READ INSTRUCTIONS BEFORE INSTALLING OR OPERATING THIS DEVICE. KEEP FOR FUTURE REFERENCE.

1. Safety instructions
 - Switch main power off before connecting or disconnecting the device. Risk of explosion!
 - To ensure sufficient connection cooling, please keep a distance of 200 mm above and below the device as well as a lateral distance of 5 mm to other units.
 - Note that the enclosure of the device can become very hot depending on the ambient temperature and load of the power supply. Risk of burns!
 - The main power must be turned off before connecting or disconnecting wires to the terminals!
 - Do not introduce any objects into the unit!
 - Dangerous voltage present for at least 5 minutes after disconnecting all sources of power.
 - The power supplies are built-in units and must be installed in a cabinet or room (condensation free environment and indoor location) that is relatively free of conductive contaminants.

 CAUTION: "FOR USE IN A CONTROLLED ENVIRONMENT".

2. Device description (Fig. 1)
 - Input terminal block connector
 - Output terminal block connector
 - DC voltage adjustment potentiometer
 - DC OK control LED (green)
 - Universal mounting rail system

3. Mounting (Fig. 2)
 - The power supply unit can be mounted on 35 mm DIN rails in accordance with EN 60715. The device should be installed with input terminal block on the bottom.
 - Each device is delivered ready to install.
 - Snap on the DIN rail as shown in Fig. 2.
 - 1. Tilt the unit slightly upwards and put it onto the DIN rail.
 - 2. Push downwards until stopped.
 - 3. Press against the bottom front side for locking.
 - 4. Shake the unit slightly to ensure that it is secured.

4. Dismounting (Fig. 3)
 - To uninstall, pull or slide down the latch as shown in Fig. 3. Then, slide the PSU in the opposite direction, release the latch and pull out the PSU from the rail.

5. Connection
 - The terminal block connectors allow easy and fast wiring.
 - You can use flexible (stranded wire) or solid cables with cross sections:

<table>
<thead>
<tr>
<th>Cross Section</th>
<th>Stranded / Solid</th>
<th>Torque</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) 1.0 - 1.5 mm²</td>
<td>22 - 18 AWG</td>
<td>2 - 3.5 Nm</td>
</tr>
<tr>
<td>(2) 0.8 - 1.5 mm²</td>
<td>28 - 22 AWG</td>
<td>1 - 2.5 Nm</td>
</tr>
</tbody>
</table>

 *Ensure that all output terminals are connected.

 To secure reliable and shock proof connections, the stripping length should be 7 mm (see Fig. 4 (1)).
 - Please ensure that wires are fully inserted into the connecting terminals as shown in Fig. 4 (2).
 - In accordance to EN 60950 / UL 60950, flexible cables require ferrules.

6. Electrical data
 - Use appropriate copper cables that are designed to sustain operating temperature of:
 - L1: +75°C for ambient not exceeding 60°C, and +90°C for ambient exceeding 60°C for Canada.
 - 450-800 V to any two terminals, L1 / L2, or L1 / L2, or L1 / L3, or L2 / L3, or L3 non-polarized.

5.1. Input connection (Fig. 1, Fig. 5)
 - Use L1, L2, L3 and PE connections of input terminal connector to establish the 3 x 400-500 VAC input (2-Phase)
 - Use the “+” and “-” screw connections to establish the 24Vdc connection. The output provides 24 VDC.

5.2. Output connection (Fig. 1 (2))
 - Use the + and - screw connections to establish the 24Vdc connection. The output provides 24 VDC.
 - The output voltage can be adjusted from 24 to 28 VDC on the potentiometer. The green LED DC OK displays correct function of the output (Fig. 1 (4)). The device has a short circuit and overload protection and an overvoltage protection limited to 35 VDC.

5.3. Output characteristic curve
 - The device functions normal under operating line and load conditions. In the event of a short circuit or overload the output voltage and current collapses (I_{OL} or I_{OC} is >I_{Isurge} (150%)). The secondary voltage is reduced and bounces until short circuit or overload on the secondary side has been removed.

5.4. Thermal behavior (Fig. 6)
 - In the case of ambient temperatures above +50°C (Vertical), the output capacity has to be reduced by 2.5% per degree Celsius increase in temperature. If the output capacity is not reduced when T_{Amb} > 50°C, the device will run into thermal protection by switching off i.e. device will go in bouncing mode and will recover when ambient temperature is lowered or load is reduced as far as necessary to keep device in working condition.

FOR TECHNICAL ASSISTANCE CALL 1 - 877 - ETN - CARE

IL125014EN

Rev. 01
Input (AC)

- **Nominal input voltage / frequency**: 3 x 400-500 VAC / 50-60 Hz or 500 VDC (for ITE only)
- **Nominal current**: < 1.70 A @ 3 x 400 VAC
 < 2.40 A @ 500 VDC
- **Frequency**: 47-63 Hz
- **Input current limitation**: I²t (+25°C) typ.
 < 60 A @ 3 x 400 VAC & 3 x 500 VAC
- **Mains buffering at nominal load (typ.)**: > 20 ms @ 3 x 400 VAC & 3 x 500 VAC
- **Inrush current limitation**: I²t (+25°C) typ.
 < 60 A @ 3 x 400 VAC & 3 x 500 VAC
- **Turn-on time**: < 1.5 sec.
- **Internal fuse**: T 4 A H / 500 V
- **Recommended backup fuse**: 3 x circuit breakers 10 A or 16 A
- **Nominal voltage**: 240 - 280 VDC (maximum power ≤ 960 W)

Output (DC)

- **Nominal output voltage Uₙ / tolerance**: 24 VDC ± 2%
- **Nominal current**: 40 A
- **Derating**: > 50°C (2.5 % / °C) in Vertical
- **Max. power dissipation idling / nominal load approx.**: 94 W
- **Efficiency**: > 92.0% @ 3 x 400 VAC & 3 x 500 VAC
- **Residual ripple / peak switching (20 MHz) (at nominal values)**: < 60 mVpp / < 240 mVpp
- **Parallel operation**: PSG960R24SM / With ORing Diode

General Data

- **Type of housing**: Aluminum
- **Signals**: Green LED DC OK
- **MTBF**: > 300,000 hrs.
- **Dimensions (L x W x H)**: 121 mm x 255 mm x 117.3 mm
- **Weight**: 2.60 kg
- **Connection method**: Screw connection
- **Stripping length**: 7 mm
- **Operating temperature (surrounding air temperature)**: -25°C to +65°C (Refer to Fig. 6)
- **Storage temperature**: -25°C to +65°C
- **Humidity at +25°C, no condensation**: < 95%, RH
- **Vibration (non-operating)**: 10 to 500 Hz @ 30 m/s² (3 G peak); displacement of 0.35 mm, 60 min. per axis for all X, Y, Z directions in acc. with IEC 60068-2-6
- **Shock (in all directions)**: 30 G (300 m/s²) in all directions according to IEC 60068-2-27
- **Altitude (operating)**: 2,000 Meters for industrial application
 2,500 Meters for ITE application
- **Pollution degree**: 2
- **Climatic class**: 3K3 according to EN 60721

Certification and Standards

- **Electrical equipments of machines**: IEC 60204-1 (over voltage category III)
- **Electronic equipment for use in electrical power installations**: EN 60717 / IEC 62100
- **Safety entry low voltage**: PELV (EN 60204), SELV (EN 60950)
- **Industrial control equipment**: cULus listed to UL 508 and CSA C22.2 No.107.1-01,
 CSA to CSA C22.2 No.107.1-01 (File No. 250468)
- **Protection against electric shock**: DIN 51706-410
- **CE**: In conformance with EMC directive 2004/108/EC (only AC input) and low voltage directive 2006/95/EC
- **Component Power Supply for general use**: EN 61204-3
- **ITE**: EN 55022, EN 61000-3-2, EN 61000-3-3, EN 55024
- **Industrial**: EN 55011
- **Limitation of mains harmonic currents**: EN 61000-3-2

RoHS Compliant: Yes

Safety and Protection

- **Transient surge voltage protection**: VARISTOR
- **Current limitation at short-circuits approx.**: Iₜₜₜₑᵣₘ ≤ 150 % of Pₒₜₜₑᵣₑₑ typically
- **Surge voltage protection against internal surge voltages**: Yes
- **Nominal input voltage**: 4 kVAC
- **Input / PE**: 2 kVAC
- **Output / PE**: 1.5 kVAC
- **Protection degree**: IP20
- **Safety class**: Class 1 with PE connection