Series IFPM 72

Weight: approx. 1165 lbs.

Dimensions: inches

Designs and performance values are subject to change.
Fluid Purifier System
Series IFPM 72

Description:

Effects of Water Contamination:

Water is one of the most common contaminants and the second most destructive besides particulate contamination. Some of the most damaging problems water contamination can cause are:

- Fluid breakdown
- Additive depletion
- Reduction of the lubrication properties of the fluid
- Oil oxidation
- Internal corrosion
- Abrasive wear in system components
- Reduced dielectric strength

Principle of Operation:

The contaminated fluid is drawn into the Fluid Purifier System by a vacuum.

The fluid is passing a heater which is raising the temperature in order to increase the dewatering speed.

The fluid then enters through a solenoid valve into the vacuum chamber. In the vacuum chamber a big free surface is created with filling material. Here the water is absorbed by the air. Through an oil mist separator the humid air is released to the atmosphere with a vacuum pump.

With a gear pump the vacuum chamber is drained and the fluid is pumped back to the system through a high efficiency particulate removal filter.

The standard installed water sensor allows a permanent control of the water saturation of the fluid.

Type index:

Fluid Purifier System: (ordering example)

IFPM. 72. 6VG. 10. B. V. -.

P23. D01. VP07. VS5. A

series:
IFPM = Fluid Purifier System, mobile

nominal size: 72

filter material:
10VG, 6VG, 3VG, 1VG microglass

filter element collapse rating:
10 = Δp 145 PSI (1000 kPa)

filter element design:
B = both sides open

sealing material:
V = Viton (FPM)

filter element specification:
- = standard
VA = stainless steel

pump unit:
P23 = pump unit 23, NG 80.50

motor:
D01 = rotary current motor 50 Hz:
2.0 HP, 3-phase, 220…240/380…420V
rotary current motor 60 Hz:
2.4 HP, 3-phase, 220…277/380…480V

vacuum pump:
VP07 = vacuum pump 07:
50 Hz: 1.6 kW, 3-phase, 220…240/380…420V
60 Hz: 2.0 kW, 3-phase, 220…277/380…480V

clogging sensor:
VS5 = VS5.1,5.V.-.NO.-.B.GS5, electric, at p1 and p2, 22 PSI (150 kPa), see sheet no. 1641

supply voltage:
A = 380V-415V: 50/60 Hz; 3Ph + N + PE
(delivery with 32A CEE plug for 3-phase current)
B = 440V-480V: 60 Hz; 3Ph + PE
E = 380V-415V: 50/60 Hz; 3Ph + PE
X = other voltage on request

Filter element: (ordering example)

01NR. 630. 6VG. 10. B. V. -.

Bauart:
01NR = standard-return-line filter element according to DIN 24550, T4

nominal size: 630

see type index- Fluid Purifier Systems
Technical data:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inlet connection</td>
<td>1 ½" SAE-flange 3000 PSI</td>
</tr>
<tr>
<td>Outlet connection</td>
<td>1 ¼" SAE-flange 3000 PSI</td>
</tr>
<tr>
<td>Circulation flow rate:*</td>
<td>18.5 GPM (50 Hz) / 22.3 GPM (60 Hz)</td>
</tr>
<tr>
<td>Operating vacuum</td>
<td>-8.7 PSI (-60 kPa)</td>
</tr>
<tr>
<td>Heater power</td>
<td>supply voltage A + E: 6000 Watt/400V</td>
</tr>
<tr>
<td></td>
<td>supply voltage B: 6000 Watt/460V</td>
</tr>
<tr>
<td>Filter type</td>
<td>NF 631</td>
</tr>
<tr>
<td>Seal material</td>
<td>Viton (FPM)</td>
</tr>
<tr>
<td>Viscosity</td>
<td>56...3200 SUS</td>
</tr>
<tr>
<td>Dewatering rate:**</td>
<td>14 gal./day</td>
</tr>
<tr>
<td>Protection class</td>
<td>IP54</td>
</tr>
<tr>
<td>Ambient temperature</td>
<td>+32°F to +100°F</td>
</tr>
<tr>
<td>Fluid temperature</td>
<td>+50°F to +176°F</td>
</tr>
<tr>
<td>External protection</td>
<td>25 A</td>
</tr>
</tbody>
</table>

* At a viscosity of the fluid of 146 SUS.

** Dewatering rate of free water, at a hydraulic oil of the viscosity class ISO VG32 and a fluid temperature of 140°F.

Test methods:

Filter elements are tested according to the following ISO standards:

- ISO 2941 Verification of collapse/burst resistance
- ISO 2942 Verification of fabrication integrity
- ISO 2943 Verification of material compatibility with fluids
- ISO 3723 Method for end load test
- ISO 3724 Verification of flow fatigue characteristics
- ISO 3968 Evaluation of pressure drop versus flow characteristics
- ISO 16889 Multi-pass method for evaluating filtration performance

Note: Spare parts see maintenance manual.