stainless steel-pressure filter change over, acc. to ASME-Code

2) nominal size: 406

3) filter material:
- 80G, 40G, 25G, 10G stainless steel wire mesh
- 25VG, 16VG, 10VG, 6VG, 3VG microglass
- 25API, 10API microglass according to API

4) filter element collapse rating:
- 30 = Δp 435 PSI

5) filter element design:
- E = single-end open
- S = with by-pass valve Δp 29 PSI
- S1 = with by-pass valve Δp 51 PSI

6) sealing material:
- P = Nitrile (NBR) V = Viton (FPM)

7) filter element specification:
- - = standard VA = stainless steel

8) process connection:
- FS = flange SAE 3000 PSI
- FA1 = flange ANSI CLASS 300 PSI
- FA2 = flange ANSI CLASS 300 PSI
- FA11 = flange ANSI CLASS 150 PSI
- FA12 = flange ANSI CLASS 150 PSI

9) process connection size:
- 8 = 2".

10) air bleeding/drain dirt side:
- - = standard (NPT ½"
- FA1 = flange ANSI ½" CLASS 300 PSI
- FA2 = flange ANSI ¾" CLASS 300 PSI
- FA11 = flange ANSI ½" CLASS 150 PSI
- FA12 = flange ANSI ¾" CLASS 150 PSI

11) filter housing specification:
- VA = stainless steel, see sheet-no. 69578

12) specification pressure vessel:
- IS21 = ASME VIII Div.1 with U-stamp, see sheet-no. 43415
- IS23 = ASME VIII Div.1 without U-stamp, see sheet-no. 55218

13) shut-off:
- - = without
- AB = with shut-off block

14) clogging indicator or clogging sensor:
- - = without
- AE = visual-electric, see sheet-no. 1609
- OP = visual, see sheet-no. 1628
- OE = visual-electric, see sheet-no. 1628
- VS5 = electronic, see sheet-no. 1641

To add an indicator/sensor to your filter, use the corresponding indicator data sheet to find the indicator details and add them to the filter assembly model code.

1) sealing surface rough grind 1600-3600 μm
2) sealing surface rough grind < 640 μm

Filter element: (ordering example)

01NL. 400. 10VG. 30. E. P. VA

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>01NL = standard filter element according to DIN 24550, T3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2) nominal size: 400

3) = see type index-complete filter

Accessories:

- SAE-counter flanges, see sheet-no. 1652
- drain- and bleeder connection, see sheet-no. 1659
Technical data:
operating temperature: +14°F to +212°F
operating medium: mineral oil, other media on request
max. operating pressure (pressure vessel): 580 PSI
test pressure acc. to ASME VIII Div. 1: 1.3 x operating pressure = 754 PSI
test pressure acc. to API 614, Chapter 1: 1.5 x operating pressure = 870 PSI
process connection system: SAE-flange 3000 PSI or ANSI-flange B16.5 CLASS 150/300 PSI
housing material: stainless steel, see sheet-no. 69578
sealing material: Nitrile (NBR) or Viton (FPM), other materials on request
installation position: vertical
bleeder connection: NPT ½" or ANSI ¾" CLASS 150/300 PSI
drain connection dirt side: NPT ½" or ANSI ¾" CLASS 150/300 PSI
drain connection clean side: NPT ½"
volume tank: 2 x 1.18 Gal.
operating pressure adapter flanges: according to B16.5 CLASS 150 PSI (FA11/FA12 max. 232 PSI) according to B16.5 CLASS 300 PSI (FA1/FA2 max. 580 PSI)

Pressure drop flow curves:

Filter calculation/sizing
The pressure drop of the assembly at a given flow rate Q is the sum of the housing ∆p and the element ∆p and is calculated as follows:

\[
\Delta p_{\text{assembly}} = \Delta p_{\text{housing}} + \Delta p_{\text{element}}
\]

\[
\Delta p_{\text{housing}} = (\text{see } \Delta p = f(Q) - \text{characteristics})
\]

\[
\Delta p_{\text{element (PSI)}} = \frac{Q (GPM)}{1000} \cdot \frac{MSK}{GPM} \cdot \frac{\rho}{0.876} \cdot \frac{V(SUS)}{d^3}
\]

For ease of calculation our Filter Selection tool is available online at www.eatonpowersource.com/calculators/filtration/

Material gradient coefficients (MSK) for filter elements
The material gradient coefficients in mbar/(l/min) apply to mineral oil (HLP) with a density of 0.876 kg/dm³ and a kinematic viscosity of 139 SUS (30 mm²/s). The pressure drop changes proportionally to the change in kinematic viscosity and density.

<table>
<thead>
<tr>
<th>EDA</th>
<th>VG</th>
<th>G</th>
<th>API</th>
</tr>
</thead>
<tbody>
<tr>
<td>406</td>
<td>3VG</td>
<td>6VG</td>
<td>10VG</td>
</tr>
<tr>
<td>0.700</td>
<td>0.486</td>
<td>0.311</td>
<td>0.271</td>
</tr>
</tbody>
</table>

\[\Delta p = f(Q) - \text{characteristic according ISO 3968}\]

The pressure drop characteristics apply to mineral oil (HLP) with a density of 0.876 kg/dm³. The pressure drop changes proportionally to the density.
Symbols:

Filter without bypass valve

Filter with bypass valve

Spare parts:

<table>
<thead>
<tr>
<th>item</th>
<th>qty.</th>
<th>designation</th>
<th>dimension</th>
<th>article-no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>filter element</td>
<td>01.NL400...</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>gaskets for filter housing:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.1</td>
<td>4</td>
<td>O-ring</td>
<td>56 x 3</td>
<td></td>
</tr>
<tr>
<td>0.2</td>
<td>4</td>
<td>O-ring</td>
<td>70 x 4</td>
<td></td>
</tr>
<tr>
<td>0.3</td>
<td>4</td>
<td>O-ring</td>
<td>2"</td>
<td></td>
</tr>
<tr>
<td>0.4</td>
<td>4</td>
<td>O-ring</td>
<td>24 x 3</td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>2</td>
<td>support ring</td>
<td>30 x 25.4 x 5</td>
<td></td>
</tr>
<tr>
<td>0.6</td>
<td>2</td>
<td>O-ring</td>
<td>10 x 2</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>10</td>
<td>screw plug</td>
<td>NPT ½"</td>
<td>307766</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>clogging indicator, visual-electric</td>
<td>OE</td>
<td>see sheet-no. 1628</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>clogging indicator, visual</td>
<td>OP</td>
<td>see sheet-no. 1628</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>clogging indicator, visual-electric</td>
<td>AE</td>
<td>see sheet-no. 1609</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>clogging sensor, electronic</td>
<td>VSS</td>
<td>see sheet-no. 1641</td>
</tr>
<tr>
<td>10</td>
<td>2</td>
<td>screw plug</td>
<td>BSPP 1/4"</td>
<td>306668</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>pressure balance valve</td>
<td>3/8"</td>
<td>310316</td>
</tr>
</tbody>
</table>

Test methods:

Filter elements are tested according to the following ISO standards:

ISO 2941 Verification of collapse/burst resistance
ISO 2942 Verification of fabrication integrity
ISO 2943 Verification of material compatibility with fluids
ISO 3723 Method for end load test
ISO 3724 Verification of flow fatigue characteristics
ISO 3968 Evaluation of pressure drop versus flow characteristics
ISO 16889 Multi-pass method for evaluating filtration performance

For more information, please email us at filtration@eaton.com or visit www.eaton.com/filtration