

HVX9000 AF Drives

User Manual

August 2006 Supersedes April 2005

Important Notice – Please Read

The product discussed in this literature is subject to terms and conditions outlined in Eaton Electrical Inc. selling policies. The sole source governing the rights and remedies of any purchaser of this equipment is the relevant Eaton Electrical Inc. selling policy.

NO WARRANTIES, EXPRESS OR IMPLIED, INCLUDING WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE OR MERCHANTABILITY, OR WARRANTIES ARISING FROM COURSE OF DEALING OR USAGE OF TRADE, ARE MADE REGARDING THE INFORMATION, RECOMMENDATIONS AND DESCRIPTIONS CONTAINED HEREIN. In no event will Eaton Electrical Inc. be responsible to the purchaser or user in contract, in tort (including negligence), strict liability or otherwise for any special, indirect, incidental or consequential damage or loss whatsoever, including but not limited to damage or loss of use of equipment, plant or power system, cost of capital, loss of power, additional expenses in the use of existing power facilities, or claims against the purchaser or user by its customers resulting from the use of the information, recommendations and descriptions contained herein.

The information contained in this manual is subject to change without notice.

Table of Contents

LIST OF FIGURES — FOR LISTING BY TOPIC SEE APPENDIX D	iv
	vii
SAFETY Definitions and Symbols. Hazardous High Voltage Warnings, Cautions and Notices	ix ix x
CHAPTER 1 — OVERVIEW	
How to Use This Manual Receiving and Inspection Catalog Numbering System	1-1 1-1 1-2
CHAPTER 2 — MOUNTING	
Space Requirements Environmental Requirements Standard Mounting Instructions	2-1 2-2 2-2
CHAPTER 3 — POWER WIRING	
Guidelines UL Compatible Cable Selection and Installation Installation Instructions. Standard Wiring Diagrams and Terminal Locations Power and Motor Wiring Terminal Photos Checking the Cable and Motor Insulation	3-1 3-2 3-4 3-7 3-10 3-16
CHAPTER 4 — CONTROL WIRING	
General Information	4-1 4-3
CHAPTER 5 — INTELLIPASS BYPASS OPTION	
Product Description Catalog Number Selection Dimensions Power Wiring IntelliPass Control Wiring Instructions	5-1 5-1 5-2 5-9 5-23
CHAPTER 6 — MENU INFORMATION	
Keypad Operation	6-1 6-4 6-7
CHAPTER 7 — START-UP	
Safety Precautions	7-1 7-2
CHA PTER 8 — APPLICATION INFORMATION Parameter Menus	8-1
APPENDIX A — TECHNICAL DATA	
Specifications. Power Ratings Power Loss and Switching Frequency. Dimensions EMC Capability Declaration of Conformity	A-20
Warranty and Liability Information	
APPENDIX B — PARAMETER TABLES	B-1
APPENDIX C — FAULT AND WARNING CODES.	C-1
APPENDIX D — FIGURES AND TABLES BY TOPICS	D-1

List of Figures — For Listing by Topic see Appendix D

Figure 2-1: Mounting Space Requirements	2-1
Figure 3-1: Input Power and Motor Cable Stripping and Wire Lengths	3-4
Figure 3-2: Wiring Plate	3-5
Figure 3-3: Ground Terminal Locations	3-5
Figure 3-4: Cable Protection Plate	3-6
Figure 3-5: Principle Wiring Diagram of HVX Power Unit,	07
FR4, FR5 and FR6	3-7
Figure 3-6: Principle Wiring Diagram of HVX Power Unit,	3-8
FR6, FR7 and FR8	3-8
Figure 3-7: Principle Wiring Diagram of HVX Power Unit, FR9 and FR10	20
Figure 3-8: FR4 Power and Motor Wiring Terminals	
Figure 3-9: FR5 Power and Motor Wiring Terminals	
Figure 3-10: FR6 Power and Motor Wiring Terminals	
Figure 3-11: FR7 Power and Motor Wiring Terminals	
Figure 3-12: FR8 Power and Motor Wiring Terminals	
Figure 3-13: FR9 Power and Motor Wiring Terminals	
Figure 4-1: Option Board Slots	4-1
Figure 4-2: Option Board A9 Wiring Diagram	4-3
Figure 4-3: Option Board A9 Jumper Location and Settings (Slot A)	4-5
Figure 4-4: Option Board A2 Wiring Diagram (Slot B)	4-5
Figure 4-5: Option Board A2 Terminal Locations	4-6
Figure 4-6: Positive/Negative Logic	4-6
Figure 5-1: HVX IntelliPass/IntelliDisconnect Dimensions	5-2
Figure 5-2: HVX Series Enclosed Drive Dimensions — Box A	5-3
Figure 5-3: HVX Series Enclosed Drive Dimensions — Box B	5-4
Figure 5-4: HVX Series Enclosed Drive Dimensions — Box C	5-5
Figure 5-5: HVX Series Enclosed Drive Dimensions — Box A	5-6
Figure 5-6: HVX Series Enclosed Drive Dimensions — Box B	5-7
Figure 5-7: HVX Series Enclosed Drive Dimensions — Box C	5-8
Figure 5-8: Identification of TYPE 3R Components	5-9
Figure 5-9: Tools Required	
Figure 5-10: Schematic for Static Checks	
Figure 5-11: Identification of TYPE 1 Components	
Figure 5-12: IntelliPass Power and Motor Terminal Wiring Example	
Figure 5-13: IntelliPass Control Diagram	
Figure 5-14: Option Board B5 Wiring Diagram	
Figure 5-15: Option Board B5 Terminal Location	5-24
Figure 6-1: Keypad and Display	6-1
Figure 6-2: Operate Menu Navigation	6-5
Figure 6-3: Enable Bypass	6-6
Figure 6-4: Main Menu Navigation — 1 of 2	6-7
Figure 6-5: Main Menu Navigation — 2 of 2	6-8
Figure 6-6: Parameter Menu Structure	6-9
Figure 6-7: Keypad Control Menu	6-9
Figure 6-8: System Menu Structure	6-11
Figure 6-9: Expander Board Menu Structure	6-19
Figure 6-10: Digital Inputs DIN1, DIN2, DIN3 Status	
Figure 6-11: Digital Inputs DIN4, DIN5, DIN6 Status	
Figure 6-12: Digital Outputs DO1, RO1, RO2 Status	6-22

List of Figures — For Listing by Topic see Appendix D, continued

Figure 6-13: Active Fault Display Example	6-22
Figure 6-14: Sample Fault History Display	6-24
Figure 6-15: Operate Menu Navigation	6-25
Figure 8-1: DC Braking Command	8-6
Figure 8-2: Al1 Signal Filtering	8-10
Figure 8-3: Al2 Signal Filtering	
Figure 8-4: Control Place B with and without Reference Scaling	
Figure 8-5: Analog Output Filtering	
Figure 8-6: Analog Output Inversion	
Figure 8-7: Analog Output Scale	
Figure 8-8: Output Frequency Supervision	
Figure 8-9: External Brake Control	
Figure 8-10: Acceleration/Deceleration Curve (S-Shaped)	8-29
Figure 8-11: DC Braking Time When Stop Mode = Coasting	
Figure 8-12: DC Braking Time When Stop Mode = Ramp	
Figure 8-13: DC Braking Time at Start	
Figure 8-14: Skip Frequency Area Setting	
Figure 8-15: Ramp Speed Scaling Between Skip Frequencies	
Figure 8-16: Linear and Squared Change of Motor Voltage	
Figure 8-17: Programmable V/f Ratio	
Figure 8-18: Motor Cooling Power	
Figure 8-19: Motor Temperature Calculation	
Figure 8-20: Stall Characteristics Settings	
Figure 8-21: Minimum Load Setting	
Figure 8-22: Underload Time Counter Function	
Figure 8-23: Example of Automatic Restart with Two Restarts	
Figure 8-24: Frequency Reference Logic of the Fire Mode PID Application	
When Running in Fire Mode	8-49
Figure 8-25: Examples of Actual Value Signal Scaling	8-52
Figure 8-26: PID Controller D-Time, Example 1	8-54
Figure 8-27: PID Controller D-Time, Example 2	8-55
Figure 8-28: PID Controller D-Time, Example 3	8-55
Figure 8-29: Frequency Converter Sleep Function	8-57
Figure 8-30: PID Output + Motor Potentiometer Reference	8-58
Figure A-1: Power Loss as Function of Switching Frequency:	
1 – 3 hp 230V, 1-1/2 – 7-1/2 hp 480V	A-5
Figure A-2: Power Loss as Function of Switching Frequency:	
5 – 10 hp 230V, 10 – 20 hp 480V	A-5
Figure A-3: Power Loss as Function of Switching Frequency:	
15 – 20 hp 230V, 25 – 40 hp 480V	A-6
Figure A-4: Power Loss as Function of Switching Frequency:	
50 – 75 hp 480V	A-6
Figure A-5: Power Loss as Function of Switching Frequency:	• -
100 – 150 hp 480V	A-7
Figure A-6: Power Loss as Function of Switching Frequency:	^ 7
200 – 250 hp 480V	A-7
Figure A-7: NEMA Type 1 and NEMA Type 12 HVX9000 Drive Dimensions, FR4, FR5 and FR6	A-8
Figure A-8: HVX9000 Dimensions, NEMA Type 1 and NEMA Type 12 with	H-0
Flange Kit, FR4, FR5 and FR6	A-9
	, , , ,

List of Figures — For Listing by Topic see Appendix D, continued

Figure A-9: HVX9000 Dimensions, NEMA Type 1 and NEMA Type 12, FR7 A-10 Figure A-10: HVX9000 Dimensions, NEMA Type 1 and NEMA Type 12, FR8 A-11
Figure A-11: HVX9000 Dimensions, NEMA Type 1 and NEMA Type 12, with Flange Kit, FR7 and FR8 A-12
Figure A-12: HVX9000 Dimensions, NEMA Type 1 and NEMA Type 12, FR9 A-13
Figure A-13: HVX9000 Dimensions, NEMA Type 1 and NEMA Type 12 FR9 A-14
Figure A-14: HVX9000 Dimensions, NEMA Type 1 and NEMA Type 12 FR9
with Flange Kit
Figure A-15: HVX9000 Dimensions, NEMA Type 1 and NEMA Type 12 FR10
Freestanding Drive A-16
Figure A-16: HVX9000 Dimensions, FR10 Open Chassis A-17
Figure A-17: HVX9000 Dimensions, NEMA Type 1 FR11 Freestanding Drive A-18
Figure A-18: HVX9000 Dimensions, FR11 Open Chassis A-19

List of Tables — For Listing by Topic see Appendix D

Table 1-1: HVX9000 Drive Catalog Numbering System	1-2
Table 2-1: Space Requirements for Mounting an HVX9000 Drive	2-1
Table 2-2: Cooling Airflow Requirements	2-2
Table 3-1: Cable Spacings	3-1
Table 3-2: Cable and Fuse Sizes — 208 – 240V Ratings	3-2
Table 3-3: Cable and Fuse Sizes — 380 – 500V Ratings	3-2
Table 3-4: Cable and Fuse Sizes — 575 – 690V Ratings	3-3
Table 3-5: Maximum Symmetrical Supply Current Table 2-6: Device Consection Tightening Tenner	3-3
Table 3-6: Power Connection Tightening Torque Table 3-7: Power and Mater Cable Stringing Log aths	3-3
Table 3-7: Power and Motor Cable Stripping Lengths Table 4.4: Ticktonian Tanana of Tananing Lengths	3-4
Table 4-1: Tightening Torques of Terminals Table 4-2: Control Wiking Instructions	4-2
Table 4-2: Control Wiring Instructions Table 4-2: Outling December 2010	4-2
Table 4-3: Option Board A9 Terminal Descriptions	4-4
Table 4-4: Option Board A2 Terminal Descriptions Table 5.4: UNION Provide A Terminal Descriptions	4-6
Table 5-1: HVX IntelliPass Drive Catalog Numbering System	5-1
Table 5-2: NEMA TYPE 1 IntelliPass/IntelliDisconnect Drive Dimensions Table 5-2: NEMA TYPE 1 IntelliPass/IntelliDisconnect Drive Dimensions	5-2
Table 5-3: HVX Series TYPE 12 Enclosed IntelliPass/IntelliDisconnect	гa
Drive Dimensions Table 5-4: HVX Series TYPE 12 Enclosed IntelliPass/IntelliDisconnect	5-3
Drive Dimensions	5-4
Table 5-5: HVX Series TYPE 12 Enclosed IntelliPass/IntelliDisconnect	5-4
Drive Dimensions	5-5
Table 5-6: HVX Series TYPE 3R Enclosed IntelliPass/IntelliDisconnect	5-5
Drive Dimensions	5-6
Table 5-7: HVX Series TYPE 3R Enclosed IntelliPass/IntelliDisconnect	00
Drive Dimensions	5-7
Table 5-8: HVX Series TYPE 3R Enclosed IntelliPass/IntelliDisconnect	•
Drive Dimensions	5-8
Table 5-9: Bypass Power Wiring Instructions — TYPE 3R and 12	5-10
	5-14
Table 5-11: Static Checks of Inverter	
Table 5-12: Static Checks of DC Bus	5-15
Table 5-13: Bypass Power Wiring Instructions — TYPE 1	5-16
Table 5-14: Option Board B5 Terminal Descriptions	5-23
Table 6-1: LCD Status Indicators	6-2
Table 6-2: LED Status Indicators	6-2
Table 6-3: Navigation Buttons	6-3
Table 6-4: Operate Menu Items — IntelliPass Application Example	6-5
Table 6-5: Total Counters	6-17
Table 6-6: Trip Counters	6-17
Table 6-7: Software Information	6-18
Table 6-8: Application Information	6-18
Table 6-9: Hardware Information	6-18
Table 6-10: Slot A Expander Board Information	6-18
Table 6-11: Monitoring Menu Items	6-21
Table 6-12: Fault Types Tupe	6-23
Table 6-13: Fault Time Data Control	6-24
Table 6-14: Operate Menu Items — IntelliPass Application Example	6-25
Table 8-1: Scaling Factor for the Analog Output	8-16
Table 8-2: DO1 Function Settings	8-17

List of Tables — For Listing by Topic see Appendix D, continued

	0.40
Table 8-3: RO1 Function Settings	
Table 8-4: RO2 Function Settings	
Table 8-5: RO3 Content Settings	
Table 8-6: Scaling Factor for the Analog Output	
Table 8-7: Scaling Factor for the Analog Output	
Table 8-8: Binary Inputs for Seven Preset Speeds	8-59
Table 8-9: Fieldbus Output Selection Examples	
Table A-1: HVX9000 Drive Specifications	
Table A-2: 230V I Output Power Ratings	A-3
Table A-3: 480V I Output Power Ratings	
Table A-4: 575V I	A-4
Table A-5: HVX9000 Drive Dimensions	
Table A-6: Dimensions for HVX9000, FR4, FR5 and FR6 with Flange Kit	A-9
Table A-7: Dimensions for the Flange Opening, FR4 to FR6	
Table A-8: HVX9000 Drive Dimensions, FR7	
Table A-9: HVX9000 Drive Dimensions, FR8	
Table A-10: Dimensions for HVX9000, FR7 and FR8 with Flange Kit	
Table A-11: Dimensions for the Flange Opening, FR7/FR8	
Table A-12: HVX9000 Drive Dimensions, FR9	
Table A-13: Dimensions for HVX9000, FR9	
Table A-14: Dimensions for HVX9000, FR9 with Flange Kit	
Table A-15: Dimensions for HVX9000, FR10 Freestanding Drive	
Table A-16: Dimensions for HVX9000, FR10 Open Chassis	
Table A-17: Dimensions for HVX9000, NEMA Type 1 FR11 Freestanding Drive	
Table A-18: Dimensions for HVX9000, FR11 Open Chassis	
Table B-1: Parameter Group G1.1: Basic	
Table B-2: Parameter Group G1.2: Input Signals	
Table B-3: Parameter Group G1.3: Output Signals	
Table B-4: Parameter Group G1.4: Drive Control	
Table B-5: Parameter Group G1.5: Skip Frequencies	
Table B-6: Parameter Group G1.6: Motor Control	
Table B-7: Parameter Group G1.7: Protections	
Table B-8: Parameter Group G1.8: Auto-Restart Parameters	
Table B-9: Parameter Group G1.9: Fire Mode	
Table B-10: Parameter Group G1.10: IntelliPass Parameters	
Table B-11: Parameter Group G1.11: PID Control	
Table B-12: Parameter Group G1.12: Preset Speeds	
Table B-12: Parameter Group G1.12: Preset Speeds Table B-13: Parameter Group G1.13: Communication Bus	
Table B-13: Parameter Group G1.13: Communication Bus Table B-14: Monitoring Menu Items	
0	
Table C-1: Fault Codes	U-1

Safety

Definitions and Symbols

WARNING

This symbol indicates high voltage. It calls your attention to items or operations that could be dangerous to you and other persons operating this equipment. Read the message and follow the instructions carefully.

This symbol is the "Safety Alert Symbol." It occurs with either of two signal words: WARNING or CAUTION as described below.

WARNING

Indicates a potentially hazardous situation which, if not avoided, can result in serious injury or death.

Indicates a potentially hazardous situation which, if not avoided, can result in minor to moderate injury, or serious damage to the equipment. The situation described in the CAUTION may, if not avoided, lead to serious results. Important safety measures are described in CAUTION (as well as WARNING).

Hazardous High Voltage

WARNING

Motor control equipment and electronic controllers are connected to hazardous line voltages. When servicing drives and electronic controllers, there may be exposed components with housings or protrusions at or above line potential. Extreme care should be taken to protect against shock.

- Stand on an insulating pad and make it a habit to use only one hand when checking components.
- Always work with another person in case an emergency occurs.
- Disconnect power before checking controllers or performing maintenance.
- Be sure equipment is properly grounded.
- Wear safety glasses whenever working on electronic controllers or rotating machinery.

Warnings, Cautions and Notices

Read this manual thoroughly and make sure you understand the procedures before you attempt to install, set up, or operate this HVX9000 Adjustable Frequency Drive from Eaton's electrical business.

Warnings

WARNING

Be sure to ground the unit following the instructions in this manual. Ungrounded units may cause electric shock and/or fire.

WARNING

This equipment should be installed, adjusted, and serviced by qualified electrical maintenance personnel familiar with the construction and operation of this type of equipment and the hazards involved. Failure to observe this precaution could result in death or severe injury.

WARNING

Components within the HVX9000 power unit are live when the drive is connected to power. Contact with this voltage is extremely dangerous and may cause death or severe injury.

WARNING

Line terminals (L1, L2, L3), motor terminals (U, V, W) and the DClink/brake resistor terminals (-/+) are live when the drive is connected to power, even if the motor is not running. Contact with this voltage is extremely dangerous and may cause death or severe injury.

WARNING

Even though the control I/O-terminals are isolated from line voltage, the relay outputs and other I/O-terminals may have dangerous voltage present even when the drive is disconnected from power. Contact with this voltage is extremely dangerous and may cause death or severe injury.

WARNING

The HVX9000 drive has a large capacitive leakage current during operation, which can cause enclosure parts to be above ground potential. Proper grounding, as described in this manual, is required. Failure to observe this precaution could result in death or severe injury.

WARNING

Before applying power to the HVX9000 drive, make sure that the front and cable covers are closed and fastened to prevent exposure to potential electrical fault conditions. Failure to observe this precaution could result in death or severe injury.

An upstream disconnect/protective device must be provided as required by the National Electric Code (NEC). Failure to follow this precaution may result in death or severe injury.

Before opening the HVX9000 drive covers:

- Disconnect all power to the HVX9000 drive.
- Wait a minimum of 5 (five) minutes after all the lights on the keypad are off. This allows time for the DC bus capacitors to discharge.
- A hazardous voltage may still remain in the DC bus capacitors even if the power has been turned off. Confirm that the capacitors have fully discharged by measuring their voltage using a multimeter set to measure DC voltage.

Failure to follow the above precautions may cause death or severe injury.

WARNING

The HVX9000 output terminals U, V and W correspond to a phase rotation of ABC. If the input terminals L1, L2 and L3 have not been wired for ABC, the motor rotation will be different when powered from the bypass instead of the HVX9000 which can result in personal injury and equipment damage. In this situation the input line wiring must be changed to correspond to ABC rotation.

Cautions

CAUTION

Do not perform any meggar or voltage withstand tests on any part of the HVX9000 drive or its components. Improper testing may result in damage.

Prior to any tests or measurements of the motor or the motor cable, disconnect the motor cable at the HVX9000 output terminals (U, V, W) to avoid damaging the HVX9000 during the motor or cable testing.

CAUTION

Do not touch any components on the circuit boards. Static voltage discharge may damage the components.

CAUTION

Any electrical or mechanical modification to this equipment without prior written consent of Eaton will void all warranties and may result in a safety hazard in addition and voiding of the UL listing.

A

Install the HVX9000 drive on flame-resistant material such as a steel plate to reduce the risk of fire.

CAUTION

Install the HVX9000 drive on a perpendicular surface that is able to support the weight of the drive and is not subject to vibration, to lessen the risk of the drive falling and being damaged and/or causing personal injury.

CAUTION

Prevent foreign material such as wire clippings or metal shavings from entering the drive enclosure, as this may cause arcing damage and fire.

Install the HXV9000 drive in a well-ventilated room that is not subject to temperature extremes, high humidity, or condensation, and avoid locations that are directly exposed to sunlight, or have high concentrations of dust, corrosive gas, explosive gas, inflammable gas, grinding fluid mist, etc. Improper installation may result in a fire hazard.

Motor and Equipment Safety

Before starting the motor, check that the motor is mounted properly and aligned with the driven equipment. Ensure that starting the motor will not cause personal injury or damage equipment connected to the motor.

CAUTION

Set the maximum motor speed (frequency) in the HXV9000 drive according to the requirements of the motor and the equipment connected to it. Incorrect maximum frequency settings can cause motor or equipment damage and the potential for personal injury.

CAUTION

Before reversing the motor rotation, ensure that this will not cause personal injury or equipment damage.

Make sure that no power factor correction capacitors are connected to the HVX9000 output or the motor terminals to prevent HVX9000 malfunction and potential damage.

Make sure that the HVX9000 output terminals (U, V, W) are not connected to the utility line power as severe damage to the HVX9000 drive and personal injury may occur.

Chapter 1 — Overview

This chapter describes the purpose and contents of this manual, the receiving inspection recommendations and the HVX9000 catalog numbering system.

How to Use This Manual

The purpose of this manual is to provide you with information necessary to install, set and customize parameters, start-up, troubleshoot and maintain the HVX9000 drive from Eaton's electrical business. To provide for safe installation and operation of the equipment, read the safety guidelines at the beginning of this manual and follow the procedures outlined in the following chapters before connecting power to the HVX9000 drive. Keep this operating manual handy and distribute to all users, technicians and maintenance personnel for reference.

Chapter 1 – Overview Chapter 2 – Mounting Chapter 3 – Power Wiring Chapter 4 – Control Wiring Chapter 5 – IntelliPass Bypass Option Chapter 6 – Menu Information Chapter 7 – Start-Up Chapter 8 – Application Information Appendix A – Technical Data

Appendix B – Parameter Tables

Appendix C – Fault and Warning Codes

Receiving and Inspection

The HVX9000 AC drive has met a stringent series of factory quality requirements before shipment. It is possible that packaging or equipment damage may have occurred during shipment. After receiving your HVX9000 drive, please check for the following:

- Check to make sure that the package(s) includes the HVX9000 drive, the User Manual, rubber conduit covers, screws, conduit plate and ground straps.
- Inspect the unit to ensure it was not damaged during shipment.
- Make sure that the part number indicated on the nameplate corresponds with the Catalog Number on your order.

If shipping damage has occurred, please contact and file a claim with the carrier involved immediately.

If the delivery does not correspond to your order, please contact your Eaton representative.

Note: Do not destroy the packing. The template printed on the protective cardboard can be used for marking the mounting points of the HVX9000 on the wall or cabinet.

Catalog Numbering System

 $^{(1)}$ 480V Drives up to 40 hp (IL) are only available with Brake Chopper Option B.

- 480V Drives 50 hp (I_L) or larger are only available with Brake Chopper Option N.
- 230V Drives up to 20 hp (I_L) are only available with Brake Chopper Option **B**. 575V Drives are standard without Brake Chopper Option **N**.

² All 230V Drives and 480V Drives up to 250 hp (I_L) are only available with Input Option 1.

480V Freestanding Drives are available with Input Option 4 (EMC Level L). 575V Drives up to 200 hp (I_L) are only available with Input Option 4 (EMC Level L).

④ 480V Drives 300 – 600 hp (I_L) are available with enclosure style 0 (Chassis). 480V FR10 Freestanding Drives are available with enclosure style 1 (NEMA Type 1) or 2 (NEMA Type 12). FR11 Freestanding Drives are only available with enclosure style 1 (NEMA Type 1).

Note: Availability —

480V: 1-1/2 – 400 hp, 230V: 1 – 75 hp, 575V: 3 – 200 hp.

Chapter 2 — Mounting

HVX9000 drives may be mounted side-by-side or stacked vertically, as outlined in the following section.

Space Requirements

To ensure proper air circulation and cooling, follow the guidelines below.

Drive Type	Approximate Dimensions in Inches (mm) ⁽¹⁾							
Variable Torque Rating	Α	A ₂	В	C	D			
230V, 1 – 3 hp 480V, 1-1/2 – 7-1/2 hp	0.8 (20)		0.8 (20)	3.9 (100)	2.0 (50)			
230V, 5 – 10 hp 480V, 10 – 20 hp	0.8 (20)		0.8 (20)	4.7 (120)	2.4 (60)			
230V, 15 – 20 hp 480V, 25 – 40 hp 575V, 3 – 30 hp	1.2 (30)		0.8 (20)	6.3 (160)	3.1 (80)			
230V, 25 – 30 hp 480V, 50 – 75 hp 575V, 40 – 50 hp	3.1 (80)		3.1 (80)	11.8 (300)	3.9 (100)			
480V, 100 – 150 hp 575V, 60 – 100 hp	3.1 (80)	5.9 (150)	3.1 (80)	11.8 (300)	7.9 (200)			
480V, 200 – 250 hp 575V, 125 – 200 hp	2.0 (50)		3.1 (80)	15.7 (400)	9.8 (250) 13.8 [©] (350)			

Table 2-1: Space Requirements for Mounting an HVX9000 Drive

^① Dimensions represent the minimum clearance needed when mounting a drive. See **Figure 2-1** below.

A = clearance around the HVX9000.

 A_2 = clearance needed to change the fan without disconnecting the motor cables.

B = distance between adjacent HVX9000s or between the HVX9000 and an enclosure wall.

C = clearance above the HVX9000.

 $\mathsf{D}=\mathsf{clearance}$ below the HVX9000.

 $^{\odot}\,$ Minimum clearance below the HVX9000 needed to change the fan.

Figure 2-1: Mounting Space Requirements

If several units are mounted above each other, the clearance between the drives should equal C + D (see **Table 2-1** and **Figure 2-1** above). In addition, the outlet air used for cooling the lower unit must be directed away from the inlet air used by the upper unit.

Environmental Requirements

Ensure that the environment meets the requirements listed in **Table A-1** of **Appendix A** for any storage or operating situation.

The following table specifies the minimum airflow required in the area where the drive will be mounted. Note that this drive is suitable for installation in a compartment handling conditioned air.

Table 2-2: Cooling Airflow Requirements

Drive Type Variable Torque Ratings	Cooling Air Required
230V, 1 – 3 hp 480V, 1-1/2 – 7-1/2 hp	41 cfm (70 m ³ /h)
230V, 5 – 10 hp 480V, 10 – 20 hp	112 cfm (190 m ³ /h)
230V, 15 – 20 hp 480V, 25 – 40 hp 575V, 3 – 30 hp	250 cfm (425 m ³ /h)
230V, 25 – 30 hp 480V, 50 – 75 hp 575V, 40 – 50 hp	250 cfm (425 m ³ /h)
480V, 100 – 150 hp 575V, 60 – 100 hp	383 cfm (650 m ³ /h)
480V, 200 – 250 hp 575V, 125 – 200 hp	765 cfm (1300 m ³ /h)

Standard Mounting Instructions

- 1. Measure the mounting space to ensure that it allows for the minimum space surrounding the HVX9000 drive. Drive dimensions are in **Appendix A**.
- 2. Make sure the mounting surface is flat and strong enough to support the drive, is not flammable, and is not subject to excessive motion or vibration.
- 3. Ensure that the minimum airflow requirements for your drive are met at the mounting location.
- 4. Mark the location of the mounting holes on the mounting surface, using the template provided on the cover of the cardboard shipping package.
- 5. Using fasteners appropriate to your drive and mounting surface, securely attach the drive to the mounting surface using all 4 screws or bolts.

Chapter 3 — Power Wiring

Guidelines

To ensure proper wiring, use the following guidelines:

- Use heat-resistant copper cables only, +75°C or higher.
- The input line cable and line fuses must be sized in accordance with the rated input current of the unit. See **Tables 3-2** and **3-5**.
- Consistent with UL listing requirements, for maximum protection of the HVX9000 drive, UL recognized fuses type RK should be used.
- If motor temperature sensing is used for overload protection, the output wire size may be selected based on the motor specifications.
- If three or more shielded cables are used in parallel for the output on the larger units, every cable must have its own overload protection.
- Avoid placing the motor cables in long parallel lines with other cables.
- If the motor cables run in parallel with other cables, note the minimum distances between the motor cables and other cables given in **Table 3-1** below:

Table 3-1: Cable Spacings

Minimum Distance Between Cables in Feet (m)	Shielded Cable Length in Feet (m)		
1 (0.3)	≤164 (50)		
3.3 (1.0)	≤656 (200)		

- The spacings of **Table 3-1** also apply between the motor cables and signal cables of other systems.
- Maximum length of the motor cables is as follows:
 - 1 2 hp 230V units, 328 ft. (100m)
 - All other hp units, 984 ft. (300m)
- The motor cables should cross other cables at an angle of 90 degrees.
- If conduit is being used for wiring, use separate conduits for the input power wiring, the output power wiring, the signal wiring, and the control wiring.

UL Compatible Cable Selection and Installation

Use only copper wire with temperature rating of at least 167°F (75°C).

	Frame	NEC I			Wire Siz	е	Terminal Size	
-	Size	(A)	I _I (A)	Fuse (A) 1	Power	Ground	Power	Ground
1 1-1/2 2 3	FR4 FR4 FR4 FR4	4.2 6 6.8 9.6	4.8 6.6 7.8 11	10 10 10 15	14 14 14 14	14 14 14 14	16 – 12 16 – 12 16 – 12 16 – 12 16 – 12	16 – 14 16 – 14 16 – 14 16 – 14
5	FR5	15.2	17.5	20	12	12	16 – 8	16 – 8
7-1/2	FR5	22	25	30	10	10	16 – 8	16 – 8
10	FR5	28	31	40	8	8	16 – 8	16 – 8
15	FR6	42	48	60	4	8	14 – 0	10 – 2
20	FR6	54	61	80	2	6	14 – 0	10 – 2
25	FR7	68	72	100	2	6	14 - 0	10 - 00
30	FR7	80	87	110	1	6	14 - 0	10 - 00
40	FR7	104	114	125	1/0	4	14 - 0	10 - 00
50	FR8	130	140	175	3/0	2	4/3/00	$4 - 000 \\ 4 - 000 \\ 4 - 000$
60	FR8	154	170	200	4/0	0	000 – 350 MCM	
75	FR8	192	205	250	300	2/0	000 – 350 MCM	

Table 3-2: Cable and Fuse Sizes — 208 – 240V Ratings

^① UL recognized type RK.

Table 3-3: Cable and Fuse Sizes — 380 – 500V Ratings

	Frame	NEC I	1.		Wire Size		Terminal Size	
hp	Size	(A)	l _l (A)	Fuse (A) ①	Power	Ground	Power	Ground
1-1/2 2 3 5 7-1/2	FR4 FR4 FR4 FR4 FR4 FR4	3 3.4 4.8 7.6 11	3.3 4.3 5.6 7.6 12	10 10 10 10 15	14 14 14 14 12	14 14 14 14 14 14	16 - 12 16 - 12 16 - 12 16 - 12 16 - 12 16 - 12	16 - 14 16 - 14 16 - 14 16 - 14 16 - 14
10	FR5	14	16	20	10	12	16 - 8	16 – 8
15	FR5	21	23	30	10	10	16 - 8	16 – 8
20	FR5	27	31	35	8	8	16 - 8	16 – 8
25	FR6	34	38	50	6	8	14 - 0	10 - 2
30	FR6	40	46	60	4	8	14 - 0	10 - 2
40	FR6	52	61	80	2	6	14 - 0	10 - 2
50	FR7	65	72	100	2	6	14 - 0	$ \begin{array}{c} 10 - 00 \\ 10 - 00 \\ 10 - 00 \end{array} $
60	FR7	77	87	110	1	6	14 - 0	
75	FR7	96	105	125	1/0	4	14 - 0	
100	FR8	124	140	175	3/0	2	4 – 3/0	$\begin{array}{c} 4 - 000 \\ 4 - 000 \\ 4 - 000 \end{array}$
125	FR8	156	170	200	4/0	0	000 – 350 MCM	
150	FR8	180	205	250	300	2/0	000 – 350 MCM	
200	FR9	240	261	350	2 X 4/0	3/0	2*000 – 350 MCM	$4 - 000 \\ 4 - 000$
250	FR9	302	300	400	2 X 250	300	2*000 – 350 MCM	
300	FR10	361	385	450	2 X 250	300	600 MCM	300 MCN
350	FR10	414	460	500	2 X 300	300	600 MCM	300 MCN
400	FR10	477	520	600	2 X 400	350	600 MCM	300 MCN

^① UL recognized type RK5.

	Frame	Frame			Wire Siz	е	Terminal Size	
hp	Size	NEC I _I (A)	I _I (A)	Fuse (A) 1	Power	Ground	Power	Ground
3	FR6	3.9	4.5	10	14	14	14 – 0	14 – 2
5	FR6	6.1	7.5	10	14	14	14 – 0	14 – 2
7-1/2	FR6	9	10	15	12	14	14 – 0	14 – 2
10	FR6	11	13.5	20	12	12	14 – 0	14 – 2
15	FR6	17	18	30	10	10	14 – 0	14 – 2
20	FR6	22	22	35	8	8	14 – 0	14 – 2
25	FR6	27	27	40	8	8	14 – 0	14 – 2
30	FR6	32	34	45	6	8	14 – 0	14 – 2
40	FR7	41	41	50	6	8	14 – 0	10 – 0
50	FR7	52	52	70	4	6	14 – 0	10 – 0
60	FR8	62	62	80	2	6	4 - 000	4 - 000
75	FR8	77	80	125	1/0	6	4 - 000	4 – 000
100	FR8	99	100	150	2/0	6	4 - 000	4 – 000
125	FR9	125	125	175	3/0	6	4 - 000	4 - 000
150	FR9	144	144	250	300	1/0	000 – 350 MCM	4 – 000
200	FR9	192	208	275	350	2/0	000 – 350 MCM	4 – 000

Table 3-4: Cable and Fuse Sizes — 575 – 690V Ratings

^① UL recognized type RK5.

Table 3-5: Maximum Symmetrical Supply Current

Product	Voltage	Maximum RMS Symmetrical Amperes on Supply Circuit	
1 – 30 hp	230	100,000A	
1-1/2 – 250 hp	480	100,000A	

Table 3-6: Power Connection Tightening Torque

Rating	Frame Size	Tightening Torque (in-lbs)	Tightening Torque (Nm)
230V, 1 – 3 hp 480V, 1-1/2 – 7-1/2 hp	FR4	5	0.6
230V, 5 – 10 hp 480V, 10 – 20 hp	FR5	13	1.5
230V, 15 – 20 hp 480V, 25 – 40 hp 575V, 3 – 30 hp	FR6	35	4
230V, 25 – 40 hp 480V, 50 – 75 hp 575V, 40 – 50 hp	FR7	88	10
230V, 50 – 75 hp 480V, 100 hp	FR8	170/80 0	20/9 ①
480V, 125 – 150 hp 575V, 60 – 100 hp	FR8	354/195 0	40/22 0
480V, 200 – 250 hp 575V, 125 – 200 hp	FR9	354/195 0	40/22 1
480V, 300 – 400 hp	FR10	620/354	70/40 1

^① The isolation standoff of the bus bar will not withstand the listed tightening torque. Use a wrench to apply a counter torque when tightening.

Installation Instructions

1. Strip the motor and power cables as shown in Figure 3-1 and Table 3-7.

Figure 3-1: Input Power and Motor Cable Stripping and Wire Lengths

Product		Frame	Power Wiring in Inches (mm)			Motor Wiring in Inches (mm)				
Horsepower	Voltage	Size	A1	B1	C1	D1	A2	B2	C2	D2
1 – 3 1-1/2 – 7-1/2	230 480	FR4	0.59 (15)	1.38 (35)	0.39 (10)	0.79 (20)	0.28 (7)	1.97 (50)	0.28 (7)	1.38 (35)
5 – 10 10 – 20	230 480	FR5	0.79 (20)	1.57 (40)	0.39 (10)	1.18 (30)	0.79 (20)	2.36 (60)	0.39 (10)	1.57 (40)
15 – 20 25 – 40 3 – 30	230 480 575	FR6	0.79 (20)	3.54 (90)	0.59 (15)	2.36 (60)	0.79 (20)	3.54 (90)	0.59 (15)	2.36 (60)
25 – 40 50 – 75 40 – 50	230 480 575	FR7	0.98 (25)	4.72 (120)	0.98 (25)	4.72 (120)	0.98 (25)	4.72 (120)	0.98 (25)	4.72 (120)
50 – 75 100 – 150 60 – 100	230 480 575	FR8	1.1 (28)	9.45 (240)	1.1 (28)	9.45 (240)	1.1 (28)	9.45 (240)	1.1 (28)	9.45 (240)
200 – 250 125 – 200	480 575	FR9	1.1 (28)	11.61 (295)	1.1 (28)	11.61 (295)	1.1 (28)	11.61 (295)	1.1 (28)	11.61 (295)

Table 3-7: Power and Motor Cable Stripping Lengths

- 2. Locate the plastic bag shipped with the drive containing the wiring plate.
- Note: Part numbers for these kits in plastic bags are: Frame 4 FR00040; Frame 5 FR00050; Frame 6 FR00060.

Figure 3-2: Wiring Plate

- 3. If conduit is being used, attach the wiring plate to it.
- 4. Pass the motor and input power wires/cables through the holes of the wiring plate.
- 5. Connect the input power and motor wires to their respective terminals according to the wiring diagrams in the following section marked "Standard Wiring Diagrams and Terminal Locations" on **Page 3-7**.
- 6. If an optional external brake resistor is used, connect its cable to the appropriate terminals. See "Standard Wiring Diagrams and Terminal Locations".
- If shielded cable is used, connect the shields of the input line power cable and the motor cable to the ground terminals of the HVX9000 drive, the motor and the line power supply.

Figure 3-3: Ground Terminal Locations

- 8. If shielded cable is not used, check the connection of the ground cable to the motor, the HVX9000 drive and the input line power terminals marked with (\square) .
- 9. Attach the wiring plate with the screws provided. Ensure that no wires are trapped between the frame and the wiring plate.
- 10. Insert the rubber grommets into the wiring plate holes that have not been used as illustrated in **Figure 3-4**.

Figure 3-4: Cable Protection Plate

Standard Wiring Diagrams and Terminal Locations

Power and Motor Wiring Terminal Schematics for HVX9000 Drives

The following wiring diagrams show the line and motor connections of the frequency converter.

Figure 3-5: Principle Wiring Diagram of HVX Power Unit, FR4, FR5 and FR6

Note: When using a 1-phase supply, for units rated for such, connect the input power to terminals L1 and L2. Refer to **Tables A-2**, **A-3** and **A-4** in **Appendix A**.

Figure 3-6: Principle Wiring Diagram of HVX Power Unit, FR6, FR7 and FR8

Note: When using a 1-phase supply, for units rated for such, connect the input power to terminals L1 and L2. Refer to **Tables A-2**, **A-3** and **A-4** in **Appendix A**.

Cutler-Hammer

August 2006

Figure 3-7: Principle Wiring Diagram of HVX Power Unit, FR9 and FR10

The dotted lines refer to components present in FR9 but not in FR10.

Note: When using a 1-phase supply, for units rated for such, connect the input power to terminals L1 and L2. Refer to **Tables A-3** and **A-4** in **Appendix A**.

F:T·N

Power and Motor Wiring Terminal Photos

Figure 3-8: FR4 Power and Motor Wiring Terminals

Figure 3-9: FR5 Power and Motor Wiring Terminals

Figure 3-10: FR6 Power and Motor Wiring Terminals

Figure 3-11: FR7 Power and Motor Wiring Terminals

Figure 3-12: FR8 Power and Motor Wiring Terminals

Figure 3-13: FR9 Power and Motor Wiring Terminals

Checking the Cable and Motor Insulation

- 1. Check the motor cable insulation as follows:
 - Disconnect the motor cable from terminals U, V and W of the HVX900 and from the motor.
 - Measure the insulation resistance of the motor cable between each phase conductor as well as between each phase conductor and the protective ground conductor.
 - The insulation resistance must be $>1M\Omega$.
- 2. Check the input power cable insulation as follows:
 - Disconnect the input power cable from terminals L1, L2 and L3 of the HVX9000 and from the utility line feeder.
 - Measure the insulation resistance of the input power cable between each phase conductor as well as between each phase conductor and the protective ground conductor.
 - The insulation resistance must be $>1M\Omega$.
- 3. Check the motor insulation as follows:
 - Disconnect the motor cable from the motor and open any bridging connections in the motor connection box.
 - Measure the insulation resistance of each motor winding. The measurement voltage must equal at least the motor nominal voltage but not exceed 1000V.
 - The insulation resistance must be $>1M\Omega$.

Chapter 4 — Control Wiring

General Information

The control unit of the HVX9000 drive consists of the control board and various option boards that plug into the five slot connectors (A to E) of the control board.

Galvanic isolation of the control terminals is provided as follows:

- Control connections are isolated from power, and the GND terminals are permanently connected to ground.
- Digital inputs are galvanically isolated from the I/O ground.
- Relay outputs are double-isolated from each other at 300V AC.

Option Board General Information

The HVX9000 Series drives can accommodate a wide selection of *expander* and *adapter boards* to customize the drive for your application needs.

The drive's control unit is designed to accept a total of five option boards. Option boards are available for normal analog and digital inputs and outputs, for communication and for additional application-specific hardware.

The HVX9000 factory installed standard option board configuration includes an A9 I/O board and an A2 relay output board, which are installed in slots A and B. For information on additional option boards, see the 9000X Series Drives Option Board Manual.

Note: If your HVX9000 has been shipped with a factory installed IntelliPass bypass, the B5 option board is installed in slot C.

Figure 4-1: Option Board Slots

Control Wiring Guidelines

Wire the control terminals using the following guidelines:

- The control wires shall be at least AWG 20 (0.5 mm²) shielded cables.
- The maximum wire size is AWG 14 (2.5 mm²) for the relay terminals and AWG 16 (1.5 mm²) for all other terminals.
- The tightening torques for the option board terminals are listed in **Table 4-1**.

Table 4-1: Tightening Torques of Terminals

	Tightening Torque	
Terminal Screw	lb-in	Nm
Relay and thermistor terminals (M3 screw)	4.5	0.5
Other terminals (M2.6 screw)	2.2	0.25

Control Wiring Instructions

Table 4-2: Control Wiring Instructions

 Unlock the bottom cover by turning the locking screw 90 degrees counterclockwise. 	
2. Remove the bottom cover by rotating the cover towards you on the base hinges, then lifting the cover away from the base.	
Table 4-2: Control Wiring Instructions (Continued)

- Wire the control terminals following the details for the specific option boards shown on the following pages.
- **Note:** For ease of access, the option board terminal blocks can be unplugged for wiring.

Control Wiring Details

Wiring Option Board A9

Figure 4-2: Option Board A9 Wiring Diagram

Tern	ninal	Signal		Description and Parameter Reference				
1	+10 V _{ref}	Reference voltag	ge	Maximum current 10 mA				
2	Al1+	Analog input, vo	oltage	Default: $0 - +10V (R_i = 200 k\Omega; -10V to +10V joystick control) 0 - 20 \text{ mA} (R_i = 250 \Omega)Select V or mA with jumper block X1 (Figure 4-3Differential input if not connected to ground;allows ±20V differential mode voltage to GND$				
3	GND	Analog input co	mmon					
4	Al2+	Analog input		Default: $0 - 20 \text{ mA} (\text{R}_{i} = 250 \Omega)$ $0 - +10V (\text{R}_{i} = 200 \text{ k}\Omega; -10V \text{ to } +10V$ joystick control) Select V or mA with jumper block X2 (Figure 4-3) Differential input if not connected to ground; allows ±20V differential mode voltage to GND				
5	GND/ AI2-	Analog input co	mmon					
6	24 V _{out}	24V control volt	age (bi-directional)	±15%, 250 mA (all boards total); 150 mA (max. current from single board); Can be used as external power backup for the control (and fieldbus); Galvanically connected to terminal #13				
7	GND	I/O ground		Ground for reference and controls; Galvanically connected to terminals #13, 19				
8	DIN1	Digital input 1	Start	$R_i = min. 5 k\Omega$, Programmable				
9	DIN2	Digital input 2	Ext Fault Closed 1	$R_i = min. 5 k\Omega$, Programmable				
10	DIN3	Digital input 3	Fault Reset	$R_i = min. 5 k\Omega$, Programmable				
11	СМА	Digital input cor DIN2 and DIN3	nmon A for DIN1,	Must be connected to GND or 24V of I/O terminal or to external 24V or GND. Selection with jumper block X3. (Figure 4-3)				
12	24 V _{out}	24V control volt	age (bi-directional)	Same as terminal #6; Galvanically connected to terminal #6				
13	GND	I/O ground		Same as terminal #7; Galvanically connected to terminals #7 & 19				
14	DIN4	Digital input 4	Accel/Decel Select	$R_i = min. 5 k\Omega$, Programmable				
15	DIN5	Digital input 5	PM Setback	$R_i = min. 5 k\Omega$, Programmable				
16	DIN6	Digital input 6	Speed Select 3 1	$R_i = min. 5 k\Omega$, Programmable				
17	СМВ	Digital input cor DIN5 and DIN6	nmon B for DIN4,	Must be connected to GND or 24V of I/O terminal or to external 24V or GND. Select with jumper block X3. (Figure 4-3)				
18	A01+	Analog signal (+	output)	Output signal range: 0 – 10V default Current: 0(4) – 20 mA, RL max 500 Ω or Voltage: 0 – 10V, RL >1 k Ω : default Selection with jumper block X6. (Figure 4-3)				
19	A01-	Analog output c	ommon	Maximum V _{in} = 48V DC; Galvanically connected to terminals #7, 13				
20	DO1	Digital output1	Ready	Open collector, Maximum current = 50 mA				
	•							

¹ For IntelliPass, this is programmed for Bypass Overload fault. The bypass must be enabled at least once or Parameter P1.10.3, Auto Bypass, must be enabled for software to automatically change DIN6 programmable selection to "Bypass Overload Fault". **Cutler-Hammer**

August 2006

E-T-N

Figure 4-3: Option Board A9 Jumper Location and Settings (Slot A)

Wiring Option Board A2

Figure 4-4: Option Board A2 Wiring Diagram (Slot B)

Termin	nal	Signal	Description and Parameter Reference					
21	RO1/1	Normally Closed (NC)	Run	Switching Capacity:				
22	RO1/2	Common		24V DC / 8A 250V AC / 8A 125V DC / 0.4Az Min switching load: 5V/10 mA Continuous Capacity: <2 Arms				
23	RO1/3	Normally Open (NO)	-					
24 RO2/1		Normally Closed (NC)	Fault	Switching Capacity:				
25	RO2/2	Common		24V DC / 8A 250V AC / 8A				
26	RO2/3	Normally Open (NO)	-	125V DC / 0.4A Min switching load: 5V/10 mA Continuous Capacity: <2 Arms				

Table 4-4: Option	Board A2 Termina	I Descriptions
-------------------	-------------------------	----------------

Figure 4-5: Option Board A2 Terminal Locations

Inverting the Digital Input Signal

The active signal level depends on which potential the common inputs CMA and CMB (terminals 11 and 17) are connected to. The alternatives are either +24V or ground (0V). See **Figure 4-6**.

The 24-volt control voltage and the ground for the digital inputs and the common inputs (CMA, CMB) can be either the internal 24V supply or an external supply.

Figure 4-6: Positive/Negative Logic

 $^{\odot}\,$ Positive logic (+24V is the active signal) = the input is active when the switch is closed.

⁽²⁾ Negative logic (0V is the active signal) = the input is active when the switch is closed.

Chapter 5 — IntelliPass Bypass Option

Product Description

The IntelliPass Drive continues Eaton's tradition of providing a premier intelligent drive integrated with a reliable bypass configuration, by taking advantage of the Intelligent Technologies (*IT.*), enclosed control and circuit breaker expertise.

The IntelliPass bypass is a two- or three-contactor design utilizing the 24V DC *IT*. series of contactors and power supplies. The *IT*. features, function and form allow the drive and bypass to become an integrated design, enabling Eaton to manufacture the world's smallest drive and bypass package. The IntelliPass comes standard with a protective disconnect integrated into the drive and bypass design.

Catalog Number Selection

Table 5-1: HVX IntelliPass Drive Catalog Numbering System

480V Drives, 1 – 40 hp are only available with Brake Chopper Option B.
 480V Drives, 50 – 150 hp are only available with Brake Chopper Option N.
 208/230V Drives, 1 – 20 hp are only available with Brake Chopper Option B.
 208/230V Drives, 25 – 75 hp are only available with Brake Chopper Option N.

⁽²⁾ Two slots (D, E) available for expansion cards.

^③ Only one communication card can be installed at a time.

[®] Fused Drive Isolation (P3) and 3rd Contactor Drive Isolation (P6) cannot be installed together in NEMA Type 1 Design.

⁽⁶⁾ Space Heater (**SA**) option only applicable in NEMA Type 12/3R enclosures.

⁶ IntelliPass Only.

IntelliDisconnect Only.

Dimensions

Frame	Voltage	hp	Approxim in Inches	Weight		
Size	AC	(I <mark>L</mark>)	Н	W	D	Lbs. (kg)
4	208 230 480	1 – 3 1 – 3 1 – 7-1/2	18.32 (465)	5.05 (128)	12.45 (316)	21.0 (10.0)
5	208 230 480	5 – 10 5 – 10 10 – 20	23.68 (601)	5.40 (137)	15.34 (390)	35.0 (16.0)
6	208 230 480	15, 20 15, 20 25 – 40	30.25 (768)	7.5 (191)	15.02 (382)	67.0 (30.0)
7	208 230 480	25, 30 25, 30 50 – 75	38.27 (972)	9.1 (231)	15.02 (382)	108 (49)

Figure 5-2: HVX Series Enclosed Drive Dimensions — Box A

N 16	hp (I _L)	Approxi	mate Dir		Approx. Ship					
Voltage AC		н	H1	H2	w	W1	D	D1	Weight Lbs. (kg)	Weight Lbs. (kg)
208V	1 – 15		27.00	25.35	16.92	15.30	16.26	2.34	120	160
230V	1 – 15	(736.6)	(685.8)	(643.9)	(429.8)	(388.6)	(413.0)	(59.4)	(54)	(73)
480V	1 – 30									

	hp (I _L)	Approximate Dimensions in Inches (mm)							Approx.	Approx. Ship
Voltage AC		Н	H1	H2	w	W1	D	D1	Weight Lbs. (kg)	Weight Lbs. (kg)
208V	20 – 30	40.00	38.00	36.35	20.92	19.30	16.76	2.34	185	229
230V	20 – 30	(1016.0)	(965.2)	(923.3)	(531.4)	(490.2)	(425.7)	(59.4)	(84)	(104)
480V	40 – 75									

E·T•**N** Cutler-Hammer

August 2006

Figure 5-4: HVX Series Enclosed Drive Dimensions — Box C

		Approximate Dimensions in Inches (mm)									Approx.
Voltage AC	hp (I _L)	н	H1	H2	НЗ	H4	w	W1	D	D1	Weight Lbs. (kg)
208V	40 - 60	52.00	50.00	48.35	72.00	71.19	30.92	29.30	16.78	2.34	1
230V	40 – 75	(1320.8)	(1270.0)	(1228.1)	(1828.8)	(1808.2)	(785.4)	(744.2)	(426.2)	(59.4)	
480V	100 – 150										

^① Consult Factory.

		Approx	pproximate Dimensions in Inches (mm)										Approx.	
Voltage AC	hp (I _L)	н	H1	H2	H3	w	W1	W2	W3	D	D1	D2	Approx. Weight Lbs. (kg)	Ship Weight Lbs. (kg)
208V		33.00	31.36	29.67	25.35	21.05	16.92	15.30	2.07	17.24	16.26	3.31	170	215
230V	1 – 15	(838.2)	(796.5)	(753.6)	(643.9)	(534.7)	(429.8)	(388.6)	(52.6)	(437.9)	(413.0)	(84.1)	(77)	(98)
480V	1 – 30													

F-T-N

Figure 5-6: HVX Series Enclosed Drive Dimensions — Box B

Table 5-7: HVX Series TYPE 3R Enclosed IntelliPass/IntelliDisconnect Drive Dimens	ions
---	------

		Approxi	oproximate Dimensions in Inches (mm)									Approx.		
Voltage AC	hp (I _L)	Н	H1	H2	H3	w	W1	W2	W3	D	D1	D2	Approx. Weight Lbs. (kg)	Ship Weight Lbs. (kg)
208V	20 - 30		44.45	42.77	36.35	26.31	20.92	19.30	2.69	17.74		3.31	235	290
230V	20 – 30	(1170.7)	(1129.0)	(1086.4)	(923.3)	(668.3)	(531.4)	(490.2)	(68.3)	(450.6)	(425.7)	(84.1)	(107)	(132)
480V	40 – 75													

Figure 5-7: HVX Series Enclosed Drive Dimensions — Box C

Table 5-8: HVX Series TYPE 3R Enclosed IntelliPass/IntelliDisconnect Drive Dimensions

		Approximate Dimensions in Inches (mm)						
Voltage AC	hp (I _L)	н	H1	H2	H3	H4	H5	Weight Lbs. (kg)
208V	40 - 60	58.09	56.45	54.77	48.35	78.09	77.64	1
230V	40 – 75	(1475.5)	(1433.8)	(1391.2)	(1228.1)	(1983.5)	(1972.1)	
480V	100 – 150							

^① Consult Factory.

Table 5-8: HVX Series TYPE 3R Enclosed IntelliPass/IntelliDisconnect Drive Dimensions, continued

Voltage	hp	Approxim	Approximate Dimensions in Inches (mm)								
AC	(I <u>́</u>)	W	W1	W2	W3	D	D1	D2			
208V	40 - 60	37.73	30.92	29.30	3.34	17.74	16.77	3.31			
230V	40 – 75	(958.3)	(785.4)	(744.2)	(84.8)	(450.6)	(426.0)	(84.1)			
480V	100 – 150										

Power Wiring

IntelliPass Power Wiring for TYPE 3R and 12

Figure 5-8: Identification of TYPE 3R Components

Note: You will need to consult the electrical schematic supplied with the drive and the appropriate wiring diagram.

Figure 5-9: Tools Required

Table 5-9: Bypass Power Wiring Instructions — TYPE 3R and 12

- 1. Verify that the main power source is removed upstream.
- 2. Remove the keypad cable from the drive.
- 3. Remove the screws from the drive cover, and remove the cover.

CAUTION

The circuit breaker extension bar is sharp and can cause injury.

- Calibrate the circuit breaker amperage, so it is four to six times the value on the motor nameplate, by turning the red set screw located below the circuit breaker extension bar. See the circuit breaker user's manual supplied with the drive.
- 5. Using a Greenlee conduit cutter (recommended), cut three holes in the drive's enclosure for the incoming power, motor and low-voltage control leads.
- Note: Power, motor and control leads must each be located in separate conduit.
 - Connect the incoming power leads to circuit breaker terminals labeled L1, L2 and L3.
 - Using the torque wrench, tighten each terminal to the torque value found in the appropriate user's manual supplied with the drive.
 - 8. Connect the power ground wire to the ground stud.

Space Heater Set Knob

Orange Retaining Clips

Table 5-9: Bypass Power Wiring Instructions — TYPE 3R and 12, continued

- If applicable, set the space heater. See the space heater user's manual supplied with the drive.
- Note: The space heater is used to prevent condensation from damaging the equipment when the drive is not operating (OFF).

- 10. Use your first and second fingers and simultaneously push down to release the two orange retaining clips (one on each side of the 24V DC motor overload terminal block).
- 11. If necessary, use a flat-blade screwdriver to carefully remove the terminal block in a straight plane to avoid damaging it.
- 12. Lift to open the cover on the motor overload, and use a flatblade screwdriver to set the overload amperage to match the value on the motor nameplate.
- Turn the auto/manual reset (factory default is manual) on the motor overload 90° to the auto position.

Table 5-9: Bypass Power Wiring Instructions — TYPE 3R and 12, continued

- Connect the motor leads to the motor overload terminals labeled 1TA, 1TB and 1TC.
- 15. Using the appropriate **metric** Allen wrench (2.5 mm, 3 mm or 4 mm), tighten each overload terminal per the specifications in the contactor user's manual.

An English Allen wrench will damage the terminals, and the motor overload will need to be replaced (not covered by warranty).

- 16. Using the torque wrench, tighten each terminal to the torque value found in the appropriate user's manual supplied with the drive.
- 17. Reinsert the motor overload terminal block.
- Connect the motor ground wire to the ground stud.
- Use a flat-blade screwdriver to carefully remove the lowvoltage I/O terminal block.
- 20. Insert the incoming control leads into the terminal block. Refer to the electrical schematic supplied with the drive.
- 21. Reinsert the I/O terminal block into the control board.

Table 5-9: Bypass Power Wiring Instructions — TYPE 3R and 12, continued

22. Use a Phillips screwdriver to High-Voltage Faceplate remove all the faceplate screws on the high-voltage faceplate, and remove the faceplate. Optional Bottom Faceplate Note: Location of the screws may vary from the drive illustrated. There may be screws securing a bottom faceplate, which also need to be removed. 23. Make sure power is off, and T1, T2, T3 L1, L2, L3 B-, B+, BT perform static checks as described in Table 5-10 (for the converter), Table 5-11 (for the inverter) and Table 5-12 (for the DC bus). Note: Static check shown is for L3 and B+ terminals. 24. Once the pre-power static checks are completed, reinstall the faceplate and drive cover, tightening all the screws. 25. Reinsert the keypad cable. 26. Make sure that the drive's 3rd contactor S1 switch, if present, is in the ON position (shown in OFF position). **Note:** The bypass mode operates with the switch in the OFF position, however the drive will not run. Yet the keypad will operate. 27. Close the drive door, and turn the circuit breaker handle in a clockwise direction. Note: If the circuit breaker latch is locked, use a flat-blade screwdriver to turn the screw to release the handle. WARNING High voltage · Always work with another person • Be sure equipment is properly grounded · Wear safety glasses

Static Checking

Static checking tests the integrity of the power-carrying components (diodes, capacitors and IGBTs) within the drive assembly. Performing these static checks ensures that no damage occurred during shipping or installation that could cause a failure when the drive is powered.

1 IMPORTANT

Make sure there is no power to the drive before proceeding with any of the static checks.

After checking each set of terminals, zero out the multimeter by touching the metal tips of the red (positive) and black (negative) leads to each other.

Note: Set the multimeter to the diode function, and check each power terminal consecutively with each DC bus terminal as indicated in **Table 5-10**.

Table 5-10: Static Checks of Converter

DC Bus Terminal	Power Terminal	Multimeter			
	L1	L2	L3	Reading	
B+ (1st Overload Check)	Insert black (-)	Insert black (-)	Insert black (-)	.OL	
Insert red (+) multimeter lead.	multimeter lead.	multimeter lead.	multimeter lead.		
B- (2nd Overload Check)	Insert red (+)	Insert red (+)	Insert red (+)	.OL	
Insert black (-) multimeter lead.	multimeter lead.	multimeter lead.	multimeter lead.		
B- (1st Voltage Check)	Insert black (-)	Insert black (-)	Insert black (-)	.25 – .55V DC	
Insert red (+) multimeter lead.	multimeter lead.	multimeter lead.	multimeter lead.	(±10%)	
B+ (2nd Voltage Check)	Insert red (+)	Insert red (+)	Insert red (+)	.25 – .55V DC	
Insert black (-) multimeter lead.	multimeter lead.	multimeter lead.	multimeter lead.	(±10%)	

Note: Set the multimeter to the diode function, and check each motor terminal consecutively with each DC bus terminal as indicated in **Table 5-11**.

Table 5-11: Static Checks of Inverter

DC Bus Terminal	Motor Terminal	Multimeter			
	T1	T2	ТЗ	Reading	
B+ (1st Overload Check) Insert red (+) multimeter lead.	Insert black (-) multimeter lead.	Insert black (-) multimeter lead.	Insert black (-) multimeter lead.	.OL	
B- (2nd Overload Check) Insert black (-) multimeter lead.	Insert red (+) multimeter lead.	Insert red (+) multimeter lead.	Insert red (+) multimeter lead.	.OL	
B- (1st Voltage Check) Insert red (+) multimeter lead.	Insert black (-) multimeter lead.	Insert black (-) multimeter lead.	Insert black (-) multimeter lead.	.25 – .40V DC (±10%)	
B+ (2nd Voltage Check) Insert black (-) multimeter lead.	Insert red (+) multimeter lead.	Insert red (+) multimeter lead.	Insert red (+) multimeter lead.	.25 – .40V DC (±10%)	

Note: Set the multimeter to the ohm function, and check the power ground terminal and DC bus terminals as indicated in **Table 5-12**.

Table 5-12: Static Checks of DC Bus

DC Bus Terminal	DC Bus Terminal (B-)	Ground Terminal (Power)	Multimeter Reading
B+ (Overload Check) Insert red (+) multimeter lead.	Insert black (-) multimeter lead.	Not used.	.OL
B+ (1st Ohm Check) Insert black (-) multimeter lead.	Not used.	Insert red (+) multimeter lead.	O.L
B- (2nd Ohm Check) Insert black (-) multimeter lead.	Not used.	Insert red (+) multimeter lead.	O.L

Figure 5-10 is a detailed schematic to aid in performing the static checks.

Figure 5-10: Schematic for Static Checks

IntelliPass Power Wiring for TYPE 1

Use the same tools shown in Figure 5-9 to install a TYPE 1 Drive.

Figure 5-11: Identification of TYPE 1 Components

Note: You will need to consult the electrical schematic supplied with the drive and the appropriate wiring diagram. The Auxiliary Contactor is optional on TYPE 1 Drives.

Table 5-13: Bypass Power Wiring Instructions — TY

 Verify that the main power source is removed upstream.
 Using a flat-blade screwdriver, remove the four screws securing the outer cover of the drive and remove the cover.
 Using the same screwdriver, remove the two center screws securing the side cover.
 Make sure there is adequate room, and open the hinged side cover.

Table 5-13: Bypass Power Wiring Instructions — TYPE 1, continued

Table 5-13: Bypass Power Wiring Instructions — TYPE 1, continued 12. Use your first and second fingers and simultaneously push down to release the two orange retaining clips (one on each side of the 24V DC motor overload terminal block). 13. If necessary, use a flat-blade screwdriver to carefully remove the terminal block in a straight plane to avoid damaging it. 14. Connect the motor leads to the motor overload terminals labeled 1TA, 1TB and 1TC. 15. Using the appropriate metric Allen wrench (2.5 mm, 3 mm or 4 mm), tighten each overload terminal per the specifications in the contactor user's manual. Motor Overload Terminals CAUTION A Motor Leads An English Allen wrench will damage the terminals, and the motor overload will need to be replaced (not covered by warranty). 16. Using the torque wrench, tighten each terminal to the torque value found in the appropriate user's manual supplied with the drive. 17. Reinsert the motor overload terminal block.

TD04008003E

Table 5-13: Bypass Power Wiring Instructions — TYPE 1, continued

18.	Use a flat-blade screwdriver to connect the motor ground wire to the ground stud (located at either the top or bottom of the drive's enclosure).	Motor Ground Stud	
19.	Lift to open the cover on the motor overload, and use a flat- blade screwdriver to set the overload amperage to match the value on the motor nameplate.		Auto/Manual Reset
20.	Turn the auto/manual reset (factory default is manual) on the motor overload 90° to the auto position.		
21.	Use a flat-blade screwdriver to carefully remove the low- voltage I/O terminal block.		A cana
22.	Insert the incoming control leads into the terminal block. Refer to the electrical schematic supplied with the drive.		
23.	Reinsert the I/O terminal block into the control board.		
24.	Verify that all other wires to the terminal block are connected.		

 25. Make sure power is off, and perform static checks as described in "Static Checking" on Page 5-14. Note: Static check shown is for L3 and B+ terminals. See Figure 5-10 for a detailed schematic to aid in performing the static checks. 26. Once the pre-power static checks are completed, reinstall the drive's outer and side covers, tightening all the 	L1, L2, L3 B-, B+, BT T1, T2, T3
 screws. 27. Make sure that the drive's 3rd contactor S1 switch, if present, is in the ON position (shown in OFF position). Note: The bypass mode operates with the switch in the OFF 	
position, however the drive will not run. Yet the keypad will operate.28. Turn the circuit breaker handle	S1 Martines
in a clockwise direction. WARNING	
High Voltage • Always work with another person • Be sure equipment is properly grounded • Wear safety glasses	Circuit Breaker Handle

Table 5-13: Bypass Power Wiring Instructions — TYPE 1, continued

Power and Motor Wiring Schematic

Figure 5-12: IntelliPass Power and Motor Terminal Wiring Example

Figure 5-13: IntelliPass Control Diagram

IntelliPass Control Wiring Instructions

Use the instructions and diagrams in Chapter 4 "Control Wiring" for wiring standard option boards A9 and A2.

In addition to these two boards, the IntelliPass Bypass includes option board B5, which is described in the following section.

Wiring Option Board B5

• This board is to be mounted in slot C.

Table 5-14: Option	Board B5	Terminal	Descriptions
--------------------	----------	----------	--------------

Termi	Terminal Signal		Description and Parameter Reference	
22	RO-3/1	Common	Drive Run	Switching Capacity: 24V DC / 8A
23	RO-3/2	Normally Open		250V AC / 8A 125V DC / 0.4A Min Switching Load: 5V/10 mA Continuously: <2 Arms
25	RO-4/1	Common	Bypass	Switching Capacity: 24V DC / 8A 250V AC / 8A
26	RO-4/2	Normally Open		125V DC / 0.4A
28	RO-5/1	Common	Overload Reset	Switching Capacity: 24V DC / 8A
29	RO-5/2	Normally Open		250V AC / 8A 125V DC / 0.4A

Figure 5-15: Option Board B5 Terminal Location

Chapter 6 — Menu Information

Keypad Operation

Figure 6-1: Keypad and Display

Indicator	icator Description		
RUN	Run Indicates that the HVX9000 is running and controlling the load in Drive or Bypass.		
0	Counterclockwise Operation The output phase rotation is BAC , corresponding to counterclockwise rotation of most motors.		
Ø	Clockwise Operation The output phase rotation is ABC , corresponding to clockwise rotation of most motors.		
STOP	Stop Indicates that the HVX9000 is stopped and not controlling the load.		
READY	Ready Indicates that the HVX9000 is ready to be started. Run Enable/INTLK DIN selection will disable "Ready."		
ALARM	Alarm Indicates that there is one or more active drive alarm(s).		
FAULT	Fault Indicates that there is one or more active drive fault(s).		
I/O Term	I/O Terminal Indicates that the I/O terminal have been chosen for control.		
Keypad	Keypad Indicates that the keypad has been chosen for control.		
Bus/comm	Bus/Communications Indicates that the communications bus has been chosen for control.		
Hand	Hand Indicates that HAND has been chosen in the HOA control mode.		
Off	Off Indicates that the HVX9000 is stopped while in the HOA control mode.		
Auto	Auto Indicates that AUTO has been chosen in the HOA control mode.		

Table 6-1: LCD Status Indicators

Table 6-2: LED Status Indicators

Indicator	Description	
ready	Ready — Steady Illumination Indicates that the HVX9000 is ready to be started. Ready — Flashing once per second, Bypass Mode is enabled and awaiting a start signal. Flashing twice per second, indicates that the HVX9000 is running motor in Bypass.	
run	Run Indicates that the HVX9000 or Bypass is operating and controlling the load.	
fault	Fault Indicates that there is one or more active drive fault(s).	

F:T•N

Button	Description
START	Start This button operates as START button for normal operation when the "Keypad" is selected as the active control.
enter J	 Enter This button in the parameter edit mode is used to leave the programming mode leave the parameter group save the parameter setting and move to the next parameter This button is also used to reset Fault History Fault History is reset if ENTER is pressed on the "Fault History" menu group in "Monitoring Menu" or if ENTER is pressed while in the "Fault History" menu
STOP reset	 Stop/Reset This button has three integrated functions. The button operates as the STOP button during normal operation. In the fault mode, it is used as the fault RESET button. It is also used to enter programming mode when pressed for two seconds from the "Operate Menu". motor STOP from the keypad used to reset the active fault
bypass	Bypass Switches between the drive and bypass modes.
НОА	HOA Steps through Hand, Off and Auto control modes. Press "Enter" to select mode. If "Enter" is not pressed, control mode will remain in previous control mode.
	 Left Arrow navigation button, movement to left in display mode, enter parameter group mode in parameter edit mode, exits mode, backs up one step cancels edited parameter (exit from a parameter edit mode)
	 Right Arrow navigation button, movement to right enter parameter group mode enter parameter mode from group mode
	 Up and Down Arrows move either up or down the operating menu list in order to view the desired operating values move either up or down the parameter group list in order to select the desired group move either up or down the parameter list in order to select the desired parameter in the group increase/decrease the reference value of the selected parameter

Table 6-3: Navigation Buttons

Start-Up Wizard

Upon initial power up, the **Start-Up Wizard** guides the commissioner through the basic HVX9000 setup. The **Start-Up Wizard** may be set to function upon power up by setting parameter P3.5.3, or by pressing the STOP button for 5 seconds. The display will read "Startup Wizard" ACTIVATED after 5 seconds.

Upon power up, the display will read: "Startup wizard" "Press enter"

Upon pressing ENTER, the choice for the language to be used followed by the application desired are presented. Change selection by using the up and down arrow buttons. A selection is confirmed by pressing ENTER. After the application selection, the following text appears:

"Setup starts" "Press enter"

When ENTER is pressed the setup parameter list is presented. The parameter value will be blinking allowing setting by the up and down arrow buttons. The value is confirmed using the ENTER button, after which the next parameter in the list will be displayed.

After the last setup parameter is presented, the following text is displayed: "Repeat setup?" "←No" and "Yes→"

If the right arrow is pressed, the Start-Up Wizard restarts. If the left arrow is pressed, the following is displayed:

"Setup done" "Press enter"

After this, the display returns to the default page, normally the Operate Menu.

E-T-N

Figure 6-2: Operate Menu Navigation

The Operate Menu provides an easy to use method of viewing key numerical Monitoring Menu items. Some applications also support the setting of reference values in this menu. The items displayed vary by application. **Table 6-4** is an example for the Standard application.

Code	Signal Name	Unit	Description
0.1	Motor Speed rpm Calo		Calculated motor speed
0.2	Motor Nomspeed	%	Motor nominal speed
0.3	3 Freq Reference Hz		Frequency Reference
0.4	Output Frequency	Hz	Output Frequency
0.5	Motor Current	A	Measured Motor Current
0.6	Motor Torque	%	Calculated torque based on nominal motor torque
0.7	Motor Power	%	Calculated motor power
0.8	DC-Bus Voltage	V	Measured DC-Bus Voltage
0.9	Unit Temperature	°C	Heatsink temperature
0.10	Calc. MotorTemp	%	Calculated motor temperature based on the motor nameplate information and the calculated motor load
0.11	Analog Input 1	V	Voltage input at Terminals AI1 + and GND

 Table 6-4: Operate Menu Items — IntelliPass Application Example

The menu is navigated by using the left and right arrow buttons. If a reference level is available for setting, the up and down arrow buttons adjust the value. To exit the Operate Menu to access the other menus, depress the ENTER button for 2 seconds. While in the other menus, if there is no keypad activity, the display will return to the Operate Menu after 60 seconds. Programmable per P3.6.3 "Timeout Time". **Figure 6-2** illustrates the Operate Menu button function.

Note: Once enabled, bypass operation (across the input line) will be controlled through whichever control source is selected. Pressing BYPASS button will not work if HOA (HAND/OFF/AUTO) is in OFF.

Bypass: Enabling, Disabling and Running Motor

Figure 6-3: Enable Bypass

Note: See Parameter Group 1.10 "IntelliPass Parameters" for more information on customizing bypass operation.

Another way to return to drive operation is to go directly to Parameter 1.10.1 INTELLI-PASS and disable, which also disables the BYPASS in all control sources.

When in doubt as to Mode of Bypass, view status of "Ready/Bypass Mode when flashing" LED along with keypad display.

Menu Navigation

Navigation Tips

- To navigate within one level of menu, use the up and down arrows.
- To move deeper into the menu structure and back out, use the right and left arrows.
- To edit a parameter, navigate to show that parameter's value, and press the right arrow button to enter the edit mode. In edit mode, the parameter value will flash.
- When in edit mode, the parameter value can be changed by pressing the up or down arrow keys.
- When in edit mode, pressing the right arrow a second time will allow you to edit the parameter value digit by digit.
- To confirm the parameter change you must press the ENTER key. *The value will not change unless the ENTER button is pushed.*
- Parameters identified with a footnote in Appendix B can not be changed while the HVX9000 is running. The screen will display LOCKED if you attempt to edit these parameters while the drive is running. Stop the drive to edit these parameters.

Main Menu

The data on the control keypad are arranged in menus and submenus.

The first menu level consists of menus M1 to M6 and is called the Main menu. These menus and their submenus are illustrated in **Figures 6-4** and **6-5**.

Figure 6-4: Main Menu Navigation — 1 of 2

Figure 6-5: Main Menu Navigation — 2 of 2
Parameter Menu (M1)

The Parameter Menu is a multi-level menu, arranged by parameter group as illustrated in **Figure 6-6**. Parameters and parameter groups are explained in further detail in **Chapter 8** and **Appendix B**.

Figure 6-6: Parameter Menu Structure

Keypad Control Menu (M2)

In the Keypad Control Menu, you can set the frequency reference, PID Setpoint and PID Setpoint 2, choose the motor direction for keypad operation and choose the keypad Damper Start Function. See **Figure 6-7**.

Figure 6-7: Keypad Control Menu

R2.1 Keypad Speed Reference	reference. The changes will ta not, however, influence the m	and allows the operator to edit the motor spe ke place immediately. This reference value wi otor rotation speed unless the keypad has bee place. 100% corresponds to Maximum	11
R2.2 PID Setpoint 1	Range: 0.00 – 100.00 Units: Percent <i>PID SETPOINT 1</i> This parameter sets the value the active control place.	Default: 0.00 of the PID setpoint 1 reference, if the keypad is	s
R2.3 PID Setpoint 2	Range: 0.00 – 100.00 Units: Percent <i>PID SETPOINT 2</i> This parameter sets the value enabled in the Digital Inputs.	Default: 0.00 of the PID setpoint 2 reference, if PID Ref2 Sel	is
R2.4 Keypad Direction	direction of the motor. This se	Default: Forward and allows the operator to change the rotatio tting will not, however, influence the rotation the keypad has been selected as the active	n
R2.5 Panel Damper Function	 the DIN1 Function only using I/O terminal BAS start for P1.2 1 Interlocked Start – To use programmed for selection DIN6 must be programmed or selection acknowledgement contact HVX9000 will start. 2 Interlock Time Start – This except that if the return and the <i>Interlock Timeout</i>, an displayed and the start se 3 Delay Start – This start is s return contact is not used. output closure, the HVX90 Note: If Run Enable/Interlock is 	this, a relay output, RO1 – RO8, needs to be s 27 "StrtDelayRly," and a digital input DIN2 to d for selection 3 "RunEn/INTLK." The relay an element of the driven system, such as a id, or a pre-lube pump. Upon a return closure to the programmed digital input, the functions the same as the Interlocked Start, knowledgement contact is not received within "IntlkTimeExpired RestartDrive" message is quence will need to be restarted. Similar to the Interlocked Start, except that a After the "Delay Time" following the relay 00 starts. opens, the START button must be pressed in and restart drive. Using I/O BAS start, which is s unnecessary. Motor will start automatically	0

System Menu (M3)

The controls associated with the general use of the drive, such as application selection, customized parameter sets or information about the hardware and software are located in the System Menu.

Descriptions of the system menu parameters are illustrated in Figure 6-8.

Figure 6-8: System Menu Structure

System Menu Parameters

August 2006

S3.1 Language Selection	Default: English LRNGURGE This parameter offers the ability to control the HVX9000 through the keypad in the language of your choice. Currently available languages are: English, Spanish, French and Portuguese.
S3.2 Application Selection	Default: HVX 11.13 RPPLICATION This parameter sets the active application if multiple applications have been loaded. When changing applications, you will be asked if you want the parameters of the new application to be uploaded to the keypad. If you wish to load the new application parameters, push the ENTER button. Pushing any other button saves the parameters of the previously used application in the keypad.

System Menu Copy Parameter Options (S3.3)

The parameter copy function is used when the operator wants to copy one or all parameter groups from one drive to another. All the parameter groups are first uploaded to the keypad, then the keypad is connected to another drive and then the parameter groups are downloaded to it (or possibly back to the same drive).

Note: Before any parameters can successfully be copied from one drive to another, the drive must be stopped when the parameters are downloaded to it.

S3.3.1 Parameter Sets	 PRRRMETER SETS This parameter allows you to reload th to store and load two customized para 1 Load Factory Default parameters 2 Store parameter set #1 3 Load parameter set #1 4 Store parameter set #2 5 Load parameter set #2 	e factory default parameter values, and meter sets.
S3.3.2 Load Up to Keypad	UP TO KEYPRD This function uploads all existing para	meter groups to the keypad.
S3.3.3 Download from Keypad	Range: 0 – 3 DOWN FROM KEYPRD This function downloads one or all par drive. 0 All parameters 1 All, no parameters 2 Application parameters	Default: 0 (All parameters) ameter groups from the keypad to the
S3.3.4 Automatic Backup	Range: Yes, No <i>RUTO. BRCKUP</i> This parameter activates and deactivat When the Parameter backup function is the parameters and settings in the curr	s activated, the keypad makes a copy of

System Menu Parameter Comparison Options (S.3.4)

S3.4

Parameter Comparison

PRRAMCOMPARISON

With the Parameter Comparison function, you can compare the actual parameter values to the values of your customized parameter sets and those loaded to the control keypad.

The actual parameter values are first compared to those of the customized parameter Set1. If no differences are detected, a "0" is displayed on the lowermost line of the keypad.

If any of the parameter values differ from those of the Set1 parameters, the number of the deviations is displayed together with symbol P (e.g. P1 \rightarrow P5 = five deviating values).

By pressing the right arrow button once again you will see both the actual value and the value it was compared to. In this display, the value on the Description line (in the middle) is the default value, and the one on the value line (lowermost line) is the edited value. You can also edit the actual value by pushing the Right Arrow button.

Actual values can also be compared to Set2, Factory Settings and Keypad Set values.

Security Menu Parameter Options (S3.5)

Note: The Security submenu is protected with a password.

Store the password in a safe place.

S3.5.1 Password	the Password function. When the pass be prompted to enter a password befor changes, or password changes. By default, the password function is no password, change the value of this par	rameter to any number between 1 and d after the Timeout time (Timeout Time)
S3.5.2 Parameter Lock	Range: ChangeEnable, ChangeDisabl PRRATETER LOCK This function allows the user to prohib If the parameter lock is activated the te you try to edit a parameter value. Note : This function does not prevent uv values.	bit changes to the parameters. ext *LOCKED* will appear on the display if
S3.5.3 Start-Up Wizard	the Start-Up Wizard prompts the opera his/her choice and then returns to the	ressing the STOP button for 5 seconds. and Activated". Unit must then be

S3.5.4 Multi-Monitoring Items	Range: ChangeEnable, Change Disabl MULTIMON. ITEM The keypad display where can display	-
		if the operator is allowed to replace the
Keypad Settings (S3.	6)	
There are four param operation:	eters (Default Page to Backlight Time)	associated with the keypad
P3.6.1 Default Page		Default: 0
Delault Faye	DEFRULT PRGE This parameter sets the view to which Timeout Time expires or when the key	the display automatically moves as the bad power is switched on.
	If the Default Page value is 0 the function page remains on the keypad display.	on is not activated, i.e. the last displayed
P3.6.2 Default Page in the	0550/H T. 0055 (00	Default: 1
Operating Menu	DEFRULT PRGE/OM Here you can set the location in the Op automatically moves as the set Timeou power is switched on. See setting of D	It Time expires, or when the keypad
P3.6.3 Timeout Time	Range: 0 – 65,535 Units: Seconds	Default: 60
	TINEOUT TIME The Timeout Time setting defines the ti returns to the Default Page .	ime after which the keypad display
	Note: If the Default Page value is 0 the	Timeout Time setting has no effect.
P3.6.4 Contrast	Range: 0 – 31 CONTRAST ROJUSTMENT	Default: 18
Adjustment	If the display is not clear, you can adjust parameter.	st the keypad contrast with this
P3.6.5 Backlight Time	Range: 1 – 65,535 or Forever Units: Minutes	Default: 10
	BREKLIGHT TIME This parameter determines how long the You can select here any time between	he backlight stays on before going out. 1 and 65,535 minutes or "Forever".

Hardware Settings (S3.7)

The Hardware Settings submenu (S3.7) provides parameters for Internal brake resistor connection, Fan control, HMI acknowledge timeout and HMI retry.

P3.7.1 Internal Brake Resistor Connection	Range: Connected, Not ConnectedDefault: Not connectedINTERNBRAKERESWith this function you can tell the HVX9000 whether the internal brake resistoris connected or not.
	If your drive has an internal brake resistor, the default value of this parameter is "Connected". However, if it is necessary to increase braking capacity by installing an external brake resistor, or if the internal brake resistor is disconnected, it is advisable to change the value of this function to "Not Connected" in order to avoid unnecessary fault trips.
	Note : The brake resistor is available as an option for all drives. It can be installed internally in frame sizes FR4 to FR6.
P3.7.2 Fan Control	Range: Continuous, Temperature,Default: ContinuousFirst Start and Calc TempFRN CONTROLThis function allows you to control the HVX9000's cooling fan. You can set the fan to run:
	 Continuous — fan runs continuously. Temperature — based on the temperature of the unit. The fan is switched on automatically when the heatsink temperature reaches 60°C. The fan receives a stop command when the heatsink temperture falls to 55°C. The fan runs for about a minute after receiving the stop command or switching on the power, as well as after changing the value from "Continuous" to "Temperature". First Start — after power up the fan is stopped until the run command is given and then fan runs continuously. This is mainly made for common DC-bus systems to prevent cooling fans to load charging resistors on power up moment.
	 Calc Temp — starting of cooling fan is based on calculated IGBT- temperature. When IGBT temp = 40°C, fan starts and when temp falls down to 30°C, fan stops. Note: The fan runs continuously, regardless of this setting, when the HVX9000 is in RUN state.

P3.7.3 HMI Acknowledge Timeout

Range: 200 – 5,000 Units: mseconds

HMI RCK TIMEDUT

This function allows the user to change the timeout of the HMI acknowledgement time.

Note: If the HVX9000 has been connected to a PC with a serial cable, the default values of *HMI Acknowledge Timeout* and *Number of Retries to Receive HMI Acknowledgement* must not be changed.

If the HVX9000 has been connected to a PC via a modem and there is delay in transferring messages, the value of *HMI Acknowledge Timeout* must be set according to the delay as follows:

Default: 200 ms

Example:

- Transfer delay between the frequency converter and the PC = 600 ms
- The value of *HMI Acknowledge Timeout* is set to 1200 ms (2 x 600, sending delay + receiving delay)
- The corresponding setting shall be entered in the [Misc]-part of the file NCDrive.ini:

Retries = 5

AckTimeOut = 1200

TimeOut = 6000

It must also be considered that intervals shorter than the *HMI Acknowledge Timeout* time cannot be used in HVX9000 drive monitoring.

P3.7.4 Number of Retries to Receive HMI Acknowledgement Range: 1 – 10 HMI RETRY

With this parameter you can set the number of times the drive will try receive acknowledgement when it has not been received within the acknowledgement time (*HMI Acknowledge Timeout*) or if the received acknowledgement is faulty.

Default: 5

System Information (S3.8)

This section contains hardware and software information as well as operation information.

S3.8.1

Total Counters TOTAL COUNTERS

In the Total Counters page (*Total Counters*) you can find information related to the HVX9000 operating times, i.e. the total numbers of MWh, operation days and operation hours passed so far. See **Table 6-5**.

Unlike the counters in the Trip Counters, these counters cannot be reset.

Note: The Power On time counter (days and hours) runs always, when the power is on.

Table	6-5:	Total	Counters	
-------	------	-------	----------	--

Number	Name	Description
C3.8.1.1	MWh counter	Megawatt hours total operation time counter.
C3.8.1.2	Power On day counter	Number of days the HVX9000 has been supplied with power.
C3.8.1.3	Power On hour counter	Number of hours the HVX9000 has been supplied with power.

S3.8.2

Trip Counters

TRIP COUNTERS

Trip counters are counters the values of which can be reset i.e. restored to zero. You have the following resettable counters at your disposal:

Table 6-6: Trip Counters

Number	Name	Description
T3.8.2.1	MWh counter	Megawatts hours since last reset.
T3.8.2.2	Clear MWh counter	Resets megawatts hours counter and clears Energy Meter in the Monitoring Menu (V5.9).
T3.8.2.3	Power On day counter	Number of days since the last reset.
T3.8.2.4	Power On hour counter	Number of hours the HVX9000 has been running a motor since the last reset.
T3.8.2.5	Clear Operation time counter	Resets the day and hour motor or drive running counter and resets the Motor Run Time in the Monitoring Menu (V5.12).

Note: The trip counters operate only when the motor is running above 0.00 Hz. The counters can be reset with *Clear MWh counter* and *Clear Operation time counter*.

S3.8.3	SOFTWRRE
Software	The Software information page includes information on the following software
Information	tonics:
	topics:

Table 6-7: Software Information

Number	Content
13.8.3.1	Software package
13.8.3.2	System software version
13.8.3.3	Firmware interface
13.8.3.4	System load

S3.8.4

Application

RPPLICATIONS

HARDWARE

Information

The Application information page includes information on not only the application currently in use but also all other applications loaded into the HVX9000. The information available is:

Table 6-8: Application Information

Number	Content	
A3.8.4.1	Name of application	
D3.8.4.1.1	Application ID	
D3.8.4.1.2	Version	
D3.8.4.1.3 Firmware interface		

S3.8.5

Hardware Information

The Hardware information page provides information on the following hardware-related topics:

Table 6-9: Hardware Information

Number	Content	
13.8.5.1	Power unit type	
13.8.5.2	Nominal voltage of the unit	
E3.8.5.3	Brake chopper	
E3.8.5.4	Brake resistor	
E3.8.5.5	Serial number	

S3.8.6 **Expander Board** Information

EXPRINDER BORRDS

This parameter and its sub-items provide information about the basic and option boards plugged into the control board. Table 6-10 provides an example for slot A.

Table 6-10: Slot A Expander Board Information

Number	Content	
E3.8.6.1	Slot A board identification	
E3.8.6.1.1	Operating state	
E3.8.6.1.2	Program version	

S3.8.7 Debug Menu

This menu is meant for advanced users and application designers. Contact factory for any assistance needed.

Power Monitor (S3.9)

Monitors IU, IV and IW output phase currents.

DEBUG

S3.9.1	IU FILTERED
IU Filtered	Monitors U phase output current.
S3.9.2	IV FILTERED
IV Filtered	Monitors V phase output current.
S3.9.2	IW FILTERED
IW Filtered	Monitors W phase output current.

Power Multimonitor (S3.11)

Monitors all three phases of current on the same display.

Expander Board Menu (M4)

The Expander Board Menu makes it possible for the user to:

- to see what expander boards are connected to the control board and
- to reach and edit the parameters associated with the expander board.

Figure 6-9: Expander Board Menu Structure

P4.1.1.1 Al1 Mode	Range: 1 – 5 <i>RII 100E</i> Analog Input 1 input options: 1 0 – 20 mA 2 4 – 20 mA 3 0 – 10V 4 2 – 10V 5 -10 – +10V	Default: 3
P4.1.1.2 Al2 Mode	Range: 1 – 5 <i>RI2 MDDE</i> Analog Input 2 input options: 1 0 – 20 mA 2 4 – 20 mA 3 0 – 10V 4 2 – 10V 5 -10 – +10V	Default: 1
P4.1.1.3 AO1 Mode	Range: 1 – 4 <i>R01 M0DE</i> Analog Output 1 output options: 1 0 – 20 mA 2 4 – 20 mA 3 0 – 10V 4 2 – 10V	Default: 1

Example of Expander Board Parameters for Option Board A9

6-20

Monitoring Menu (M5)

The Monitoring Menu items are meant for viewing parameter values during operation. Monitored values are updated every 0.3 sec. Monitored items are identified by item numbers V5.1 to V5.32 and G5.35, as listed in **Table 6-11**.

Table 6-11: Monitoring Menu Items

Code	Signal Name	Unit	ID #	Description
V5.1	Motor speed	rpm	2	Calculated motor speed
V5.2	Motor speed %	%	1590	Motor Nominal Speed %
V5.3	Frequency reference	Hz	25	Frequency reference setting
V5.4	Output frequency	Hz	1	Frequency to the motor
V5.5	Motor current	A	1780	Measured motor current
V5.6	Motor torque	%	4	Calculated torque based on nominal motor torque
V5.7	Motor power	%	5	Calculated power based on nominal motor power
V5.8	Instantaneous kW	kW	1888	Calculated power based on output to motor
V5.9	Energy meter	KwH	1666	Kilowatt hours total usage ^①
V5.10	Motor voltage	VAC	6	Calculated motor voltage
V5.11	DC-bus voltage	VDC	7	Measured DC-bus voltage
V5.12	Motor run time	Hrs	1701	Motor run time total ^①
P5.13	Run Display Format	—	1565	Changes motor run time between seconds, minutes, hours and days ⁽³⁾
V5.14	Unit temperature	°C	8	Heatsink temperature
V5.15	Calculated motor temperature	°C	1917	Calculated motor temperature based on the motor nameplate information and the calculated motor load
V5.16	Analog Input 1	V	13	Voltage Input at Terminal AI1+ and GND
V5.17	Analog Input 2	mA	14	Current Input at Terminals AI2+ and AI2–
V5.18	Analog Input 3	mA	1680	Current Input at Terminals AI3+ and AI3–
V5.19	Analog Input 4	mA	1710	Current Input at Terminals AI4+ and AI4–
V5.20	DIN1, DIN2, DIN3	—	15	Digital input status (Figure 6-10)
V5.21	DIN4, DIN5, DIN6	—	16	Digital input status (Figure 6-11)
V5.22	DIN Status	—	1904	Status of all digital inputs
V5.23	DO1, RO1, RO2	—	17	Digital and relay output status (Figure 6-12)
V5.24	RO3, RO4, RO5	—	1678	Relay output status
V5.25	Relay out status	—	1773	Status of all relay outputs ®
V5.26	Analog lout	mA	26	Current Output at Terminals AO1+ and AO1–
V5.27	Analog Output 2	mA	1874	Current Output at Terminals AO2+ and AO2–
V5.28	Analog Output 3	mA	1875	Current Output at Terminals AO3+ and AO3–
V5.29	PID Setpoint	Eng. Unit	20	PID Setpoint Level — Unit is dependent on selected Engineering Units P1.11.2
V5.30	PID Actual Level	Eng. Unit	21	PID Actual Level — Unit is dependent on selected Engineering Units P1.11.2
V5.31	PID Error Value	Eng. Unit	22	PID Error Value — Unit is dependent on selected Engineering Units P1.11.2
V5.32	PID Output	%	23	PID Output
G5.33	Active Faults	—		See Page 6-22
G5.34	Fault History	—		See Page 6-24
G5.35	Multimonitor	—		See Page 6-24
	hle via S 3 8 2 trip counters			

 $^{\scriptsize (1)}$ Resettable via S.3.8.2 trip counters.

⁽²⁾ Includes BIN — Binary to decimal converted value for all digital inputs and digital and relay outputs.

³ See description on Page 6-22.

Figure 6-10: Digital Inputs DIN1, DIN2, DIN3 Status

Figure 6-11: Digital Inputs DIN4, DIN5, DIN6 Status

V5.23
DO1, RO1, RO2
OFF OFF ON

Figure 6-12: Digital Outputs DO1, RO1, RO2 Status

 P5.13
 Range: 4 – 7
 Default: 5 (Minutes)

 RunDisplay Format
 RUNDSPLSFORMAT

 This sets the format of the display for Motor Run Time, V 5.12.
 4

 4
 Seconds

 5
 Minutes

 6
 Hours

 7
 Days

Active Faults (G5.33)

When a fault occurs, the HVX9000 stops. The sequence indication F1, the fault code, a short description of the fault and the fault type symbol will appear on the display. In addition, the indication FAULT or ALARM is displayed and, in case of a FAULT, the red LED on the keypad starts to blink. If several faults occur simultaneously, the sequence of active faults can be browsed with the Browser buttons. See **Figure 6-13**.

The active faults memory can store the maximum of 10 faults in the sequential order of appearance. The display can be cleared with the STOP/RESET button and the readout will return to the same state it was before the fault trip. The fault remains active until it is cleared with the STOP/RESET button or with a reset signal from the I/O terminal.

Figure 6-13: Active Fault Display Example

CAUTION

Remove any External Start signals or permissives before resetting the fault to prevent unintentional restart of the HVX9000, which could result in personal injury or equipment damage.

Range: A, F, AR, FT

Fault Type FRU

FRULT TYPE

There are four different types of faults. These faults and their definitions are given **Table 6-12**.

Table 6-12: Fault Types

Fault Type	Fault Name	Description
A	Alarm	This type of fault is a sign of an unusual operating condition. It does not cause the drive to stop, nor does it require any special actions. The "A fault" remains in the display for about 30 seconds.
F	Fault	An "F fault" is a kind of fault that makes the drive stop. Actions need to be taken in order to restart the drive.
Fault immediately. The fa		If an "AR fault" occurs the drive will also stop immediately. The fault is reset automatically and the drive tries to restart the motor. If the restart is not successful, a fault trip (FT) occurs.
FT	Fault Trip	If the drive is unable to restart the motor after an AR fault, an FT fault occurs. The effect of the "FT fault" is the same as that of the F fault — the drive is stopped.

Fault Code FBULT

Range: 1 – 82

FRULT CODE

Fault codes indicate the cause of the fault. A list of fault codes, their descriptions, and possible solutions can be found in **Appendix C** – Fault and Warning Codes.

Range: T.1 – T.16 Fault Time Data FRULT TIME DRTR

In this menu, important data recorded at the time the fault is available. This feature is intended to help the user or the service person to determine the cause of fault. **Table 6-13** indicates the information that is recorded.

Data	Units	Description			
T.1 1	D	Counted operation days (Fault 43: Additional code)			
T.2	hh:mm:ss (d)	Counted operation hours (Fault 43: Counted operation days)			
T.3	Hz hh:mm:ss	Output frequency (Fault 43: Counted operation hours)			
T.4AMotor currentT.5VMotor voltageT.6%Motor powerT.7%Motor torqueT.8VDC bus voltageT.9°CUnit temperatureT.10—Run statusT.11—DirectionT.12—WarningsT.13—Zero speed		Motor voltage Motor power Motor torque			
		Run status Direction Warnings			
If real t	ne record: ime is set, T.1 and	T.2 will appear as follows:			
T.1	vvvv-mm-dd	Counted operation days (Fault 43: Additional code)			

Table 6-13: Fault Time Data

T.1	yyyy-mm-dd	Counted operation days (Fault 43: Additional code)		
T.2	hh:mm:ss.sss	Counted operation hours (Fault 43: Counted operation days)		

Fault History (G5.34)

All faults are stored in the Fault History Menu, which can be viewed by using the Browser buttons. Additionally, the Fault time data record pages are accessible for each fault as in the Active Faults Menu described above. See **Figure 6-14**.

The HVX9000's memory can store a maximum of 30 faults, in the order of appearance. If there are 30 uncleared faults in the memory, the next occurring fault will erase the oldest fault from the memory.

Figure 6-14: Sample Fault History Display

Note: Pressing the ENTER button for 3 seconds will clear the entire fault history.

Multimonitor (G5.35)

This Parameter allows the viewing and selection (if allowed by System menu item, P3.5.4) of three simultaneously monitored items from the Monitored Menu Items illustrated in **Table 6-11**. Use the right arrow key to select the item to be modified and then the up or down arrow keys to select the new item. Press the ENTER key to accept the change.

Operate Menu

Figure 6-15: Operate Menu Navigation

The Operate Menu provides an easy to use method of viewing key numerical Monitoring Menu items. Some applications also support the setting of reference values in this menu. The items displayed vary by application. **Table 6-14** is an example of the first 11 menu variables for the IntelliPass application.

Code	Signal Name	Unit	Description
0.1	Motor Speed	rpm	Calculated motor speed
0.2	Motor Nomspeed	%	Motor nominal speed
0.3	Freq Reference	Hz	Frequency Reference
0.4	Output Frequency	Hz	Output Frequency
0.5	Motor Current	A	Measured Motor Current
0.6	Motor Torque	%	Calculated torque based on nominal motor torque
0.7	Motor Power	%	Calculated motor voltage
0.8	DC-Bus Voltage	V	Measured DC-Bus Voltage
0.9	Unit Temperature	°C	Heatsink temperature
O.10	Calc. MotorTemp	%	Calculated motor temperature based on the motor nameplate information and the calculated motor load
0.11	Analog Input 1	V	Voltage input at Terminals AI1 + and GND

The menu is navigated by using the left and right arrow buttons. If a reference level is available for setting, the up and down arrow buttons adjust the value. To exit the Operate Menu to access the other menus, depress the ENTER button for 2 seconds. While in the other menus, if there is no keypad activity, the display will return to the Operate Menu after 60 seconds programmable per P3.6.3 "Timeout Time" parameter. **Figure 6-15** illustrates the Operate Menu button function.

Chapter 7 — Start-Up

Safety Precautions

Before start-up, observe the following warnings and safety instructions.

- WARNING
 Internal components and circuit boards (except the isolated I/O terminals) are at utility potential when the HVX9000 is connected to the line. This voltage is extremely dangerous and may cause death or severe injury if you come in contact with it.
- 2 When the HVX9000 is connected to the utility, the motor connections U (T1), V (T2), W (T3) and DC-link/brake resistor connections B-, B+ and R- are live even if the motor is not running.
- **3** Do not make any connections when the HVX9000 drive is connected to the utility line.
- 4 Do not open the cover of the HVX9000 immediately after disconnecting power to the unit, because components within the drive remain at a dangerous voltage potential for some time. Wait until at least five minutes after the cooling fan has stopped and the keypad or cover indicators are dark before opening the HVX9000 cover.
- 5 The control I/O terminals are isolated from the utility potential, but relay outputs and other I/Os may have dangerous external voltages connected even if power is disconnected from the HVX9000.
- **6** Before connecting to the utility make sure that the cover of the HVX9000 is closed.

Sequence of Operation

- 1. Read and follow all safety precautions.
- 2. At installation ensure:
 - a. That the HVX9000 and motor are connected to ground.
 - b. That the utility and motor cables are in accordance with the installation and connection instructions as detailed in **Chapter 3**.
 - c. That the control cables are located as far as possible from the power cables as detailed in **Chapter 4** and **Table 3-1**. That control cable shields are connected to protective ground. That no wires make contact with any electrical components in the HV9000.
 - d. That the common input of digital input groups is connected to +24V or ground of the I/O terminal supply or an external supply as detailed in **Chapter 4** and **Figure 4-6**.
- 3. Check the quality of the cooling air as detailed in **Chapter 2**.
- 4. Check that moisture has not condensed inside the HVX9000.
- 5. Check that all START/STOP switches connected to the I/O terminals are in the STOP state.
- 6. Connect the HVX9000 to the utility and switch the power on.
- 7. Ensure that Group G1.1 parameters match the application by setting the following parameters to match the motor nameplate:
 - P1.1.7 = the motor nominal current.
 - P1.1.8 = the nominal voltage of the motor.
 - P1.1.9 = the nominal nameplate frequency of the motor.
 - P1.1.10 = the nominal nameplate full load speed of the motor.
 - P1.1.11 = the motor power factor.

8. Perform either Test A or Test B without the motor connected to the HVX9000.

Test A — Control from the Control Panel.

- Apply input power to the HVX9000.
- Press HOA button until HAND LCD is flashing, then press ENTER.
- Press the START button.
- Go to the Monitoring Menu and check that the output frequency follows the reference as detailed in *Reference Source Hand*.
- Press the STOP/RESET button.

Test B — Control from the I/O Terminals.

- Apply input supply power to the HVX9000.
- Change control from the keypad to the I/O terminals. Press HOA button until AUTO LCD is flashing, then press ENTER. Start drive by closing DIN1.
- Change the frequency reference, from where "Reference Source Auto" (P1.1.15) has been selected.
- Check from the monitoring menu at the control panel that the output frequency follows the frequency reference.
- Stop the drive by opening the start contact at DIN1.

Disconnect all power to the HVX9000. Wait until the cooling fan on the unit stops and the indicators on the panel are not lit. If no keypad is present, check the indicators in the cover. Wait at least five more minutes for the DC bus to discharge. Connect the motor to the HVX9000 and check for correct motor rotation. If possible, perform a start-up test with the motor connected to the HVX9000 but not connected to the process. If the HVX9000 must be tested with the motor connected to the process, perform it under no-load or light load conditions.

Chapter 8 — Application Information

Parameter Menus

Parameter Group G1.1: Basic Parameters

P1.1.1 Minimum Frequency	Range: 0.00 – Max Frequency Units: Hertz MIN FREQUENCY Defines the minimum output frequence	Default: 12.00 cy limit setting.
P1.1.2 Maximum Frequency	Range: Min Frequency – 320.00 Units: Hertz MRX FREQUENCY Defines the maximum output frequen	Default: 60.00 cy limit setting.
P1.1.3 Acceleration Time 1	Acceleration Time 2, two different acc application. The active set can be sele digital inputs DIN2, DIN3, DIN4, DIN5	frequency as set by <i>Minimum</i> With the use of <i>Acceleration Time 1</i> and eleration times can be used for an cted with one of the programmable
V1.1.4 Accel Time 1, Read Only ^①	Range: 0.1 – 3000.0 Units: Seconds RCCEL TIME 1, RERD DNLY	Default: 60.0
P1.1.5 Deceleration Time 1	Range: 0.1 – 3000.0Default: 60.0Units: SecondsDECEL TIME 1This defines the time required for the output frequency to change from the maximum frequency to the minimum frequency as set by Maximum Frequency and Minimum Frequency. With the use of Deceleration Time 1 and Deceleration Time 2, two different deceleration times can be used for an application. The active set can be selected with one of the programmable digital inputs DIN2, DIN3, DIN4, DIN5 or DIN6. Note: If the PID-controller is used, Acceleration Time 2/Deceleration Time 2 is automatically selected.	
V1.1.6 Decel Time 1, Read Only ^①	Range: 0.1 – 3000.0 Units: Seconds DECEL TIME 1, READ DNLY	Default: 60.0
P1.1.7 Motor Nominal Current	Range: 0.3 x I _{nHVXL} – 2.0 x I _{nHVXL} Units: Amperes <i>notor non currnt</i> This is the motor nameplate full load o	Default: I _{nHVXL} current (I _n).

^① This Read Only Value is only present when the Parameter Lock is set to "Change Disable". Also when the "Lock Panel" is "On" from the Siemens Apogee Network. The preceding parameter becomes invisible.

August	2006
--------	------

P1.1.8 Motor Nominal Voltage	Range: 180 – 690 Units: Volts MOTOR NOM VOLTG This is the motor namenlate base volta	Default: 230 or 460 (Drive Rating) age. This parameter sets the voltage at
	the <i>Field Weakening Point</i> to 100% x V	
P1.1.9 Motor Nominal Frequency	Range: 30.00 – 320.00 Units: Hertz MOTOR NOM FREQ This is the motor nameplate base freq Weakening Point to the same value.	Default: 60.00 uency. This parameter sets the Field
P1.1.10 Motor Nominal Speed	Range: 300 – 20,000 Units: rpm <i>MOTOR NOM SPEED</i> This is the motor nameplate base spee motor speed.	Default: 1760 ed (N _n), which is used for displays using
P1.1.11 Motor Power Factor	Range: 0.30 – 1.00 <i>NOTORPOWERFRCTOR</i> This is the motor nameplate full load p nameplate.	Default: 0.85 power factor from the motor rating
P1.1.12 Current Limit	Range: 0.1 x I _L – 2.5 x I _{nHVX} Units: Amperes <i>CURRENT LIMIT</i> This parameter determines the maxim HVX9000. The parameter value range the HVX9000 nameplate full load curre	differs from size to size and is based on
P1.1.13 Current Limit, Read Only ^①	Range: 0.1 x I _L – 2.5 x I _{nHVX} Units: Amperes CURRENT LIMIT, READ ONLY	Default: I _{nHVX}
P1.1.14 HOA Control Source	Range: 0 – 2 HOR CONTROL SEC This parameter determines whether the keypad or terminal block. 0 Control from keypad 1 Control from I/O terminals 2 Control from communication bus Digital inputs need to be programmed along with FB Fixed Control Word bits FB_DIN3-FB_DIN6.	for HAND/AUTO and/or OFF control,
P1.1.15 Start Source Hand	Range: 0 – 3 <i>STRRT SRC HRND</i> This parameter determines where the 0 Keypad 1 BAS 2 I/O terminals 3-wire Start/Stop [®] 3 Keypad/Panel Damper [®]	
from the Siemens Apogee	ly present when the Parameter Lock is set to "Chan Network. The preceding parameter becomes invisit grammed for Bun Enable/Interlock for 3-wire control	ble.

[®] Digital inputs must be programmed for Run Enable/Interlock for 3-wire control.
 [®] Digital inputs must be programmed for Run Enable/Interlock and "Damper Output" unless just using "Delay Start".

P1.1.16 Reference Source Hand	 operating in the Hand mode. Analog Input Al1 Analog Input Al2 Analog Input Al3 Analog Input Al4 (Not oper Keypad reference Communication Bus Motor potentiometer 	ected PID Reference and Actual Value must be
P1.1.17 Start Source Auto	 Keypad BAS I/O terminal 2-wire Stat I/O terminals 3-wire Start/S Communication bus 	top ^①
^① Digital inputs must be pro	grammed for Run Enable/Interlock for 3-w	<i>v</i> ire control.
P1.1.18 Reference Source Auto	 operating in the Auto mode. Analog Input Al1 Analog Input Al2 Analog Input Al3 Analog Input Al4 (Not oper Keypad Communication Bus Motor potentiometer 	ected PID Reference and Actual Value must be
P1.1.19 PM Setback Percentage	Range: 0.0 – 100.0 Units: Percent <i>PM SETBRCK PCT</i> This parameter determines the when DIN2, DIN4, DIN5 or DIN6	Default: 30.0 frequency reference for PM setback operation 6 are set to control PM Setback and closed.
P1.1.20 Smoke Purge	Range: 0.0 – 100.0 Units: Percent SMOKE PURGE Speed setting for Smoke Purge	Default: 60.0

Parameter Group G1.2: Input Signals

P1.2.1 DIN1 Function	Range: 0 – 3 DINI FUNCTION	Default: 0 (Start)
	This parameter determ 0 Start – standard sta 1 Interlocked Start – programmed for se DIN6 must be progr output is used to er damper, seal water	nes the function of digital input DIN1. rt To use this, a relay output, RO1 – RO8, needs to be lections 27 "Open Damper," and a digital input DIN2 to ammed for selection 3 "RunEn/INTLK." The relay ergize an element of the driven system, such as a solenoid, or a pre-lube pump. Upon a return contact closure to the programmed digital input, the
	except that if the re the <i>Interlock Timeo</i> displayed and the s 3 Delay Start – This s return contact is no output closure, the	- This functions the same as the Interlocked Start, turn acknowledgement contact is not received within <i>ut</i> , an "IntlkTimeExpired RestartDrive" message is tart sequence will need to be restarted. tart is similar to the Interlocked Start, except that a t used. After the "Delay Time" following the relay HVX9000 starts. <i>i</i> III only function properly with BAS selected for the
P1.2.2 Interlock Timeout	sequence must be resta	Default: 5 for an Interlocked Time Start, after which the start irted if no acknowledgement contact is received. See rameter is also used for the Panel Damper Function P2.5.
P1.2.3 Delay Time		Default: 5 g a Delay Start, after which the HVX9000 will be t ion . This parameter is also used for the Panel Damper P2.5.

P1.2.4 Range: 0 – 15 DIN2 Function

Default: 1 (Ext fault close)

DIN2 FUNCTION

This parameter determines the function of digital input DIN2. If DIN2 is not being used, set this parameter value to 0.

- 0 Enable Bypass
- 1 Ext. Fault Close
- 2 Bypass Ovld Fault
- Run enable/External interlock Contact open: HVX9000 start disabled Contact closed: HVX9000 start enabled
- 4 Acceleration or deceleration time selection Contact open: Acceleration/Deceleration time 1 selected Contact closed: Acceleration/Deceleration time 2 selected
- 5 Hand/Auto Select contact closed: Auto control selected
- 6 PID Control contact closed: PID control selected
- 7 Motor potentiometer down contact closed: Motor potentiometer down selected
- 8 PID Reference 2 Select selects between **PID Reference** and PID Setpoint 2 from keypad
- 9 PM Setback contact closed: PM Setback enabled
- 10 Fault reset contact closed: All faults reset
- 11 Acceleration/Deceleration prohibited Contact closed: No acceleration or deceleration possible until the contact is opened
- 12 HOA On/Off contact closed: HOA Off
- 13 Speed Select 3
- 14 Fire Mode contact closed: Fire Mode selected. See Page 8-48.
- 15 Fire Mode Preset Reference Select Contact open or closed based on *FMRefSelFunction*. If this input is "ON" then *FireModeFreqRef1* or *FireModeFreqRef2* is selected as a "Preset Speed."

P1.2.5 DIN3 Function	Range: 0 – 15	Default: 10 (Fault Reset)
Divisitunction	DIN3 FUNCTION This parameter determ being used, set this par 0 Enable Bypass	ines the function of digital input DIN3. If DIN3 is not rameter to 0.
		tact closed: Fault is displayed and motor stopped
		tact open: Fault is displayed and motor stopped
	3 Run enable/Externa Contact open: HVX Contact closed: HVX	l interlock – 9000 start disabled
	Contact open: Acce	eleration time selection – leration/Deceleration time 1 selected eleration/Deceleration time 2 selected
	5 Hand/Auto Select –	contact closed: Auto control selected
	6 Motor potentiomete	er up – contact closed: Motor potentiometer up selected
	7 PID Control – conta	ct closed: PID control selected
	8 PID Reference 2 Sel	ect
	9 Speed Select 1 – co	ntact closed
		t closed: All faults reset
	11 Acceleration/Decele Contact closed: No contact is opened	eration prohibited – acceleration or deceleration possible until the
	12 DC braking comma Contact closed: In S contact is opened. S	top mode, the DC braking operates until the
	13 Smoke Purge	
	14 Fire Mode – contact	closed: Fire Mode selected. See Page 8-48.
	15 Fire Mode Preset Re	eference Select
		sed based on <i>FMRefSelFunction</i> . If this input is "ON" <i>Ref1</i> or <i>FireModeFreqRef2</i> is selected as a "Preset
Output		- rt ¦ ↑

Figure 8-1: DC Braking Command

P1.2.6 DIN4 Function	 being used, set this param Enable Bypass External fault - contact External fault - contact Run enable/External in Contact open: HVX900 Contact closed: HVX90 Acceleration or deceler Contact open: Accelera Contact closed: Accele Hand/Auto Select - cor PID Control - contact c Motor potentiometer d selected Reverse PM Setback Fault reset - contact closed: Speed Select 2 DC braking command - Contact closed: In Stop contact is opened. See HOA ON/OFF 	closed: Fault is displayed and motor stopped open: Fault is displayed and motor stopped terlock – 0 start disabled 00 start enabled ration time selection – tion/Deceleration time 1 selected ration/Deceleration time 2 selected tact closed: Auto control selected osed: PID control selected own – contact closed: Motor potentiometer down
	15 Fire Mode Preset Refer Contact opened: Fire M	

		nge: 0 – 15 5 FUNCTION	Default: 13 (PM Setback)
	bei	ng used, set this parameter to 0.	n of digital input DIN5. If DIN5 is not
	 0 Enable Bypass 1 External fault – contact closed: Fault is displayed and motor stopped 2 External fault – contact open: Fault is displayed and motor stopped 3 Run enable/External interlock – Contact open: HVX9000 start disabled Contact closed: HVX9000 start enabled 4 Acceleration or deceleration time selection – Contact open: Acceleration/Deceleration time 1 selected Contact closed: Acceleration/Deceleration time 2 selected 		It is displayed and mater standed
			led
			ation time 1 selected
	5	Hand/Auto Select – contact closed:	Auto control selected
	6	Motor potentiometer up - contact c	losed: Motor potentiometer up selected
	7	PID Control - contact closed: PID co	ontrol selected
8 Reverse – contact closed: Reverses motor	motor direction		
9 DC Brake Command – contact closed: DC Brake is enabled		ed: DC Brake is enabled	
	10	Fault reset - contact closed: All faul	ts reset
	11	Acceleration/Deceleration prohibite	
		Contact closed: No acceleration or contact is opened	deceleration possible until the
	12	HOA On/Off – contact closed: HOA	Off
	13	PM Setback – contact closed: PM Set	etback enabled
	14	Fire Mode – contact closed: Fire Mo	ode selected. See Page 8-48 .
	15	Fire Mode Preset Reference Select Contact opened: Fire Mode Referen Contact closed: Fire Mode Reference	nce 1 selected

P1.2.8 DIN6 Function	Range: 0 – 15 DING FUNCTION	Default: 11 (Speed Select 3)
	 This parameter determines the function of digital input DIN6. If DIN6 is not being used, set this parameter to 0. On Intellipass DIN6 is automatically set to "Bypass Overload Fault"; selection 13. However if DIN2 is already programmed for "Bypass Overload Fault", selection 2, this will not occur. 0 Not Used 1 External fault – contact closed: Fault is displayed and motor stopped 2 External fault – contact open: Fault is displayed and motor stopped 3 Run enable/External interlock – 	
	Contact open: Drive start dis Contact closed: Drive start er Acceleration or deceleration Contact open: Acceleration/E	nabled time selection –
		Deceleration time 2 selected
		ntact closed: Motor potentiometer up selected contact closed: Motor potentiometer down
	 8 PID Reference 2 Select 9 PM Setback – contact closed 	PM Setback enabled
	10 Fault reset – contact closed: 11 Speed Select 3 – contact closed: 12 UOA 2 (01)	ed
	 12 HOA On/Off – contact closed: HOA Off 13 Bypass Overload Fault 14 Fire Mode – contact closed: Fire Mode selected 15 Fire Mode Preset Reference Select 1 / 2 Contact opened: Fire Mode Reference 1 selected Contact closed: Fire Mode Reference 2 selected 	
	This selection is automatical (IntelliPass) has Bypass enab	y set to 13 (Bypass Overload Fault) if P1.10.1 led or if P1.10.3 (Auto Bypass) is enabled. ection 2, Bypass Ovld Fault is already
P1.2.9 Al1 Signal Range	Range: 0 – 2 Units: Percent 811 SIGNAL RANGE	Default: 0 (0 – 20 mA / 0 – 100%)
	0 0	ined with Al1 Custom Minimum and
P1.2.10 Al1 Custom Minimum	Range: 0.00 – Al1 Custom Minim Units: Percent 811 กมรากก. คมห	um Default: 0.00%
		g of minimum level for the customized analog
P1.2.11 Al1 Custom Maximum	Range: Al1 Custom Maximum – 100.00% Units: Percent RII CUSTOM MRX	Default: 100.00%
	This parameter allows the settin analog input 1 as a percentage o	g of the maximum level for the customized f 10V.

P1.2.12 Al1 Signal Inversion	Range: 0 – 1 Rii Signal Inv Cartier this	Default: 0 (No Inversion)
	 Setting this parameter to 1 causes the minimum reference input and the min maximum reference input. 0 No Inversion 1 Al1 signal inverted 	maximum set output to occur with the imum set output to occur with the
P1.2.13 Al1 Filter Time	Range: 0.00 – 10.00 Units: Seconds RI1 FILTER TIME	Default: 0.10

This parameter, given a value greater than 0, activates the function that filters out disturbances from the incoming analog input 1 (V_{in}) signal. Long filtering time makes the signal change slower. See **Figure 8-2**.

Figure 8-2: Al1 Signal Filtering

P1.2.14 Al2 Signal Range	Range: 0 – 2 Units: Percent <i>RI2 SIGNRL RANGE</i> 0 Signal range 0 – 20 mA / 0 – 100% 1 Signal range 4 – 20 mA / 20 – 100% 2 Custom signal range (see <i>Al2 Custo</i> <i>Maximum</i>)	
P1.2.15 Al2 Custom Minimum	Range: 0.00 – Al2 Custom Max Units: Percent RI2 CUSTOR RIN This parameter allows the setting of th percentage of 20 mA. See also Al1 Custom Minimum .	Default: 0.00% e minimum level of analog input 2 as a
P1.2.16 Al2 Custom Maximum	Range: Al2 Custom Min – 100.00% Units: Percent RI2 CUSTOM MRX This parameter allows the setting of th percentage of 20 mA. See also Al1 Custom Maximum .	Default: 100.00% e maximum level of analog input 2 as a

P1.2.17 Al2 Signal Inversion	Range: 0 – 1 Riz SiGNRL INV	Default: 0 (No Inversion)
	minimum reference input	1 causes the maximum set output to occur with the and the minimum set output to occur with the See also Al1 Signal Inversion .
P1.2.18 Al2 Filter Time	Range: 0.00 – 10.00 Units: Seconds <i>RI2 FILTER TIME</i> This parameter, given a va	Default: 0.10

This parameter, given a value greater than 0, activates the function that filters out disturbances from the analog input 2 (I_{in}) signal. A long filtering time makes the signal change slower. See **Figure 8-3**.

Figure 8-3: Al2 Signal Filtering

P1.2.19 Motor Potentiometer Ramp Time	Range: 0.1 – 2000.0 Units: Seconds <i>NOTORPOT RAMP TIME</i> Defines the rate of change of t	Default: 10.0 the reference from the motor potentiometer.
P1.2.20 Motor Potentiometer Memory Reset (Frequency Reference)		•
P1.2.21 Motor Potentiometer Memory Reset (PID Reference)	Range: 0 – 2Default: 0 (No Reset)NDTORPOTMEMPIDREFThis parameter sets whether the memory of the motor potentiometer, when used as a PID reference, is maintained or reset at stop or power down.0No reset1Memory reset at stop and power down2Memory reset at power down	

P1.2.22 Reference Scale Minimum	Range: 0.00 – Ref Scale Max Units: Hertz REF SCRLE MIN	Default: 60.00	
	This parameter allows the scaling of the minimum frequency reference from its preset value to a value less than that set by the <i>Reference Scale Maximum</i> parameter. If no scaling is desired, set this parameter to 0.		
	An example is shown in Figure 8-4 . Voltage input Al1, with a signal range of 0 – 10V, is selected for the Place B reference, and its minimum and maximum output values are scaled from their preset values by using the Reference Scale Minimum and Reference Scale Maximum parameters.		
P1.2.23 Reference Scale Maximum	its preset value to a value greater	Default: 60.00 of the maximum frequency reference from than that set by the Reference Scale is desired, set this parameter to 0.	
	An example is shown in Figure 8-4 . Voltage input Al1, with a signal range of 0 – 10V, is selected for the Place B reference, and its minimum and maximum		

output values are scaled from their preset values by using the Reference Scale

Minimum and Reference Scale Maximum parameters.

Figure 8-4: Control Place B with and without Reference Scaling

P1.2.24 Al3 Signal	Range: AnIN:0.1 – AnIN:E.10 RI3 SIGNRL SEL	Default: AnIN:0.1	
Selection	Connect the AI3 signal to the analog input of your choice with this parameter.		
P1.2.25 Al3 Signal Range	Range: 0 – 1 RI3 SIGNRL RRNGE	Default: 1 (4 – 20 mA/20 – 100%)	
Alo olgilal hange	This parameter sets the signal range of analog input 3.		
	0 Signal range 0 – 20 mA / 0 – 100%		

1 Signal range 4 – 20 mA / 20 – 100%

This parameter allows the setting of the maximum level of analog input 2 as a percentage of 20 mA. See also *Al1 Custom Maximum*.

P1.2.26 Al3 Signal Inversion	Range: 0 – 1 <i>RI3 SIGNAL INV</i> Setting this parameter to 1 causes the minimum reference input and the min maximum reference input. 0 No inversion 1 AI3 signal inverted	Default: 0 (No Inversion) maximum set output to occur with the imum set output to occur with the
P1.2.27 Al3 Filter Time	Range: 0.00 – 10.00 Units: Seconds <i>RI3 FILTER TIME</i> When this parameter is given a value g that filters out disturbances from the in filtering time makes the signal change	ncoming analog input 3 signal. A long
P1.2.28 Al4 Signal Selection	Range: AnIN:0.1 – AnIN:E.10 RIY SIGNRL SEL Connect the AI4 signal to the analog ir	Default: AnIN:0.1 nput of your choice with this parameter.
P1.2.29 Al4 Signal Range	Range: 0 – 1 RIY 5IGNRL RRIGE This parameter sets the signal range o 0 Signal range 0 – 20 mA / 0 – 100% 1 Signal range 4 – 20 mA / 20 – 100%	
P1.2.30 Al4 Signal Inversion	Range: 0 – 1 RIY SIGNAL INV Setting this parameter to 1 causes the minimum reference input and the min maximum reference input.	Default: 0 (No Inversion) maximum set output to occur with the imum set output to occur with the
P1.2.31 Al4 Filter Time	Range: 0.00 – 10.00 Units: Seconds <i>RIY FILTER TIME</i> When this parameter is given a value of that filters out disturbances from the a time makes the signal change slower.	

P1.2.32 Interlock/Run Enable Display Text	Range: 0 – 9 INTLK TEXT DIN2 1.2.32.1		
Parameters	Interlock/Run Enable Text for DIN2	Default: 0	
	1.2.32.2 Interlock/Run Enable Text for DIN3	Default: 0	
	1.2.32.3 Interlock/Run Enable Text for DIN4 INTLK TEXT DINS	Default: 0	
	1.2.32.4 Interlock/Run Enable Text for DIN5 INTLK TEXT DIN6	Default: 0	
	1.2.32.5 Interlock/Run Enable Text for DIN6	Default: 0	
	When a Digital Input is selected for External Interlock/Run		
	Enable, the user has a choice of the following text displays when the		
	contact is open. 0 Ext Interlock		
	1 Run Enable		
	2 Vibration Cutout		
	3 High Motor Temperature		
	4 Freeze Stat Trip		
	5 Low Pressure		
	6 High Pressure		
	7 Low Water		
	8 Smoke Detect		
	9 3-Wire Off		
	10 Damper Interlock		
	11 Open Safety (See Note below)		
	•	2 Seal Leakage	
	13 Valve Sequence		
	14 Megger Shutdown		
	Note: When "Open Safety" is used along with "Damper Output" the operation of the start sequence is "restarted" when the contact opens. This varies only in "BAS" control whereas if any other of the selections above are used, the damper output relay will remain ON when this contact is opened and the motor will automatically restart when contact is closed. If selection 11 (Open Safety) is selected, the damper output will turn OFF when the input is open. Once the "Open Safety" input is		
	"closed", the damper output will turn ON as long as the BAS Start (DIN1) is "mainta		

8-14
Parameter Group G1.3: Output Signals

P1.3.1 Analog Output (A _{out}) Content	Range: 0 – 13 <i>RNRLOG OUT FUNCTION</i> This parameter selects the c	Default: 1 (Output Frequency) lesired function for the analog output signal.
	0 Not used 1 Output frequency $(0 - f_{mr})^{2}$ 2 Frequency reference $(0 - 3)^{2}$ 3 Motor speed $(0 - Motor)^{2}$ 4 Output current $(0 - I_{nMot})^{2}$ 5 Motor torque $(0 - T_{nMot})^{2}$ 6 Motor power $(0 - P_{nMot})^{2}$ 7 Motor voltage $(0 - V_{nMot})^{2}$ 8 DC-link voltage $(0 - 1000)^{2}$ 9 PID controller reference 10 PID controller actual val 11 PID controller actual val 12 PID controller error valu 13 PID controller output	nax) - f _{max}) nominal speed) _{or}) _r) _r) _r) _{vor}) VV) value ue 1 ue 2
P1.3.2 Analog Output (A _{out}) Filter Time	Range: 0.00 – 10.00 Units: Seconds Rout FILTER TIME When this parameter is give	Default: 1.00

When this parameter is given a value greater than 0, it activates the function that filters out disturbances from the analog output signal. A long filtering time makes the output signal change slower. If you set a value of 0, no filtering takes place. See **Figure 8-5**.

Figure 8-5: Analog Output Filtering

P1.3.3 A _{out} Invert	Range: 0 – 1 Bour INVERT	Default: 0 (Not Inverted)
	maximum output oc <i>Content</i> parameter a	ter to 1 inverts the analog output signal so that the scurs at the minimum value of the <i>Analog Output (A_{out})</i> and the minimum output occurs at the maximum value of <i>A_{out}) Content</i> parameter. See Figure 8-6 .
	0 Not inverted	
	1 Inverted	

Figure 8-6: Analog Output Inversion

P1.3.4 Analog Output (A _{out}) Minimum	Range: 0 – 1 Rout MINIMUM Sets the signal minimum to either 0 mA 0 0 mA minimum 1 4 mA minimum	Default: 0 (0 mA) A or 4 mA.
P1.3.5 Analog Output (A _{out}) Scale	Range: 10 – 1000 Units: Percent Rout SCRLE See Figures 8-6 and 8-7 and Table 8-1 fo	Default: 100 or scaling information and examples.

Table 8-1: Scaling Factor for the Analog Output

Signal	Maximum Value of the Signal
Output frequency	100 x f _{max}
Motor speed	100% x Motor nominal speed
Output current	100% x I _{nMotor}
Motor torque	100% x T _{nMotor}
Motor power	100% x P _{nMotor}
Motor voltage	100% x V _{nmotor}
DC-link voltage	1000 V
PI-ref. value	100% x ref. value max.
Pl act. value 1	100% x actual value max.
Pl act. value 2	100% x actual value max.
Pl error value	100% x error value max.
PI output	100% x output max

E·T•**N** Cutler-Hammer

August 2006

Figure 8-7: Analog Output Scale

P1.3.6 Digital Output 1 (DO1) Function Range: 1 – 26 DD1 FUNCTION Default: 1 (Ready)

Digital output DO1 sinks current when the selected setting is true. See **Table 8-2** for setting information.

Table 8-2: DO1 Function Settings

Table 6-2. DOT Function Settings		
Setting		Signal Content
1	Ready	The HVX9000 is ready to operate
2	Run	The HVX9000 is operating (motor is running)
3	Fault	A fault trip has occurred
4	Fault inverted	A fault trip has not occurred
5	Drive overheat warning	The heat-sink temperature exceeds +70C
6	External fault or warning	Fault or warning depending on <i>External</i> <i>Fault</i>
7	Reference fault or warning	Fault or warning depending on 4 mA (Reference) Fault Response — if analogue reference is 4 – 20 mA and signal is <4 mA
8	Warning	Always if a warning exists
9	Reversed	The reverse command has been selected
10	Bypass Run	Bypass has been selected
11	At speed	The output frequency has reached the set reference
12	Motor regulator activated	Overvoltage or overcurrent regulator was activated
13	Output frequency limit 1 supervision	The output frequency is outside the set supervision low limit/high limit (see <i>Frequency Supervision Function 1</i> and <i>Speed Supervision Value 1</i>)
14	Output frequency limit 2 supervision	The output frequency is outside the set supervision low limit/high limit (see <i>Frequency Supervision Function 2</i> and <i>Speed Supervision Value 2</i>)

Signal		Signal Content
15	Torque limit supervision	The motor torque is beyond the set supervision low limit/high limit (see Torque Supervision Function and Torque Supervision Value)
16	Reference limit supervision	Active reference is beyond the set supervision low limit/high limit (see <i>Reference Supervision Limit</i> and <i>Reference</i> <i>Supervision Value</i>)
17	External brake control	External brake ON/OFF control with programmable delay (see External Brake Off Delay and External Brake On Delay)
18	Control from I/O terminals	In external control mode
19	Drive temperature limit supervision	Frequency converter heatsink temperature goes beyond the set supervision limits (see <i>Temperature Function Supervision</i> and <i>Temperature Supervision Value</i>)
20	Unrequested rotation direction	Motor rotation direction is different from the requested one.
21	External brake control inverted	External brake ON/OFF control (see External Brake Off Delay and External Brake On Delay); Output active when brake control is OFF
22	Thermistor fault or warning	The thermistor input of option board indicates overtemperature. Fault or warning depending on <i>Thermistor Fault Response</i>
23	Pass Through Communications	Output can be "forced" on via Fleldbus
24	Fire Mode	Fire Mode is active
25	Auto Control	In Auto Control mode
26	Hand Control	In Hand Control mode

Table 8-2: DO1 Function Settings, continued

P1.3.7 **Relay Output 1** (RO1) Function Default: 2 (Run)

Range: 1 – 28 RO1 FUNCTION

Relay output RO1 is activated when the selected setting is true. See Table 8-3 for setting information.

Table 8-3: RO1 Function Settings

Setting		Signal Content	
0	Not used	—	
1	Ready	The HVX9000 is ready to operate	
2	Run	The HVX9000 is operating (motor is running)	
3	Fault	A fault trip has occurred	
4	Fault inverted	A fault trip has not occurred	
5	Drive overheat warning	The heat-sink temperature exceeds +70C	
6	External fault or warning	Fault or warning depending on External Fault	
7	Reference fault or warning	Fault or warning depending on 4 mA (Reference) Fault Response — if analogue reference is 4 – 20 mA and signal is <4 mA	

Setting		Signal Content	
8	Warning	Always if a warning exists	
9	Reversed	The reverse command has been selected	
10	Bypass Run	Bypass has been selected	
11	At speed	The output frequency has reached the set reference	
12	Motor regulator activated	Overvoltage or overcurrent regulator was activated	
13	Output frequency limit 1 supervision	The output frequency is outside the set supervision low limit/high limit (see <i>Frequency Supervision Function 1</i> and <i>Speed Supervision Value 1</i>)	
14	Output frequency limit 2 supervision	The output frequency is outside the set supervision low limit/high limit (see <i>Frequency Supervision Function 2</i> and <i>Speed Supervision Value 2</i>)	
15	Torque limit supervision	The motor torque is beyond the set supervision low limit/high limit (see Torqu Supervision Function and Torque Supervision Value)	
16	Reference limit supervision	Active reference is beyond the set supervision low limit/high limit (see <i>Reference Supervision Limit</i> and <i>Referenc</i> <i>Supervision Value</i>)	
17	External brake control	External brake ON/OFF control with programmable delay (see <i>External Brake Off Delay</i> and <i>External Brake On Delay</i>)	
18	Control from I/O terminals	In external control mode	
19	Drive temperature limit supervision	Frequency converter heatsink temperature goes beyond the set supervision limits (se <i>Temperature Function Supervision</i> and <i>Temperature Supervision Value</i>)	
20	Unrequested rotation direction	Motor rotation direction is different from the requested one	
21	External brake control inverted	External brake ON/OFF control (see Extern Brake Off Delay and External Brake On Delay); Output active when brake control is OFF	
22	Thermistor fault or warning	The thermistor input of option board indicates overtemperature. Fault or warnin depending on <i>Thermistor Fault Response</i>	
23	Pass Through Communications	Output can be "forced" on via Fleldbus	
24	Fire Mode	Fire Mode is active	
25	Auto Control	In Auto Control mode	
26	Hand Control	In Hand Control mode	
27	Start Delay Relay	Starts delay relay	
28	Run Bypass or Drive	Running in Bypass or Drive	

	P1.3.8
Relay	Output 2
(RO2)	Function

Range: 1 – 28

RO2 FUNCTION

Default: 3 (Fault)

Relay output RO2 is activated when the selected setting is true. See Table 8-4 for setting information.

Table 8-4: RO2 Function Settings

Setting		Signal Content
0	Not used	_
1	Ready	The HVX9000 is ready to operate
2	Run	The HVX9000 is operating (motor is running)
3	Fault	A fault trip has occurred
4	Fault inverted	A fault trip has not occurred
5	Drive overheat warning	The heat-sink temperature exceeds +70C
6	External fault or warning	Fault or warning depending on <i>External</i> <i>Fault</i>
7	Reference fault or warning	Fault or warning depending on 4 mA (Reference) Fault Response — if analogue reference is 4 – 20 mA and signal is <4 mA
8	Warning	Always if a warning exists
9	Reversed	The reverse command has been selected
10	Bypass Run	Bypass has been selected
11	At speed	The output frequency has reached the set reference
12	Motor regulator activated	Overvoltage or overcurrent regulator was activated
13	Output frequency limit 1 supervision	The output frequency is outside the set supervision low limit/high limit (see <i>Frequency Supervision Function 1</i> and <i>Speed Supervision Value 1</i>)
14	Output frequency limit 2 supervision	The output frequency is outside the set supervision low limit/high limit (see <i>Frequency Supervision Function 2</i> and <i>Speed Supervision Value 2</i>)
15	Torque limit supervision	The motor torque is beyond the set supervision low limit/high limit (see Torque Supervision Function and Torque Supervision Value)
16	Reference limit supervision	Active reference is beyond the set supervision low limit/high limit (see <i>Reference Supervision Limit</i> and <i>Reference</i> <i>Supervision Value</i>)
17	External brake control	External brake ON/OFF control with programmable delay (see <i>External Brake</i> <i>Off Delay</i> and <i>External Brake On Delay</i>)
18	Control from I/O terminals	External control mode
19	Drive temperature limit supervision	Frequency converter heatsink temperature goes beyond the set supervision limits (see <i>Temperature Function Supervision</i> and <i>Temperature Supervision Value</i>)
20	Unrequested rotation direction	Motor rotation direction is different from the requested one.

Setting		Signal Content
21	External brake control inverted	External brake ON/OFF control (see <i>External</i> <i>Brake Off Delay</i> and <i>External Brake On</i> <i>Delay</i>); Output active when brake control is OFF
22	Thermistor fault or warning	The thermistor input of option board indicates overtemperature. Fault or warning depending on <i>Thermistor Fault Response</i>
23	Pass Through Communications	Output can be "forced" on via Fleldbus
24	Fire Mode	Fire Mode is active
25	Auto Control	In Auto Control mode
26	Hand Control	In Hand Control mode
27	Start Delay Relay	Starts delay relay
28	Run Bypass or Drive	Running in Bypass or Drive

Table 8-4: RO2 Function Settings, continued

P1.3.9 **Relay Output 3** (RO3) Content Range: 1 – 28

ROJ CONTENT

Default: 28 (Run Bypass or Drive)

Relay output RO3 is activated when the selected setting is true. See Table 8-5 for setting information.

Table 8-5: RO3 Content Settings

Set	ting	Signal Content	
0	Not used		
1	Ready	The HVX9000 is ready to operate	
2	Run	The HVX9000 is operating (motor is running)	
3	Fault	A fault trip has occurred	
4	Fault inverted	A fault trip has not occurred	
5	Drive overheat warning	The heat-sink temperature exceeds +70C	
6	External fault or warning	Fault or warning depending on External Fault	
7	Reference fault or warning	Fault or warning depending on 4 mA (Reference) Fault Response — if analogue reference is 4 – 20 mA and signal is <4 mA	
8	Warning	Always if a warning exists	
9	Reversed	The reverse command has been selected	
10	Bypass Run	Bypass has been selected	
11	At speed	The output frequency has reached the set reference	
12	Motor regulator activated	Overvoltage or overcurrent regulator was activated	
13	Output frequency limit 1 supervision	The output frequency is outside the set supervision low limit/high limit (see <i>Frequency Supervision Function 1</i> and <i>Speed Supervision Value 1</i>)	
14	Output frequency limit 2 supervision	The output frequency is outside the set supervision low limit/high limit (see <i>Frequency Supervision Function 2</i> and <i>Speed Supervision Value 2</i>)	

	Table 8-4: RO3 Content Settings, continued			
	Sett	ing	Signal Content	
	15	Torque limit supervision	The motor torque is beyond the set supervision low limit/high limit (see <i>Torque</i> <i>Supervision Function</i> and <i>Torque</i> <i>Supervision Value</i>)	
	16	Reference limit supervision	Active reference is beyond the set supervision low limit/high limit (see <i>Reference Supervision Limit</i> and <i>Reference</i> <i>Supervision Value</i>)	
	17	External brake control	External brake ON/OFF control with programmable delay (see <i>External Brake Off Delay</i> and <i>External Brake On Delay</i>)	
	18	Control from I/O terminals	External control mode	
	19	Drive temperature limit supervision	Frequency converter heatsink temperature goes beyond the set supervision limits (see <i>Temperature Function Supervision</i> and <i>Temperature Supervision Value</i>)	
	20	Unrequested rotation direction	Motor rotation direction is different from the requested one.	
	21	External brake control inverted	External brake ON/OFF control (see <i>External</i> <i>Brake Off Delay</i> and <i>External Brake On</i> <i>Delay</i>); Output active when brake control is OFF	
	22	Thermistor fault or warning	The thermistor input of option board indicates overtemperature. Fault or warning depending on <i>Thermistor Fault Response</i>	
	23	Fault Reset	This output is activated when faults are reset	
	24	Fire Mode	Fire Mode is active	
	25	Auto Control	In Auto Control mode	
	26	Hand Control	In Hand Control mode	
	27	Start Delay Relay	Starts delay relay	
	28	Run Bypass or Drive	Running in Bypass or Drive	
P1.3.10 Relay Output 4 (RO4) Content	ROY CONTENT		en the selected setting is true. See Table 8-5	
Relay Output 5 RD (RO5) Content Re		ge: 1 – 28 CONTENT by output RO5 is activated wh setting information which is t	Default: 23 (Fault Reset) en the selected setting is true. See Table 8-5 he same as RO3.	
P1.3.12 Relay Output 6 (RO6) Content	<i>RD5</i> Rela for s		Default: 0 (Not Used) en the selected setting is true. See Table 8-5 he same as RO3. This parameter is only s added to slot D.	

P1.3.13 Relay Output 7 (RO7) Content	Range: 1 – 28 ROT CONTENT Relay output RO7 is activated when the	Default: 0 (Not Used)	
	for setting information which is the san available if optional relay board is adde	ne as RO3. This parameter is only	
P1.3.14 Relay Output 8 (RO8) Content	Range: 1 – 28 ROB CONTENT Relay output RO8 is activated when the	Default: 0 (Not Used)	
	for setting information which is the san available if optional relay board is adde	ne as RO3. This parameter is only	
Note: P1.3.12 – P1.3.14 will be invisible unless there is an OPTB5 option board installed in slot D on drive.			
P1.3.15 Frequency	Range: 0 – 2 FREQ SUPV FUNCTION 1	Default: 0 (No Supervision)	
Supervision Function 1	If this parameter is set for 1 or 2, and th <i>Frequency Supervision Function 1</i> , this via digital output DO1 or via one of the upon their settings. 0 No supervision 1 Low limit supervision 2 High limit supervision	function generates a warning message	
P1.3.16 Speed Supervision Value 1	Range: 0.0 – 200.0 Units: Percent	Default: 0.0	
value i	SPEEDSUPRVRLUE1 Selects the frequency value supervised by Frequency Supervision Function 1 parameter.		
P1.3.17 Frequency	Range: 0 – 2 FREQ SUPV FUNCTION 2	Default: 0 (No Supervision)	
Supervision Function 2	If this parameter is set for 1 or 2, and th <i>Frequency Supervision Function 2</i> , this via digital output DO1 or via one of the upon their settings. 0 No supervision 1 Low limit supervision 2 High limit supervision	function generates a warning message	

Figure 8-8: Output Frequency Supervision

P1.3.19 Torque Supervision Function	over the set limit (<i>Torque Supe</i> message via digital output DO the settings of <i>Digital Output 1</i> or <i>Relay Output 2 (RO2) Funct</i>	Default: 0 (No Supervision) 2 and the calculated torque value goes under/ ervision Value) this function generates a warning 1 or via one of the relay outputs depending on I (DO1) Function, Relay Output 1 (RO1) Function ion.
	 No supervision Low limit supervision High limit supervision 	
P1.3.20 Torque Supervision Value	Range: 0.0 – 300.0 Units: Percent <i>TORQUE SUPV VRL</i> This parameter sets the torque <i>Function</i> parameter.	Default: 100.0% e value to be supervised by <i>Torque Supervision</i>
P1.3.21 Reference Supervision Limit	 Range: 0 – 2 Default: 0 (No Supervision) <i>REF SUPERV LIR</i> If this parameter is set for 1 or 2 and the reference value goes under/over the set limit (<i>Reference Supervision Value</i>) this function generates a warning message via digital output DO1 or via one of the relay outputs depending on the settings of <i>Digital Output 1 (DO1) Function, Relay Output 1 (RO1) Function</i> or <i>Relay Output 2 (RO2) Function</i>. The current active reference is supervised. It may come from place A or B depending on the DIN6 input, from the keypad if keypad is the active control or from the communication bus is the active control. 0 No supervision 1 Low limit supervision 2 High limit supervision 	

P1.3.22 Reference Supervision Value	Range: 0.0 – 100.0 Units: Percent <i>REF SUPERV VRL</i> This parameter sets the reference val <i>Supervision Limit</i> parameter.	Default: 0.0 ue to be supervised by Reference
P1.3.23 External Brake Off Delay	signals with the <i>External Brake Off D</i> parameters, which define the time fo previous position before reacting to the program the brake control signal, you	r which the external brake remains in its he START/STOP signal. See Figure 8-9 . To a can use either the digital output DO1 or Digital Output 1 (DO1) Function, Relay
P1.3.24 External Brake On Delay	signals with the <i>External Brake Off D</i> parameters, which define the time fo previous position before reacting to the program the brake control signal, you	r which the external brake remains in its he START/STOP signal. See Figure 8-9 . To a can use either the digital output DO1 or Digital Output 1 (DO1) Function, Relay

Figure 8-9: External Brake Control

P1.3.25 Temperature	Range: 0 – 2 TEMP FUNC SUPV	Default: 0 (No Supervision)
Function Supervision	over the set limit (<i>Temperature Super</i> warning message via digital output D settings of <i>Digital Output 1 (DO1) Fur</i> <i>Relay Output 2 (RO2) Function</i> .	the HVX9000 temperature goes under/ rvision Value), this function generates a O1 or the relay outputs depending on the nction, Relay Output 1 (RO1) Function or
	 No temperature limit supervision Low limit supervision 	

2 High limit supervision

P1.3.26 Temperature Supervision Value	Range: -10 – 75°C Units: degrees Celsius TEMP SUPV VRLUE	Default: 40°C	
	This parameter sets the temperature that is supervised by Temperature Function Supervision parameter.		
P1.3.27 Analog Output 2 (A2 _{out}) Signal	Range: AnOUT:0.1 – AnOUT:E.10 R2 _{OUT} SIGNRL Connect the AO2 signal to the ar	Default: AnOUT:0.1	
P1.3.28 Analog Output 2 (A2 _{out}) Content	Range: 0 – 13 $R2_{DUT}$ FUNCTION This parameter selects the desire 0 Not used 1 Output frequency (0 – f _{max}) 2 Frequency reference (0 – f _{ma} 3 Motor speed (0 – Motor norm 4 Output current (0 – I _{nMotor}) 5 Motor torque (0 – T _{nMotor}) 6 Motor power (0 – P _{nMotor}) 7 Motor voltage (0 – V _{nMotor}) 8 DC-link voltage (0 – 1000V) 9 PID controller reference valu 10 PID controller actual value 1 11 PID controller actual value 2 12 PID controller error value 13 PID controller output	inal speed)	
P1.3.29 Analog Output 2 (A2 _{out}) Filter Time	that filters out disturbances from	Default: 1.00 value greater than 0, it activates the function n the analog output 2 signal. A long filtering ange slower. If you set a value of 0, no filtering	
P1.3.30 Analog Output 2 (A2 _{out}) Inversion	maximum output occurs at the r Analog Output 2 (A2 _{out}) Conten	Default: 0 (No Inversion) rts the analog output 2 signal so that the ninimum value of the parameter selected in t and the minimum output occurs at the er selected in Analog Output 2 (A2 _{out}) Content .	
P1.3.31 Analog Output 2 (A2 _{out}) Minimum	Range: 0 – 1 R2out MINIMUN Sets the signal minimum to eith 0 0 mA minimum 1 4 mA minimum	Default: 1 (4 mA) er 0 mA or 4 mA.	

P1.3.32	
Analog Output 2	
(A2 _{out}) Scale	

Default: 100%

R2out SCRLE

Range: 0 – 1000

Units: Percent

See Figures 8-6 and 8-7 and Table 8-6 for scaling information and examples.

Table 8-6: Scaling Factor for the Analog Output

Signal	Maximum Value of the Signal
Output Frequency	100 x f _{max}
Motor speed	100% x Motor nominal speed
Output current	100% x I _{nMotor}
Motor torque	100% x T _{nMotor}
Motor power	100% x P _{nMotor}
Motor voltage	100% x V _{nmotor}
DC-link voltage	1000 V
PI-ref. value	100% x ref. value max.
Pl act. value 1	100% x actual value max.
Pl act. value 2	100% x actual value max.
Pl error value	100% x error value max.
PI output	100% x output max
See Analog Output (Aout) Scale.	

P1.3.33 Analog Output 3 (A3 _{out}) Signal	Range: AnOUT:0.1 – AnOUT:E.10 R3 _{0UT} SIGNRL Connect the AO3 signal to the analog	Default: AnOUT:0.1 g output of choice with this parameter.
P1.3.34 Analog Output 3 (A3 _{out}) Content	Range: 0 – 13 R_{300T} FUNCTION This parameter selects the desired fu 0 Not used 1 Output frequency (0 – f _{max}) 2 Frequency reference (0 – f _{max}) 3 Motor speed (0 – Motor nominal 4 Output current (0 – I _{nMotor}) 5 Motor torque (0 – T _{nMotor}) 6 Motor power (0 – P _{nMotor}) 7 Motor voltage (0 – V _{nMotor}) 8 DC-link voltage (0 – 1000V) 9 PID controller reference value 10 PID controller actual value 1 11 PID controller actual value 2 12 PID controller error value 13 PID controller output	Default: 0 (Not used) unction for the analog output 3 signal. speed)
P1.3.35 Analog Output 3 (A3 _{out}) Filter Time	that filters out disturbances from the	Default: 1.00 e greater than 0, it activates the function e analog output 3 signal. A long filtering e slower. If you set a value of 0, no filtering

takes place. See Figure 8-5.

P1.3.36 Analog Output 3 (A3 _{out}) Inversion	Analog Output 3 (A3out) Content and	num value of the parameter selected in
P1.3.37 Analog Output 3 (A3 _{out}) Minimum	Range: 0 – 1 R3 _{DUT} MINIMUM Sets the signal minimum to either 0 m 0 0 mA minimum 1 4 mA minimum	Default: 0 (0 mA) nA or 4 mA.
P1.3.38 Analog Output 3 (A3 _{out}) Scale	Range: 0 – 1000 Units: Percent ^{R3out} SCRLE See Figures 8-6 and 8-7 and Table 8-7	Default: 100% for scaling information and examples.

Table 8-7: Scaling Factor for the Analog Output

Signal	Maximum Value of the Signal
Output Frequency	100 x f _{max}
Motor speed	100% x Motor nominal speed
Output current	100% x I _{nMotor}
Motor torque	100% x T _{nMotor}
Motor power	100% x P _{nMotor}
Motor voltage	100% x V _{nmotor}
DC-link voltage	1000 V
Pl-ref. value	100% x ref. value max.
Pl act. value 1	100% x actual value max.
Pl act. value 2	100% x actual value max.
Pl error value	100% x error value max.
PI output	100% x output max
See Analog Output (Aout)	Scale.

Parameter Group G1.4: Drive Control

P1.4.1

Ramp 1 Shape

Default: 0.0

The start and end of the acceleration and deceleration ramps can be smoothed with this parameter. Setting the value to 0 gives a linear ramp shape, which causes acceleration and deceleration to act immediately to the changes in the reference signal. Setting a value of 0.1 to 10 seconds produces an S-shaped acceleration/deceleration curve. The ramp times are determined by *Acceleration Time 1* and *Deceleration Time 1*. See Figure 8-10.

0 Linear

Range: 0.0 - 10.0

Units: Seconds

RAMP 1 SHAPE

>0 S-curve acceleration/deceleration ratio

 P1.4.2
 Range: 0.0 – 10.0
 Default: 0.0

 Ramp 2 Shape
 Default: 0.0
 Default: 0.0

 RRMP 2 SHAPE
 Default: 0.0
 Default: 0.0

 The start and end of acceleration and deceleration ramps can be smoothed with these parameters. Setting value 0 gives a linear ramp shape, which causes acceleration and deceleration to act immediately to the changes in the reference signal. Setting value 0.1 to 10 seconds for this parameter produces an S-shaped acceleration/deceleration. The acceleration time is determined with Acceleration Time 1/Deceleration Time 1 (Acceleration Time 2/

Acceleration Time 2). See Figure 8-10.

0 Linear

>0 S-curve acceleration/deceleration ratio

Figure 8-10: Acceleration/Deceleration Curve (S-Shaped)

	-	• •
P1.4.3 Acceleration Time 2	the maximum frequency set by <i>Minim</i> <i>Frequency</i> . With the use of <i>Acceleratic</i> different acceleration times can be use be selected with one of the programm DIN5 or DIN6 (<i>DIN2 Function</i> , <i>DIN3 Fu</i> and <i>DIN6 Function</i>).	on Time 1 and Acceleration Time 2, two ed for an application. The active set can hable digital inputs DIN2, DIN3, DIN4, anction, DIN4 Function, DIN5 Function,
	Note : If the PID-controller is used, the automatically selected as the active se	
P1.4.4 Deceleration Time 2	Range: 0.1 – 3000.0 Units: Seconds DECEL TIME 2	Default: 10.0
	Time required for output frequency to change from the maximum frequency to the minimum frequency set by <i>Minimum Frequency</i> and <i>Maximum</i> <i>Frequency</i> . With the use of <i>Deceleration Time 1</i> and <i>Deceleration Time 2</i> , two different deceleration times can be used for an application. The active set can be selected with one of the programmable digital inputs DIN2, DIN3, DIN4, DIN5 or DIN6 (<i>DIN2 Function, DIN3 Function, DIN4 Function, DIN5 Function</i> , and <i>DIN6 Function</i>).	
	Note : If the PID-controller is used, the automatically selected as the active se	

P1.4.5 Brake Chopper	of the motor and the load are fea the HVX9000 to decelerate the lo	Default: 0 (Not Used) ng the motor, the energy stored in the inertia d into an external brake resistor. This enables ad with a torque equal to that of acceleration resistor has been selected). See separate al.
P1.4.6 Start Mode	 frequency within the set accomany cause prolonged accele Flying start: The HVX9000 is able to start torque to motor and searching speed the motor is spinning frequency towards the spinn value is detected. Thereafter decreased to the set reference deceleration parameters. Us 	into a spinning motor by applying a small ng for the frequency corresponding to the at. The searching starts from the maximum ing equivalent frequency until the correct , the output frequency will be increased/ ce value following the set acceleration/ e this mode if the motor may be spinning given. With the flying start, it is possible to ride
P1.4.7 Stop Mode	 command. Ramp: After the Stop command, the the set deceleration paramet necessary to use an external Normal = Ramp/Run Enable: After the Stop command, the to the set deceleration param is de-energized using one of to a halt without control from Normal stop = Coasting/Run The motor coasts to a halt w when Run Enable signal is de DIN3), the speed of the motor deceleration parameters. If t 	e speed of the motor is decelerated according neters. However, when the Run Enable signal the digital inputs (e.g. DIN3), the motor coasts n the drive.
P1.4.8 DC Brake Current		Default: 0.5 x I _{nHVX} ult value are determined by the HVX9000 nes the current injected into the motor during

P1.4.9 DC Brake Time at Stop	Range: 0.000 – 60.000 Units: Seconds STOP DC-BRAKETM	Default: 0.000	
	Determines if braking is ON or (motor is stopping. The function	DFF and the on time of the DC-brake when of the DC-brake depends on the Stop Mo	
	Stop Mode = 0 (Coasting):	rmined with this parameter.	
	After the stop command, the m drive.	otor coasts to a stop without control from	the
	possible time, without using an The braking time is scaled by th frequency is greater than the no	r can be electrically stopped in the shorte optional external braking resistor. e frequency when the DC-braking starts. ominal frequency of the motor, this set va hen the frequency is ≤10% of the nominal alue. See Figure 8-11 .	lf the lue
	the set deceleration parameters DC Brake Frequency In Ramp S time is defined with this parame	beed of the motor is reduced according to , as fast as possible, to the speed defined top , where the DC-braking starts. The bra eter. If high inertia exists, it is recommend for faster deceleration. See Figure 8-12 .	l with king
	status of the Run Enable input.	g action described above, dependent upo	on the
	Chan Made 2 (Newsel Coost	in a (Drug Europhia) Demonstrative a)	

Stop Mode = 3 (Normal = Coasting/Run Enable = Ramping): Follows the Coasting or Stopping action described above, dependent upon the status of the Run Enable input.

Figure 8-11: DC Braking Time When Stop Mode = Coasting

Figure 8-12: DC Braking Time When Stop Mode = Ramp

P1.4.10 DC Brake Frequency In Ramp Stop	Range: 0.10 – 10.00 Units: Hertz <i>STOP DC-BRRKEFR</i> The output frequency at whi	Default: 1.50 ch the DC-braking is applied. See Figure 8-13 .
P1.4.11 Start DC Brake Time	defines the time before the b	Default: 0.000 the start command is given. This parameter prake is de-energized. After the brake is de- ency increases according to the set start function the Figure 8-13 .

Figure 8-13: DC Braking Time at Start

P1.4.12	Range: 0 – 1	Default: 0 (Off)
Flux Brake	FLUX BRAKE	
	Braking torque is created by controlling the motor flux.	
	0 Flux braking OFF	

1 Flux braking ON

P1.4.13 Flux Brake Current	Range: 0.1 x I _{nMotor} – <i>Current Limit</i> Default: 0.5 x I _{nMotor} Units: Amperes FLUXBRRKECURRENT
	Defines the flux braking current value. It can be set between 0.1 x I_{nMot} <i>Motor Power Factor</i> and the <i>Current Limit</i> setting.
Parameter Group G1.5: Skip I	Frequencies
P1.5.1 Skip Frequency 1 Low Limit	Range: 0.00 – <i>Skip Frequency 1 High</i> Default: 0.00 <i>Limit</i> Units: Hertz SKIPF 1 LOW LIN
	In some systems it may be necessary to avoid certain frequencies because of mechanical resonances. Using <i>Skip Frequency 1 Low Limit</i> to <i>Skip Frequency 3 High Limit</i> parameters, it is possible to set limits for the "skip frequency" region. See Figure 8-14 .
P1.5.2 Skip Frequency 1 High Limit	Range: <i>Skip Frequency 1 Low Limit</i> – Default: 0.00 Max Frequency Units: Hertz
	 SKIPF 1 HIGH LIM In some systems it may be necessary to avoid certain frequencies because of mechanical resonances. Using <i>Skip Frequency 1 Low Limit</i> to <i>Skip Frequency 3 High Limit</i> parameters, it is possible to set limits for the "skip frequency" region. See Figure 8-14. No skip frequency range 1
P1.5.3 Skip Frequency 2 Low Limit	Range: 0.00 – <i>Skip Frequency 2 High</i> Default: 0.00 <i>Limit</i> Units: Hertz <i>SKIPF 2 LOW LIM</i> In some systems it may be necessary to avoid certain frequencies because of mechanical resonances. Using <i>Skip Frequency 1 Low Limit</i> to <i>Skip Frequency</i> <i>3 High Limit</i> parameters, it is possible to set limits for the "skip frequency" region. See Figure 8-14 .
P1.5.4 Skip Frequency 2 High Limit	Range: <i>Skip Frequency 2 Low Limit</i> – Default: 0.00 Max Frequency Units: Hertz <i>SKIPF 2 HIGH LIN</i>
	 In some systems it may be necessary to avoid certain frequencies because of mechanical resonances. Using <i>Skip Frequency 1 Low Limit</i> to <i>Skip Frequency 3 High Limit</i> parameters, it is possible to set limits for the "skip frequency" region. See Figure 8-14. No skip frequency range 2
P1.5.5 Skip Frequency 3 Low Limit	Range: 0 – Skip Frequency 3 High Default: 0.00 <i>Limit</i> Units: Hertz SKIPF 3 LOW LIM
	In some systems it may be necessary to avoid certain frequencies because of mechanical resonances. Using <i>Skip Frequency 1 Low Limit</i> to <i>Skip Frequency 3 High Limit</i> parameters, it is possible to set limits for the "skip frequency" region. See Figure 8-14 .

P1.5.6 Range: *Skip Frequency 3 Low Limit* – Default: 0.00 ency 3 Max Frequency

Skip Frequency 3 High Limit

Units: Hertz

SKIPF 3 HIGH LIM

In some systems it may be necessary to avoid certain frequencies because of mechanical resonances. Using *Skip Frequency 1 Low Limit* to *Skip Frequency 3 High Limit* parameters, it is possible to set limits for the "skip frequency" region. See Figure 8-14.

0 No skip frequency range 3

Figure 8-14: Skip Frequency Area Setting

P1.5.7 PH Acceleration/ Deceleration Ramp Range: 0.1 – 10.0 PH RCC/DEC RRMP Default: 1.0

Defines the acceleration/deceleration time when the output frequency is between the selected skip frequency range limits. The ramping speed (selected acceleration/deceleration time 1 or 2) is multiplied with this factor. E.g. value 0.1 makes the acceleration time 10 times shorter than outside the skip frequency range limits.

Figure 8-15: Ramp Speed Scaling Between Skip Frequencies

Parameter Group G1.6: Motor Control

P1.6.1 Motor Control Mode	The reference may be from bus. 0 Frequency control: Th (output frequency rese	/X9000 is controlling the motor speed compensa	on
P1.6.2 Voltage/Frequency Optimization	torque boost the voltage t motor produce sufficient t voltage increase depends boost can be used in appl high starting friction is lar EXAMPLE: What is require - First set the motor nomine - Second choose the <i>Moto</i> - Third choose the Voltage Option 1 : Activate the aut Optimization value 1) Option 2 : Programmable V To get torque you need to frequency so the motor has programmable V/F-curve Increase Zero Frequency V the V/f Mid-Point Voltage	es if automatic torque boost is used. With autom to the motor changes automatically which allows torque to start and run at low frequencies. The on the motor type and power. Automatic torque ications where the starting torque required due rge, e.g. in conveyors. ed to start the load from 0 Hz? nal values (<i>Motor Nominal Current</i> to <i>Current Li</i> <i>or Control Mode</i> . e Control Mode. omatic torque boost (<i>Voltage/Frequency</i>	s the e to <i>imit</i>). e/ et the n set <i>Mid</i> -

Note: In high torque — low speed applications — it is likely that the motor will overheat.

If the motor has to run a prolonged time under these conditions, special attention must be paid to cooling the motor. Use external cooling for the motor if the temperature tends to rise too high.

P1.6.3 Voltage/Frequency Ratio Selection

Range: 0 – 3

V/HZ RRTIO SELECT

Default: 0 (Linear)

0 Linear: The voltage of the motor changes linearly with the frequency in the constant flux area from 0 Hz to the field weakening point where the nominal voltage is supplied to the motor. Linear V/f ratio should be used in constant torque applications. See **Figure 8-16**.

This default setting should be used if there is no special need for another setting.

- Squared: The voltage of the motor changes following a squared curve waveform with the frequency in the area from 0 Hz to the field weakening point where the nominal voltage is supplied to the motor. The motor runs under-magnetized below the field weakening point and produces less torque and electromechanical noise. Squared V/f ratio can be used in applications where torque demand of the load is proportional to the square of the speed, e.g in centrifugal fans and pumps.
- 2 Programmable V/f curve: The V/f curve can be programmed with three different points. Programmable V/f curve can be used if the other settings do not satisfy the needs of the application. See **Figure 8-17**.
- 3 Linear with flux optimization: The HVX9000 searches for the minimum motor current in order to save energy, and to lower the audible motor noise. This can be used in applications with stable, low peak level motor load, such as fans, pumps, etc.

Figure 8-16: Linear and Squared Change of Motor Voltage

Figure 8-17: Programmable V/f Ratio

P1.6.4 Field Weakening Point	Range: 30.00 – 320.00 Units: Hertz FIELD WERKINGPINT The field weakening point is the outpu reaches the set maximum value. This nameplate frequency.	Default: 60.00 It frequency at which the output voltage usually corresponds to the motor
P1.6.5 Voltage at Field Weakening Point		tage/Frequency Ratio Selection, V/f
	When the <i>Motor Nominal Voltage</i> and <i>Motor Nominal Frequency</i> are set, the <i>Field Weakening Point</i> and <i>Voltage at Field Weakening Point</i> are automatically given the corresponding values. If you need different values for the field weakening point and the maximum output voltage, change these parameters after setting the <i>Motor Nominal Voltage</i> and <i>Motor Nominal Frequency</i> .	
P1.6.6 V/f Mid-Point Frequency	Range: 0.00 – <i>Field Weakening Point</i> Units: Hertz <i>V/HZ MID FREQ</i> If the programmable V/f curve has bee <i>Ratio Selection</i> this parameter defines curve. See Figure 8-17 .	
P1.6.7 V/f Mid-Point Voltage		Default: 100.00 en selected with the <i>Voltage/Frequency</i> s the middle point voltage of the curve.

P1.6.8 Zero Frequency Voltage	Range: 0.00 – 40.00 Units: Percent ZERO FREQ VOLTG	Default: 1.50	
		n selected with the <i>Voltage/Frequency</i> the zero frequency voltage of the curve.	
P1.6.9 Switching Frequency	Range: 1.0 – 16.0 Units: kiloHertz SWITCHING FREQ	Default: Based on drive Amp size	
	Motor noise can be minimized using a the switching frequency reduces the ca		
P1.6.10 Overvoltage Controller	Range: 0 – 1 OVERVOLT CONTR	Default: 1 (Enabled)	
Controller	1 Overvoltage control enabled With the overvoltage control switched output frequency will increase to main	Overvoltage control enabled Vith the overvoltage control switched on, if the utility supply voltage rises, the utput frequency will increase to maintain a constant motor V/f relation. This nay be useful, for example, if the utility supply voltage varies more than +109	
	In some applications the motor is requiregardless of supply line voltage variat control is switched off, the frequency voltage increases. This could lead to or large increase in motor current during	vill not increase as the utility supply verexciting the motor, resulting in a	
	Note : Overvoltage trips may occur who operation.	en the control is switched out of	
P1.6.11 Undervoltage Controller	Range: 0 – 1 UNDERVOLT CONTR 0 Undervoltage Controller disabled 1 Undervoltage Controller enabled	Default: 1 (Enabled)	
	With the undervoltage control switched on, if the utility supply voltage declines, the output frequency will decrease to maintain a constant motor V/f relation. This may be useful, for example, if the utility supply voltage varies more than -15% and the motor cannot tolerate this undervoltage.		
		inder exciting the motor, resulting in a	
	Note: Undervoltage trips may occur w operation.	hen controllers are switched out of	

Parameter Group G1.7: Protections

P1.7.1 4 mA (Reference)	Range: 0 – 5 408 FBULT RESP	Default: 0 (No Response)
Fault Response	A warning or a fault action and messa (P.1.2.9, P1.2.14 or P1.2.25) is set to "1 3.5 mA for 5 seconds or below 0.5 mA	ut DO1 or relay outputs RO1, RO2 or RO3. arlier is set as reference cy is set as reference ling to <i>Stop Mode</i>
P1.7.2 4 mA Fault Frequency		Default: 0.00 <i>Response</i> (above) is set to 3 and the 4 eference to the motor is the value of this
P1.7.3 Al1 VDC Fault Response	Range: 0 – 2 <i>RII VDC FRULT RESPONSE</i> 0 No action 1 Warning 2 Fault	Default: 0
P1.7.4 External Fault	signal in the programmable digital inp	ling to Stop Mode
P1.7.5 Input Phase Supervision		
P1.7.6 Undervoltage Fault Response	Range: 0 – 1 UVOLT FRULT RESP 0 Fault Stored 1 No History Note: This protection can not be inact	Default: 0 (Fault Stored) ivated.

P1.7.7 Output Phase Supervision	equal currents. If not, the 0 No response 1 Warning 2 Fault, stop mode afte	Default: 2 (Fault) n monitors that the motor phases have approximately response programmed by this parameter occurs. r fault according to Stop Mode r fault always by coasting
P1.7.8 Earth (Ground) Fault	is zero if there is no grou function is always operat high current levels. 0 No response 1 Warning	Default: 2 (Fault) nonitors the sum of the motor phase currents which nd fault. In addition, the overcurrent protection ional to protect the HVX9000 from ground faults with r fault according to Stop Mode

3 Fault, stop mode after fault always by coasting

Motor Thermal Protection General Information

The motor thermal protection is to protect the motor from overheating. The HVX9000 is capable of supplying higher than nominal current to the motor. If the load requires this high current there is a risk that the motor will be thermally overloaded. In addition, at low frequencies the cooling effect of the integral motor fan is reduced as well as is the motor's torque capacity. If the motor is equipped with an external fan the load reduction at low speeds is small.

The motor thermal protection is based on a calculated model and it uses the output frequency and current of the HVX9000 to determine the load on the motor.

The motor thermal protection can be adjusted with parameters *Motor Ambient Temperature Factor*, *Motor Thermal Protection Zero Speed* and *MTP Time Constant*.

CAUTION
otect the motor if the airflow to the motor Irill or if the external cooling device is off

P1.7.9 Motor Thermal Protection	 Range: 0 – 3 <i>NOTOR THERN PROT</i> 0 No response 1 Warning 2 Fault, stop mode after fault accord 3 Fault, stop mode after fault always Deactivating the protection, by setting thermal stage of the motor to 0%. 	s by coasting
P1.7.10 Motor Ambient Temperature Factor	recommended to set a value for this p set between -100.0% and 100.0% when to the maximum running temperature	ambient temperature is the same as the

can

August 2006

P1.7.11 Motor Thermal Protection Zero Speed		Default: 40.0 ue of the current allowed at zero freque	,
·	be set between 0 – 150.0%	of the cooling available at the nominal r Nominal Frequency. See Figure 8-18.	,

The default value is set assuming that there is no external fan cooling the motor. If an external fan is used this parameter can be set to 90% (or even higher).

Note: The value is set as a percentage of the motor nameplate data, *Motor Nominal Current*, not the drive's nominal output current. The motor's nominal current is the current that the motor can withstand in direct on-line use without being overheated.

If you change the *Motor Nominal Current*, this parameter is automatically restored to the default value.

Setting this parameter does not affect the maximum output current of the HVX9000, which is determined by *Current Limit* alone.

Figure 8-18: Motor Cooling Power

P1.7.12 Range: 1 - 200 Default: 24 min. Units: Minutes **MTP Time Constant** MTP MOTOR T This is the thermal time constant of the motor. The larger the motor, the longer the time constant. The time constant is the time within which the calculated thermal stage has reached 63% of its final value. The motor thermal time is specific to the motor design and it varies between different motor manufacturers. If the motor's t₆-time (t₆ is the time in seconds the motor can safely operate at six times the rated current) is known (given by the motor manufacturer) the time constant parameter can be set basing on it. As a rule of thumb, the motor thermal time constant in minutes equals to 2xt₆. If the HVX9000 is stopped, the time constant is internally increased to three times the set parameter value. The cooling at stop is based on convection with an increased time constant.

See Figure 8-19.

Note: If the *Motor Nominal Speed* or the *Motor Nominal Current* are changed this parameter is automatically set to the default value.

Figure 8-19: Motor Temperature Calculation

 P1.7.13
 Range: 0 – 100
 Default: 100

 Motor Duty Cycle
 Units: Percent

 MOTOR DUTY CYCLE
 Defines how much of the nominal motor nameplate load is normally applied.

Stall Protection General Information

The motor stall protection protects the motor from short time overload situations such as one caused by a stalled shaft. The reaction time of the stall protection can be set shorter than that of the motor thermal protection. The stall state is defined with two parameters, *Stall Protection* and *Stall Current Limit*. If the current is higher than the set limit and output frequency is lower than the set limit, the stall state is true. There is actually no direct physical indication of the shaft rotation. Stall protection is a type of overcurrent protection.

P1.7.14 Stall Protection	Range: 0 – 3 <i>STRLL PROTECTION</i> 0 No response 1 Warning 2 Fault, stop mode after fault accord 3 Fault, stop mode after fault always Setting the parameter to 0 will deactive time counter.	s by coasting
P1.7.15 Stall Current Limit	x 2 Units: Amperes STALL CURRENT The current can be set between 0.01 a	Default: <i>Motor Nominal Current</i> x 1.3 and I _{nMotor} x2. For a stall stage to occur, imit. See Figure 8-20 . The software does

the current must have exceeded this limit. See **Figure 8-20**. The software does not allow entering a greater value than $I_{nMotor} x^2$. If *Motor Nominal Current* is changed, this parameter is automatically restored to the default value, $I_{nMotor} x^1$.3.

Figure 8-20: Stall Characteristics Settings

P1.7.16 Stall Time Limit	Range: 1.00 – 120.00 Units: Seconds STRLL TIME LIM This is the maximum time allowed for an internal up/down counter. If the sta limit the protection will cause a trip (s	
P1.7.17 Stall Frequency Limit	Range: 1.00 – Maximum Frequency Units: Hertz STRLL FREQ LIM For a stall state to occur, the output fre	Default: 25.00 equency must be below this limit.

Underload Protection General Information

The purpose of the motor underload protection is to ensure that there is load on the motor when the HVX9000 is running. If the motor loses its load there might be a problem in the process, e.g. a broken belt or a dry pump.

Motor underload protection can be adjusted by setting the underload curve with **Underload Protection** f_{nom} **Torque** (Field weakening area load) and **Underload Protection f0 Torque** (Zero frequency load), see below. The underload curve is a squared curve set between the zero frequency and the field weakening point. The protection is not active below 5 Hz (the underload time counter is stopped).

The torque values for setting the underload curve are set in percentage of the nominal nameplate torque of the motor. The motor's nameplate data, the *Motor Nominal Current* and the HVX9000 drive's nominal nameplate current rating are used to find the scaling ratio for the internal torque value. If other than a standard motor of the same rating as the HVX9000 is used, the accuracy of the torque calculation decreases.

P1.7.18 Underload Protection

8 d n	3 Fault, stop mode after f	Default: 0 (No Response) Fault according to <i>Stop Mode</i> Fault always by coasting by setting the parameter to 0 will reset the
9	Range: 10.0 – 150.0	Default: 50.0

P1.7.19 Underload Protection f_{nom} Torque

Units: Percent

fnom UP Fnon TORQUE

This parameter is based on a percentage of the nominal nameplate motor torque, T_{nMotor} , and sets the value for the minimum torque allowed when the output frequency is above the field weakening point. See **Figure 8-21**.

If you change the *Motor Nominal Current*, this parameter is automatically restored to the default value.

Figure 8-21: Minimum Load Setting

P1.7.20 Underload Protection f0 Torque	torque, T _{nMotor} , and sets the frequency. See Figure 8-21 .	Default: 10.0 percentage of the nominal nameplate motor value for the minimum torque allowed with zero
	automatically restored to the	<i>otor Nominal Current</i> , this parameter is default value.
P1.7.21 Underload Protection Time	Range: 2.00 – 600.00 Units: Seconds UP TIME LIMIT	Default: 20.00
Limit	This is the maximum time allowed for an underload state to exist. An internal up/down counter counts the accumulated underload time. If the underload counter value goes above this limit the protection will cause a trip according to Underload Protection . If the HVX9000 is stopped, the underload counter is reset to zero. See Figure 8-22 .	

Figure 8-22: Underload Time Counter Function

P1.7.22Range: 0 – 3Default: 0 (No Response)Thermistor Fault
ResponseTHERMISTORF RESPA high temperature has been detected by an option board connected
thermistor.

- 0 No response
- 1 Warning
- 2 Fault, stop mode after fault according to Stop Mode
- 3 Fault, stop mode after fault always by coasting

P1.7.23 Communications Fault Response

Range: 0 – 3 COMM FRULT RESP Default: 2 (Fault)

The response mode for a communication fault is set with this parameter if a communication board is being used. For more information, see the appropriate Communication Board Manual.

- 0 No response
- 1 Warning
- 2 Fault, stop mode after fault according to Stop Mode
- 3 Fault, stop mode after fault always by coasting

P1.7.24	Range: 0 – 3	Default: 2 (Fault)
Slot	SLOTCOMFRULTRESP	
Communication	The response mode for a	a board slot fault due to missing or failed board.
Fault Response	0 No response	
	1 Warning	
	2 Fault, stop mode after	er fault according to Stop Mode

3 Fault, stop mode after fault always by coasting

Parameter Group G1.8: Auto-Restart

The automatic restart function restarts the drive when the cause of the fault, selected with **Undervoltage Restart Tries** to **External Fault Tries** parameters, has disappeared and the waiting time, **Wait Time**, has elapsed. **Undervoltage Restart Tries** to **External Fault Tries** parameters determine the maximum number of automatic restarts during the trial time set by **Trial Time**. See **Figure 8-23**.

P1.8.1 Wait Time	Range: 0.10 – 10.00 Units: Seconds WRIT TIME	Default: 0.50
		HVX9000 tries to automatically restart the motor rip has disappeared.
P1.8.2 Trial Time	Range: 0.00 – 60.00 Units: Seconds TRIBL TIME	Default: 30.00
	This parameter sets the trial time for the auto-restart function. The time count starts from the first auto-restart. If the number of faults occurring during the trial time exceeds the values of <i>Undervoltage Restart Tries</i> to <i>External Fault Tries</i> parameters, the fault trip is maintained. If the HVX9000 successfully restarts and no other fault occurs, the fault is cleared after the trial time has elapsed. The next fault starts the trial time count again.	

Figure 8-23: Example of Automatic Restart with Two Restarts

P1.8.3 Start Mode	Range: 0 – 2 START MODE	Default: 0 (Ramping)
	The Start function for automatic res 0 Ramp start 1 Flying start	start is selected with this parameter.
	2 Start according to <i>Start Mode</i>	
P1.8.4 Undervoltage Restart Tries	Range: 0 – 10 UNDERVOLT TRIES	Default: 0
	the <i>Trial Time</i> after an undervoltage 0 No automatic restart after under >0 Number of automatic restarts a	
P1.8.5	Range: 0 – 10	Default: 0
Overvoltage Restart Tries	the <i>Trial Time</i> after an overvoltage 0 No automatic restart after overv >0 Number of automatic restarts a	•
P1.8.6 Overcurrent Restart	Range: 0 – 3 OVERCURR TRIES	Default: 0
Tries	This parameter determines how matter the <i>Trial Time</i> . Note: IGBT temperature faults are i 0 No automatic restart after over	
P1.8.7 4 mA (Reference)	Range: 0 – 10	Default: 0
Fault Tries	the <i>Trial Time</i>.0 No automatic restart after refer	fter the analogue current signal (4 – 20 mA)
P1.8.8 Motor Temperature	Range: 0 – 10 MATTEMPE TRIES	Default: 0
Fault Tries	This parameter determines how matche <i>Trial Time</i>.0 No automatic restart after a model	any automatic restarts are allowed during tor temperature fault trip fter the motor temperature has returned to
P1.8.9	Range: 0 – 10	Default: 0
External Fault Tries	EXTFRULT TRIES This parameter determines how ma the Trial Time . 0 No automatic restart after exter >0 Number of automatic restarts a	

Parameter Group G1.9: Fire Mode PID

Fire Mode or Smoke Purge

Fire Mode is used to start motor and continue to operate due to emergency conditions. Faults will be changed to warnings to prevent shutdown. The overload should be selected to AUTO to prevent overload trip during "Fire Mode" operation. This is only required if unit is an IntelliPass which uses an electronic overload with contactor to run motor. If set to AUTO on the overload, the overload fault will be ignored and motor will continue to run.

P1.9.1 Fire Mode Function	Range: 0 – 1 FIREMODEFUNCTION This parameter determines whether th contact closure or contact opening on 0 Closing contact initiates fire mode 1 Opening contact initiates fire mode	function
P1.9.2 Fire Mode Reference Selection Function	Range: 0 – 1 FRREFSELFUNCTION Setting this parameter to 1 enables the Fire Mode Frequency Reference 2 to b without using a digital input. 0 Disabled 1 Enabled	
P1.9.3 Fire Mode Minimum Frequency	Range: <i>Minimum Frequency</i> – <i>Maximum Frequency</i> Units: Hertz <i>FIREMODEMINIFREQ</i> This parameter sets the minimum out	Default: 15.00 put frequency for fire mode.
P1.9.4 Fire Mode Frequency Reference 1	Range: 0.0 – 100.0% Units: Percent <i>FIREMODEFREQREF1</i> This parameter sets the drive operatin	Default: 75.0 Ig frequency for fire mode reference 1.
P1.9.5 Fire Mode Frequency Reference 2	Range: 0.0 – 100% Units: Percent <i>FIREMODEFREQREF2</i> This parameter sets the drive operatin	Default: 100.0 og frequency for fire mode reference 2.

🕂 IMPORTANT

The electronic overload on the contactor must be set to AUTO, otherwise the overload will function normally. In AUTO the contactor/overload remains "on" but sends a "fault" signal to the drive. The drive receives the signal as only a warning while in "Fire Mode" allowing continued running of the motor until destruction if need be.

Note: (1) Fire Mode has no effect on Bypass operation.

(2) Only pushing the STOP button on the drive keypad or removing the "Fire Mode" digital input will stop the drive operation.

Figure 8-24: Frequency Reference Logic of the Fire Mode PID Application When Running in Fire Mode

P1.9.6	Range: 0.50 – 10.00	Default: 5.00
Fire Mode Auto	Units: Seconds	
Reset Delay	FMRUTORESETDELRY	
	Time delay before forced reset after fire mode.	a hardware generated fault while in the

Parameter Group G1.10: IntelliPass

P1.10.1 IntelliPass	Range: 0 – 1 INTELLIPR55 This parameter identifies whether the enabled. 0 IntelliPass Disabled – Not used 1 IntelliPass enabled – Used	Default: 0 (IntelliPass Disabled) IntelliPass bypass option is installed and
P1.10.2 Bypass Start Delay	Range: 1 – 32,765Default: 5Units: SecondsBYPR55 STRRT DELRYThis parameter specifies the time delay between when the Start Signal is applied in I/O or Fieldbus, to when the motor starts. There is no "Bypass Delay" when starting in BYPASS from the keypad.The keypad will display "BYPASS Starting! WARNING!!!" until the motor starts in BYPASS. This display is also active when "Auto Bypass" is active and motor is about to start in BYPASS.	

P1.10.3 Auto Bypass	Range: 0 – 1	Default: 0 (Auto Bypass Disabled)
Auto bypass	 RUTO BYPR55 This parameter specifies whether an automatic switch to bypass will occur based on <i>Overvoltage Fault Auto Bypass</i> P1.10.5 through <i>Undervoltage Fault Auto Bypass</i> P1.10.9 parameters below. Auto Bypass disabled Auto Bypass enabled 	
P1.10.4 Auto Bypass Delay	as determined by Overvolta	Default: 10 e time delay before an automatic switch to bypass, a ge Fault Auto Bypass P1.10.5 through a pass P1.10.9 parameters, will occur.
P1.10.5 Overcurrent Fault Auto Bypass	after the overcurrent fault a 0 Auto bypass on overcur	Default: 0 nether an automatic switch to bypass will occur uto-restart tries have been exceeded. rent fault tries exceeded disabled rent fault tries exceeded enabled
P1.10.6 IGBT Fault Auto Bypass	 Range: 0 – 1 Default: 0 <i>IGBT FLT BYPRSEN</i> This parameter specifies whether an automatic switch to bypass will occur after the IGBT fault auto-restart tries have been exceeded. 0 Auto bypass on IGBT fault tries exceeded disabled 1 Auto bypass on IGBT fault tries exceeded enabled 	
P1.10.7 4 mA (Reference) Fault Auto Bypass	Range: 0 – 1Default: 0ND REF BYPRSENRBThis parameter specifies whether an automatic switch to bypass will occur after the loss of reference fault auto-restart tries have been exceeded.0Auto bypass on loss of reference fault tries exceeded disabled 11Auto bypass on loss of reference fault tries exceeded enabled Note: P1.7.1 (4 mA (Reference) Fault Auto Bypass) must be set to 4 or 5 (Fault).	
P1.10.8 Undervoltage Fault Auto Bypass	after the undervoltage fault 0 Auto bypass on undervo	Default: 0 nether an automatic switch to bypass will occur auto-restart tries have been exceeded. oltage fault tries exceeded disabled oltage fault tries exceeded enabled
P1.10.9 Overvoltage Fault Auto Bypass	after the overvoltage fault a 0 Auto bypass on overvol	Default: 0 nether an automatic switch to bypass will occur uto-restart tries have been exceeded. tage fault tries exceeded disabled tage fault tries exceeded enabled
Parameter Group G1.11: PID Control

P1.11.1 PID Reference	 Range: 0 - 4 Default: 0 (Al1) <i>PID REFERENCE</i> Defines which frequency reference source is selected for the PID controller. 0 Analog voltage reference from terminals 2 - 3, e.g. potentiometer or voltage source 1 Analog current reference from terminals 4 - 5, e.g. transducer 2 PID reference from the Keypad 3 Reference from the communication bus (FB Process Data IN 1 [ID#2004]) 4 Motor potentiometer
P1.11.2 Engineering Unit	Range: 0 - 9Default: 0 (% Percent)ENGINEERING UNITDefines which engineering unit is to be used with the PID controller. This will automatically change all PID engineering units when changing this selection.0% Percent1Temperature Fahrenheit2Temperature Centigrade3PSIG4BAR5Feet6Inches of Water Column7Gallons per minute8Feet per minute9CFM (Cubic Feet per Minute)10PPM Parts per million
P1.11.3 Sensor Minimum Value	Range: Varies dependent on P1.11.2 Default: 0.00% SENSOR MIN. This parameter sets the minimum value for the sensor in engineering units.
P1.11.4 Sensor Maximum Value	Range: Varies dependent on P1.11.2 Default: 100.0% SENSOR MRX. This parameter sets the maximum value for the sensor in engineering units.
P1.11.5 Minimum PID Setpoint	Range: Varies dependent on P1.11.2 Default: 0.00% PID SETPOINT MIN This parameter sets the minimum value for the PID Setpoint in engineering units.
P1.11.6 Maximum PID Setpoint	Range: Varies dependent on P1.11.2 Default: 100.0% PID SETPOINT MRX This parameter sets the maximum value for the PID setpoint in engineering units.

P1.11.7 Actual Value Selection	 0 Actual value 1 1 Actual value 1 + Actual 2 Actual value 1 - Actual 3 Actual value 1 * Actual 4 Smaller of Actual value 5 Greater of Actual value 6 Mean value of Actual value 	value 2 value 2 e 1 and Actual value 2
P1.11.8 Actual Value 1 Input	 Not used Analog Input Al1 (cont Analog Input Al2 (cont Analog input Al3 Analog input Al4 (Not a) 	Default: 2 (Al2) PID controller actual value 1 input signal source. rol board terminals 2 and 3) rol board terminals 4 and 5) available at this time) B Process Data IN 2 [ID#2005])
P1.11.9 Actual 1 Maximum Scale	Range: -1000.0 – 1000.0 Units: Percent RET 1 MRX SERLE This parameter sets the ma equivalent to no maximum	Default: 100.0% aximum scaling point for actual value 1. 100% is a scaling. See Figure 8-25 .
P1.11.10 Actual 1 Minimum Scale	Range: -1000.0 – 1000.0 Units: Percent RCT 1 MM SCRLE This parameter sets the mi equivalent to no minimum	Default: 0.0 inimum scaling point for actual value 1. 0% is scaling. See Figure 8-25 .

P1.11.11 Actual Value 2 Input	 Not used Analog Input Al1 (cont Analog Input Al2 (cont Analog input Al3 Analog input Al4 (Not 	Default: 0 (Not used) PID controller actual value 2 input signal source. Frol board terminals 2 and 3) Frol board terminals 4 and 5) available at this time) B Process Data IN 3 [ID#2006])
P1.11.12 Actual 2 Maximum Scale	Range: -1000.0 – 1000.0 Units: Percent <i>RCTURL 2 MRX SCRLE</i> This parameter sets the m equivalent to no maximur	Default: 100.0 aximum scaling point for actual value 2. 100% is n scaling. See Figure 8-25 .
P1.11.13 Actual 2 Minimum Scale	Range: -1000.0 – 1000.0 Units: Percent <i>RCTURL 2 MIN SCRLE</i> This parameter sets the m equivalent to no minimum	Default: 0.0 inimum scaling point for actual value 2. 0% is a scaling. See Figure 8-25 .
P1.11.14 PID Control Gain	parameter is set to 100%, controller output to chang	Default: 10.0% e gain of the PID controller. If the value of the a change of 10% in the error value causes the e by 10%. If the parameter value is set to 0, the PID D-controller. See examples 1, 2 and 3 below.
P1.11.15 PID Control Gain, Read Only [©]	Range: 0.0 – 1000.0 Units: Percent PID-CONTR GAIN, READ ONLY	Default: 10.0%
P1.11.16 PID Control Integral Time	is set to 1.00 second, a char output to change by 10.00%	Default: 10.00 integration time of the PID controller. If this parameter age of 10% in the error value causes the controller 6/s. If the parameter value is set to 0.00 s, the PID PD controller. See examples 1, 2 and 3 below.
P1.11.17 PID Control Integral Time, Read Only ^① This Read Only Value is on	Range: 0.00 – 320.00 Units: Seconds <i>PID-CONTR TIME, RERD ONLY</i> ly present when the Parameter Lock	Default: 10.00

^① This Read Only Value is only present when the Parameter Lock is set to "Change Disable". Also when the "Lock Panel" is "On" from the Siemens Apogee Network. The preceding parameter becomes invisible.

P1.11.18 PID Control Derivative Time	1.00 s causes the controller output to	Default: 0.00 time of the PID controller. If this ange of 10% in the error value during change by 10.00%. If the parameter value perate as a PI controller. See examples 1,
P1.11.19 PID Control Derivative Time, Read Only [©]	Range: 0.00 – 10.00 Units: Seconds PID-CONTR D TIME, RERD ONLY	Default: 0.00
		PID Max Limit = 100.0%00 sPID Min Limit = 0.0%0.00 sMin Frequency = 0 Hz= 10.00%Max Frequency = 60 Hzerates practically as I-controller only.neter PID Control Integral Time (I-time),of the difference between the maximum

^① This Read Only Value is only present when the Parameter Lock is set to "Change Disable". Also when the "Lock Panel" is "On" from the Siemens Apogee Network. The preceding parameter becomes invisible.

Figure 8-26: PID Controller D-Time, Example 1

Example 2:

Given values: **PID Control Gain**, P = 0% **PID Control Integral Time**, I-time = 1.00 s **PID Control Derivative Time**, D-time = 1.00 s Error value (setpoint – process value) = ±10%

PID Max Limit = 100.0% PID Min Limit = 0.0% Min Frequency = 0 Hz Max Frequency = 60 Hz

As the power is switched on, the system detects the difference between the setpoint and the actual process value and starts to either raise or decrease (in case the error value is negative) the PID output according to the I-time. Once the difference between the setpoint and the process value has been reduced to 0, the output is reduced by the amount corresponding to the value of **PID Control Integral Time**. In case the error value is negative, the HVX9000 reacts reducing the output correspondingly. See below.

Figure 8-27: PID Controller D-Time, Example 2

Example 3:

Given values:PID Control Gain, P = 0%PID Max Limit = 100.0%PID Control Integral Time, I-time = 0.00 sPID Min Limit = 0.0%PID Control Derivative Time, D-time = 1.00 sMin Frequency = 0 HzError value (setpoint - process value) = $\pm 10\%$ /sMax Frequency = 60 HzAs the error value increases, also the PID output increases according to the set values (D-time = 1.00s)

Figure 8-28: PID Controller D-Time, Example 3

P1.11.20 PID Reference Rise Time	Range: 0.0 – 100.0 Units: Seconds <i>PID REF RISE TIM</i>	Default: 5.0
	0% to 100%.	hich the PID controller reference rises from
P1.11.21 PID Reference Fall Time	Range: 0.0 – 100.0 Units: Seconds PID REF FRLL TIM	Default: 5.0
	Defines the time during w 100% to 0%.	hich the PID controller reference falls from
P1.11.22 PID Error Value	Range: 0 – 1 ERROR INVERSION	Default: 0 (No Inversion)
Inversion	This parameter allows you thus the operation of the F 0 No inversion 1 Inverted	i to invert the error value of the PID controller (and PID controller).
P1.11.23 Sleep Function Enabled	Range: 0 – 1 <i>SLEEP FUNC ENRBL</i> 0 Disabled 1 Enabled	Default: 0
	sleep function is enabled, operating frequency falls b a time greater than that de PID controller is operating actual value signal either f	the restriction is enabled or disabled. If the the HVX9000 is stopped automatically if its below the Sleep level defined by <i>Sleep Frequency</i> for termined by <i>Sleep Delay</i> . During the Stop state, the The HVX9000 will switch to the Run state when the alls below or exceeds (see <i>Wake Up Action</i>) the by <i>Wake Up Limit</i> . See Figure 8-29.
P1.11.24 Sleep Frequency	Range: <i>Min Frequency – N</i> Frequency Units: Hertz SLEEP FREQUENCY	lax Default: 15.00
	HVX9000 falls below the S greater than that determin controller is operating. The	s stopped automatically if the frequency of the leep level defined with this parameter for a time ed by <i>Sleep Delay</i> . During the Stop state, the PID e HVX9000 will switch to the Run state when the alls below or exceeds (see <i>Wake Up Action</i>) the e 8-29.
P1.11.25 Sleep Delay	Range: 0 – 32,500 Units: Seconds SLEEP DELRY The minimum amount of t	Default: 30 ime the frequency has to remain below the Sleep
		s stopped. See Figure 8-29 .

P1.11.26 Wake Up Limit	Range: 0.00 – 100.00 Units: Percent	Default: 25.00
	•	equency below which the actual value must fall fore the Run state of the HVX9000 is restored.
P1.11.27 Wake Up Action	•	Default: 0 (Below Level) storation of the Run state occurs when the or exceeds the <i>Wake Up Limit</i> . See Figure 8-29 .

Wake up falling below lin
 Wake up exceeding limit

Figure 8-29: Frequency Converter Sleep Function

Figure 8-30: PID Output + Motor Potentiometer Reference

Note: The maximum and minimum limits illustrated in the picture limit only the PID output, no other outputs.

Parameter Group G1.12: Preset Speeds

P1.12.1 #1 Preset Speed	Range: 0.0 – 100.0 Units: Percent #1 PRESET SPEED This parameter defines the #1 preset s	Default: 10.0 speed.
P1.12.2 #2 Preset Speed	Range: 0.0 – 100.0 Units: Percent #2 PRESET SPEED This parameter defines the #2 preset s	Default: 20.0 speed.
P1.12.3 #3 Preset Speed	Range: 0.0 – 100.0 Units: Percent #3 PRESET SPEED This parameter defines the #3 preset s	Default: 30.0 speed.
P1.12.4 #4 Preset Speed	Range: 0.0 – 100.0 Units: Percent #4 PRESET SPEED This parameter defines the #4 preset s	Default: 40.0 speed.
P1.12.5 #5 Preset Speed	Range: 0.0 – 100.0 Units: Percent #5 <i>PRESET SPEED</i> This parameter defines the #5 preset s	Default: 50.0 speed.
P1.12.6 #6 Preset Speed	Range: 0.0 – 100.0 Units: Percent #6 PRESET SPEED This parameter defines the #6 preset s	Default: 75.0 speed.
P1.12.7 #7 Preset Speed	Range: 0.0 – 100.0 Units: Percent #1 PRESET SPEED This parameter defines the #7 preset s	Default: 100.0 speed.

Note: Speeds are selected based on "Speed Select 1" through "Speed Select 3" digital input selections. The "Speed Selects" are based on Binary inputs converted to the "7 Preset Speeds". See **Table 8-8** and Multistep Manual.

Table 8-8: Binary	Inputs for	Seven	Preset	Speeds
-------------------	------------	-------	--------	--------

Preset Speed #	Speed Select 1	Speed Select 2	Speed Select 3
1	1	0	0
2	0	1	0
3	1	1	0
4	0	0	1
5	1	0	1
6	0	1	1
7	1	1	1

Parameter Group G1.13: Fieldbus

P1.13.1 Fieldbus Data	Range: 0 – 10000 FBDRTROUTISEL	Default: 1590 (Motor speed – %)
Out 1 Select	Allows a parameter or monitored value bus. No decimal point is available, so s device. See Table 8-9 .	e to be viewed from the communication scaling must be done by the viewing
P1.13.2 Fieldbus Data	Range: 0 – 10000 FBDRTRDUT2SEL	Default: 1 (Output frequency – Hz)
Out 2 Select	Allows a parameter or monitored value bus. No decimal point is available, so s device. See Table 8-9 .	e to be viewed from the communication scaling must be done by the viewing
P1.13.3 Fieldbus Data	Range: 0 – 10000 FBDRTRDUT35EL	Default: 25 (Frequency reference – Hz)
Out 3 Select	Allows a parameter or monitored value bus. No decimal point is available, so s device. See Table 8-9 .	e to be viewed from the communication scaling must be done by the viewing
P1.13.4 Fieldbus Data	Range: 0 – 10000 FBDRTRDUTYSEL	Default: 2 (Motor speed – rpm)
Out 4 Select	Allows a parameter or monitored value bus. No decimal point is available, so s device. See Table 8-9 .	to be viewed from the communication scaling must be done by the viewing
P1.13.5 Fieldbus Data	Range: 0 – 10000 FBDRTRDUTSSEL	Default: 1780 (Motor current)
Out 5 Select	Allows a parameter or monitored value bus. No decimal point is available, so s device. See Table 8-9 .	to be viewed from the communication scaling must be done by the viewing
P1.13.6 Fieldbus Data	Range: 0 – 10000 FBDRTRDUT65EL	Default: 5 (Motor power)
Out 6 Select		e to be viewed from the communication scaling must be done by the viewing

P1.13.7 Fieldbus Data Out 7 Select	Range: 0 – 10000 <i>FBDRTROUT15EL</i> Allows a parameter or monitored valu bus. No decimal point is available, so s device. See Table 8-9 .	Default: 1701 (Motor run time – minutes) e to be viewed from the communication scaling must be done by the viewing
P1.13.8 Fieldbus Data Out 8 Select	Range: 0 – 10000 <i>FBDRTROUTBSEL</i> Allows a parameter or monitored valu bus. No decimal point is available, so device. See Table 8-9 .	Default: 1666 (Energy meter – kW) e to be viewed from the communication scaling must be done by the viewing
P1.13.9 Siemens FLN Address Selection	Range: 0 – 99 FLN RDDRE55 Sets communications address for Sier	Default: 99 nens Apogee System.
P1.13.10 Siemens FLN Address Selection, Read Only [©]	Range: 0 – 99 FLN RDDRE55 Reads communications address for Si	Default: 99 emens Apogee System.

^① This Read Only Value is only present when the Parameter Lock is set to "Change Disable". Also when the "Lock Panel" is "On" from the Siemens Apogee Network. The preceding parameter becomes invisible.

Code	ID#	Description
V5.1	2	Calculated motor speed
V5.2	1590	Motor Nominal Speed %
V5.3	25	Frequency reference setting
V5.4	1	Frequency to the motor
V5.5	1780	Measured motor current
V5.6	4	Calculated torque based on nominal motor torque
V5.7	5	Calculated power based on nominal motor power
V5.8	1888	Calculated power based on output to motor
V5.9	1666	Kilowatt hours total usage
V5.10	6	Calculated motor voltage
V5.11	7	Measured DC-bus voltage
V5.12	1701	Motor run time total
P5.13	1565	Changes motor run time between seconds, minutes, hours and days
V5.14	8	Unit heatsink temperature
V5.15	1917	Calculated motor temperature based on the motor nameplate information and the calculated motor load
V5.16	13	Voltage Input at Terminal AI1+ and GND
V5.17	14	Current Input at Terminals Al2+ and Al2–
V5.18	1680	Current Input at Terminals AI3+ and AI3–
V5.19	1710	Current Input at Terminals AI4+ and AI4–
V5.20	15	Digital input status DIN-1 – DIN-3 (Binary converted to decimal)
V5.21	16	Digital input status DIN-4 – DIN-6 (Binary converted to decimal)
V5.22	1904	Digital Input status. All digital Inputs. (Binary converted to decimal)
V5.23	17	Digital and relay output status D01, R01, R02 (Binary converted to decimal)
V5.24	1678	Relay output status R03 – R05 status (Binary converted to decimal)
V5.25	1773	Status of all relay outputs D01 – R08 status (Binary converted to decimal)
V5.26	26	Current Output at Terminals AO1+ and AO1–
V5.27	1874	Current Output at Terminals AO2+ and AO2–
V5.28	1875	Current Output at Terminals AO3+ and AO3–
V5.29	20	PID Setpoint Level
V5.30	21	PID Actual Level
V5.31	22	PID Error Value
V5.32	23	PID Output
G5.33	—	Active Faults
G5.34	_	Fault History
G5.35	—	Multimonitor

Table 8-9: Fieldbus Output Selection Examples

Appendix A — Technical Data

Specifications

Table A-1: HVX9000 Drive Specifications

Specification								
230V +10%/-15% 480V +10%/-15% 575V +10%/-15%								
50/60 Hz (variation up to 45 – 66 Hz)								
Once per minute or less (typical operation)								
The current withstand rating of the drive is 100,000 Amperes When Freedom Starters and an HMCP, the current interrupting rating is 100,000 Amperes								
When used with <i>IT</i> . style starters, the current interrupting rating is 36,000 Amperes								
0 to V _{in}								
Ambient temperature max. +104°F (+40°C), overload 1.1 x l _L (1 min./10 min.)								
110%								
0 to 320 Hz								
0.01 Hz								
Frequency Control (V/f) Open Loop Sensorless Vector Control								
Adjustable with <i>Switching Frequency</i> 230V: 1 – 20 hp: 1 to 16 kHz; default 10 kHz 25 – 40 hp: 1 to 10 kHz; default 3.6 kHz 480V: 1 – 40 hp: 1 to 16 kHz; default 10 kHz 50 – 250 hp: 1 to 10 kHz; default 3.6 kHz 575V: All hp: 1 to 6 kHz; default 1.5 kHz								
Analog Input: Resolution 0.1% (10-bit), accuracy ±1% Panel Reference: Resolution 0.01 Hz								
30 to 320 Hz								
0.1 to 3000 sec.								
0.1 to 3000 sec.								
DC brake: 15% to 150% x T _n (without brake option)								
14°F (-10°C), no frost to 104°F (+40°C) Suitable for installation in a compartment handling conditioned air.								
-40°F (-40°C) to 158°F (70°C)								
0 to 95% RH, noncondensing, non-corrosive, no dripping water								
Chemical vapors: IEC 60721-3-3, unit in operation, class 3C2 Mechanical particles: IEC 60721-3-3, unit in operation, class 3S2								
100% load capacity (no derating) up to 3300 ft. (1000m); 1% derating for each 330 ft. (100m) above 3300 ft. (1000m); max. 10000 ft. (3000m)								

Description	Specification							
Environment, continued								
Vibration	EN 50178, EN 60068-2-6 5 to 50 Hz, displacement amplitude 1 mm (peak) at 3 to 15.8 Hz, Max. acceleration amplitude 1 G at 15.8 to 150 Hz							
Shock	EN 50178, EN 60068-2-27 UPS Drop test (for applicable UPS weights) Storage and shipping: max. 15 G, 11 ms (in package)							
Enclosure Class	NEMA 1/IP21 standard 250 hp and below Open chassis standard 300 hp and above							
Standards								
EMC (at default settings)	Immunity: Fulfils all EMC immunity requirements Emissions: EN 61800-3							
Safety	UL 508C							
Product	IEC 61800-2							
Control Connections								
Analog Input Voltage	0 to 10V, R - 200 Ω differential (-10 to 10V joystick control) Resolution 0.1%; accuracy ±1%							
Analog Input Current	0(4) to 20 mA; R_i – 250 Ω differential							
Digital Inputs (6)	Positive or negative logic; 18 to 24V DC							
Auxiliary Voltage	+24V ±15%, max. 250 mA							
Output Reference Voltage	+10V +3%, max. load 10 mA							
Analog Output	0(4) to 20 mA; R_L max. 500 Ω ; Resolution 10 bit; Accuracy ±2% or 0 to 10V, R_L 1 k Ω , select with jumper							
Digital Outputs	Open collector output, 50 mA/48V							
Relay Outputs	2 programmable Form C relay outputs Switching capacity: 24V DC / 8A, 250V AC / 8A, 125V DC / 0.4A Minimum switching load: 5V/10 mA Continuous capacity: <2 A _{rms}							
Protections								
Overcurrent Protection	Yes							
Undervoltage Protection	Yes							
Ground (Earth) Fault	In case of a ground fault in motor or motor cables, only the HVX9000 is protected							
Input Phase Supervision	Trips if any of the input phases are missing							
Motor Phase Supervision	Trips if any of the output phases are missing							
Overtemperature Protection	Yes							
Motor Overload Protection	Yes							
Motor Stall Protection	Yes							
Motor Underload Protection	Yes							
Short Circuit Protection of the +24V and +10V Reference Voltages	Yes							

Table A-1: HVX9000 Drive Specifications, continued

Power Ratings

Table A-2: 230V IL Output Power Ratings

		Three-Phase Inp	ut
Catalog Number 1	Frame Size	Horsepower	Current
HVX001Ax-2A_1	FR4	1	4.8
HVXF15Ax-2A_1		1-1/2	6.6
HVX002Ax-2A_1		2	7.8
HVX003Ax-2A_1		3	11
HVX005Ax-2A_1	FR5	5	17.5
HVX007Ax-2A_1		7-1/2	25
HVX010Ax-2A_1		10	31
HVX015Ax-2A_1	FR6	15	48
HVX020Ax-2A_1		20	61
HVX025Ax-2A_1	FR7	25	72
HVX030Ax-2A_1		30	87
HVX040Ax-2A_1		40	114
HVX050Ax-2A_1	FR8	50	140
HVX060Ax-2A_1		60	170
HVX075Ax-2A_1		75	205

 $^{\odot}\,$ Insert a "1" for NEMA Type 1 or a "2" for NEMA Type 12 in place of the "x" in the Catalog Number.

Table A-3: 480V IL Output Power Ratings

		Three-Phase Inp	ut
Catalog Number ^①	Frame Size	Horsepower	Current
HVXF15Ax-4A_1	FR4	1-1/2	3.3
HVX002Ax-4A_1		2	4.3
HVX003Ax-4A_1		3	5.6
HVX005Ax-4A_1		4	7.6
HVX007Ax-4A_1		7-1/2	12
HVX010Ax-4A_1	FR5	10	16
HVX015Ax-4A_1		15	23
HVX020Ax-4A_1		20	31
HVX025Ax-4A_1	FR6	25	38
HVX030Ax-4A_1		30	46
HVX040Ax-4A_1		40	61
HVX050Ax-4A_1	FR7	50	72
HVX060Ax-4A_1		60	87
HVX075Ax-4A_1		75	105
HVX100Ax-4A_1	FR8	100	140
HVX125Ax-4A_1		125	170
HVX150Ax-4A_1		150	205
HVX200Ax-4A_1	FR9	200	261
HVX250Ax-4A_1		250	300
HVX300A0-4A_1	FR10	300	385
HVX350A0-4A_1		350	460
HVX400A0-4A_1		400	520
HVX500A0-4A_1	FR11	500	590
HVX550A0-4A_1		550	650
HVX600A0-4A_1		600	730

 $^{\odot}\,$ Insert a "1" for NEMA Type 1 or a "2" for NEMA Type 12 in place of the "x" in the Catalog Number.

		Three-Phase Inp	ut
Catalog Number	Frame Size	Horsepower	Current
HVX003A1-5A4N1	FR6	3	4.5
HVX005A1-5A4N1		5	7.5
HVX007A1-5A4N1		7-1/2	10
HVX010A1-5A4N1		10	13.5
HVX015A1-5A4N1	-	15	18
HVX020A1-5A4N1		20	22
HVX025A1-5A4N1		25	27
HVX030A1-5A4N1		30	34
HVX040A1-5A4N1	FR7	40	41
HVX050A1-5A4N1		50	52
HVX060A1-5A4N1	FR8	60	62
HVX075A1-5A4N1		75	80
HVX100A1-5A4N1		100	100
HVX125A1-5A4N1	FR9	125	125
HVX150A1-5A4N1		150	144
HVX200A1-5A4N1		200	208

Table A-4: 575V IL Output Power Ratings

Power Loss and Switching Frequency

In some situations it may be desirable to change the switching frequency of the HVX9000 for some reason (typically e.g. to reduce the motor noise). Raising the switching frequency above the factory default level increases the drive power loss and increases the cooling requirements. **Figures A-1** through **A-6** illustrate the power loss increase for the different HVX9000 models. When operating above the default switching frequency, the HVX9000 output current rating should be derated by the ratio of the increased power loss to the nominal power loss.

Example: The user of a 40 hp, 61A, 480V HVX9000 wishes to increase the switching frequency from the factory default value of 10 kHz to 15 kHz to reduce motor noise. From **Figure A-3** the loss at the factory default switching frequency of 10 kHz is 1240 watts. The loss at 15 kHz from **Figure A-3** is 1340 watts.

Re
$$rate = 61 \times \frac{1240}{1340} = 56A$$

Thus at the increased switching frequency, the maximum load allowed is 56A to avoid overheating the HVX9000.

Figure A-1: Power Loss as Function of Switching Frequency: 1 – 3 hp 230V, 1-1/2 – 7-1/2 hp 480V

Figure A-2: Power Loss as Function of Switching Frequency: 5 – 10 hp 230V, 10 – 20 hp 480V

Figure A-3: Power Loss as Function of Switching Frequency: 15 – 20 hp 230V, 25 – 40 hp 480V

Figure A-4: Power Loss as Function of Switching Frequency: 50 – 75 hp 480V

TD04008003E

Figure A-6: Power Loss as Function of Switching Frequency: 200 – 250 hp 480V

Dimensions

Figure A 7: NEMA Type 1 and NEMA Type 12 UV/2000 Drive Dimensions ED4 ED5 and ED6

Figure A-7: NEMA Type 1 and NEMA Type 12 HVX9000 Drive Dimensions, FR4, FR5 and FR6

Table A-5: HVX9000 Drive Dimensions	
-------------------------------------	--

Frame			Appro	pproximate Dimensions in Inches (mm)								Weight Lbs.	Knockouts @ Inches (mm)		
Size	Voltage	hp (l _L)	H1	H2	H3	D1	D2	D3	W1	W2	W3	R1 dia.	R2 dia.	(kg)	N1 (O.D.)
FR4	230V	1 – 3	12.9	12.3	11.5	7.5	3.0	5.0	5.0	3.9	—	.5	.3	11.0	3@1.1
	480V	1-1/2 – 7-1/2	(327)	(313)	(292)	(190)	(77)	(126)	(128)	(100)		(13)	(7)	(5)	(28)
FR5	230V	5 – 10	16.5	16.0	15.3	8.4	3.9	5.8	5.6	3.9	—	.5	.3	17.9	2@1.5
	480V	10 – 20	(419)	(406)	(389)	(214)	(100)	(148)	(143)	(100)		(13)	(7)	(8)	(37) 1 @ 1.1 (28)
FR6	230V	15 – 20	22.0	21.3	20.4	9.3	4.2	6.5	7.6	5.8	—	.6	.4	40.8	3@1.5
	480V	25 – 40	(558)	(541)	(519)	(237)	(105)	(165)	(195)	(148)		(15.5)	(9)	(19)	(37)

F·T•**N** Cutler-Hammer

August 2006

Figure A-8: HVX9000 Dimensions, NEMA Type 1 and NEMA Type 12 with Flange Kit, FR4, FR5 and FR6

Frame Size	Approxi	Approximate Dimensions in Inches (mm)												
	W1	W2	H1	H2	H3	H4	H5	D1	D2	Dia. A				
FR4	5.0	4.5	13.3	12.8	12.9	1.2	.9	7.5	3.0	.3				
	(128)	(113)	(337)	(325)	(327)	(30)	(22)	(190)	(77)	(7)				
FR5	5.6	4.7	17.0	16.5	16.5	1.4	.7	8.4	3.9	.3				
	(143)	(120)	(434)	(420)	(419)	(36)	(18)	(214)	(100)	(7)				
FR6	7.7	6.7	22.0	21.6	22.0	1.2	.8	9.3	4.2	.3				
	(195)	(170)	(560)	(549)	(558)	(30)	(20)	(237)	(106)	(7)				

Table A-6: Dimensions for HVX9000, FR4, FR5 and FR6 with Flange Kit

Table A-7:	Dimensions	for the	Flange	Opening,	FR4 to FR6
14610 / 1 / 1				• p •	

Frame Size	Approxir	Approximate Dimensions in Inches (mm)											
	W3	W4	W5	H6	H7	H8	H9	Dia. B					
FR4	4.8 (123)	4.5 (113)	_	12.4 (315)	12.8 (325)	—	.2 (5)	.3 (7)					
FR5	5.3 (135)	4.7 (120)	—	16.2 (410)	16.5 (420)	—	.2 (5)	.3 (7)					
FR6	7.3 (185)	6.7 (170)	6.2 (157)	21.2 (539)	21.6 (549)	.3 (7)	.2 (5)	.3 (7)					

TD04008003E

Figure A-9: HVX9000 Dimensions, NEMA Type 1 and NEMA Type 12, FR7

Table A-8: HVX9000 Drive Dimensions, FR7

			Appro	ximate	Dimen	sions ii	n Inche	s (mm)						Knockouts @ Inches (mm)
Frame Size	Voltage	hp (l _L)	H1	H2	НЗ	D1	D2	D3	W1	W2	R1 dia.	R2 dia.	Weight Lbs. (kg)	N1 (O.D.)
FR7	230V	25 – 40	24.8	24.2	23.2	10.1	3.0	7.3	9.3	7.5	.7	.4	77.2	3 @ 1.5 (37)
	480V	50 – 75	(630)	(614)	(590)	(257)	(77)	(184)	(237)	(190)	(18)	(9)	(35)	
	575V	40 – 50												

Cutler-Hammer

August 2006

Figure A-10: HVX9000 Dimensions, NEMA Type 1 and NEMA Type 12, FR8

Table A-9: HVX9000 Drive Dimensions, FR8

			Approximate Dimensions in Inches (mm)											
Frame Size	Voltage	hp (I _L)	D1	H1	H2	H3	W1	W2	R1 dia.	R2 dia.				
FR8	230V	50 – 75	13.5	30.1	28.8	28.4	11.5	10	.7	.4				
	480V	100 – 150	(344)	(764)	(732)	(721)	(291)	(255)	(18)	(9)				
	575V	60 - 100]											

Table A-10: Dimensions for HVX9000, FR7 and FR8 with Flange Kit

Frame	Approx	Approximate Dimensions in Inches (mm)														
	W1	W2	W3	W4	H1	H2	H3	H4	H5	H6	H7	D1	D2	Dia. A		
FR7	9.3 (237)	6.8 (175)	10.6 (270)	10.0 (253)	25.6 (652)	24.8 (632)	24.8 (630)	7.4 (189)	7.4 (189)	.9 (23)	.8 (20)	10.1 (257)	4.6 (117)	.3 (6)		
FR8	11.2 (285)	—	14.0 (355)	13.0 (330)	32.8 (832)	—	29.3 (745)	10.2 (258)	10.4 (265)	1.7 (43)	2.2 (57)	13.5 (344)	4.3 (110)	.4 (9)		

Table A-11: Dimensions for the Flange Opening, FR7/FR8

Frame	Approxim	Approximate Dimensions in Inches (mm)												
	W5	W6	W7	H8	H9	H10	H11	H12	H13	Dia. B				
FR7	9.2 (233)	6.9 (175)	10.0 (253)	24.4 (619)	7.4 (189)	7.4 (189)	1.4 (35)	1.3 (32)	.3 (7)	.3 (6)				
FR8	11.9 (301)	—	13.0 (330)	31.9 (810)	10.2 (258)	10.4 (265)	—	—	-	.4 (9)				

F·T•**N** Cutler-Hammer

Figure A-12: HVX9000 Dimensions, NEMA Type 1 and NEMA Type 12, FR9

Table A-12	: HVX9000	Drive	Dimensions , FR9
------------	-----------	-------	-------------------------

Frame			Approximate Dimensions in Inches (mm)										
Size	Voltage	hp (I _L)	H1	H2	H3	D1	D2	W1	W2	R1 dia.	R2 dia.		
FR9	480	200 – 250	45.3	44.2	42.4	13.4	14.3	18.9	15.7	.8	.4		
	575	125 – 200	(1152)	(1122)	(1076)	(340)	(362)	(480)	(400)	(20)	(9)		

Table A-13: Dimensions for HVX9000, FR9

Frame Approximate Dimensions in Inches (mm)															
Size	W1	W2	W3	W4	W5	H1	H2	H3	H4	H5	H6 1	D1	D2	D3	Dia.
FR9	18.9 (480)	15.7 (400)	6.5 (165)	.4 (9)	2.1 (54)	45.3 (1152)	44.1 (1120)	28.3 (721)	8.0 (205)	.6 (16)	7.4 (188)	14.2 (361.5)	13.4 (340)	11.2 (285)	.8 (21)

 $^{\odot}\,$ Brake resistor terminal box (H6) included when brake chopper ordered.

Frame	Appro	Approximate Dimensions in Inches (mm)														
Size	W1	W2	W3	W4	W5	H1	H2	H3	H4	H5	H6	H7	D1	D2	D3	Dia.
FR9	20.9 (530)	20.0 (510)	19.1 (485)	7.9 (200)	.2 (5.5)	51.7 (1312)	45.3 (1150)	16.5 (420)	3.9 (100)	1.4 (35)	.4 (9)	.1 (2)	24.9 (362)	13.4 (340)	4.3 (109)	.8 (21)

Figure A-15: HVX9000 Dimensions, NEMA Type 1 and NEMA Type 12 FR10 Freestanding Drive

Frame	Approxir	Approximate Dimensions in Inches (mm)																
Size	W1	W2	W3	W4	W5	W6	W7	H1	H2	H3	Weight Ibs. (kg)							
FR10	23.43 (595)	2.46 (62.5)	4.53 (115)	.79 (20)	5.95 (151)	2.95 (75)	3.11 (79)	79.45 (2018)	74.80 (1900)	20.18 (512.5)	857 (389)							

Table A-15: Dimensions for HVX9000, FR10 Freestanding Drive, continued

Frame	Approxim	ate Dimens	Approximate Dimensions in Inches (mm)												
Size	D1	D2	D3	D4	D5	D6	D7	Dia. 1	Dia. 2	Dia. 3					
FR10	23.70 (602)	17.44 (443)	19.02 (483)	.47 (12)	11.22 (285)	17.60 (447)	20.08 (510)	.83 (21)	1.89 (48)	.43 (11)					

F·T•**N** Cutler-Hammer

August 2006

Figure A-16: HVX9000 Dimensions, FR10 Open Chassis

Table A-16: Dimensions for HVX9000, FR10 Open Chassis

Frame			Approximate Dimensions in Inches (mm)									
Size	Voltage	hp (l _L)	W1	W3	W3	W4	W5	H1	H2	H3		
FR10	480V	300 – 400	19.7 (500)	16.7 (425)	1.2 (30)	2.6 (67)	12.8 (325)	45.9 (1165)	44.1 (1121)	34.6 (879)		

Table A-16: Dimensions for HVX9000, FR10 Open Chassis, continued

Frame	Voltage		Approximate Dimensions in Inches (mm)									
Size		hp (l _L)	H4	H5	H6	H7	D1	D2	D3	D4		
FR10	480V	300 – 400	33.5 (850)	.7 (17)	24.7 (627)	10.8 (275)	19.9 (506)	17.9 (455)	16.7 (423)	16.6 (421)		

Figure A-17: HVX9000 Dimensions	NEMA Type 1	1 FR11 Freestanding Drive

Frame			Approx	Approximate Dimensions in Inches (mm)										
Size	Voltage		W1	W2	W3	W4	W5	W6	W7	W8	H1	H2	H3	
FR11	480V	500 – 600	31.26 (794)	2.40 (61)	6.50 (165)	.79 (20)	3.43 (87)	2.95 (75)	2.52 (64)	1.18 (30)	79.45 (2018)	74.80 (1900)	20.18 (512.5)	

Table A-17: Dimensions for HVX9000, NEMA Type 1 FR11 Freestanding Drive, continued

Frame			Approximate Dimensions in Inches (mm)								
Size	Voltage	hp (I _L)	D1	D2	D3	D4	D5	Dia. 1	Dia. 2	Dia. 3	Lbs. (kg)
FR11	480V	500 – 600	23.70 (602)	11.22 (285)	19.09 (485)	.47 (12)	17.60 (447)	.83 (21)	1.89 (48)	.35 x .43 (9 x 11)	526 (239)

Figure A-18: HVX9000 Dimensions, FR11 Open Chassis

Table A-18: Dimensions for HVX9000, FR11 Open Chassis

Frame			Approxir	mate Dim	ensions	in Inches (n	nm)			Weight
Size	Voltage	hp (I _L)	W1	W2	W3	H1	H2	D1	D2	Lbs. (kg)
FR11	480V	500 – 600	27.9 (709)	8.6 (225)	2.6 (67)	45.5 (1155)	33.5 (850)	19.8 (503)	18.4 (468)	833 (378)

EMC Capability

General

For products used within the European Community (EC), the Electro Magnetic Compatibility (EMC) directive states that the electrical equipment must not disturb the environment and must be immune to other Electro Magnetic Disturbances in the environment.

The design intent was to develop a family of drives, which is user friendly and cost effective, while fulfilling the user's needs. EMC compliance was a major consideration from the outset of the design.

The HVX9000 derive series is targeted at the world market. To ensure maximum flexibility, yet meet the EMC needs of different regions, all drives meet the highest immunity levels, while emission levels meet the requirements noted in the following section.

EMC Classification

The HVX9000 drive series are EMC classification H capable.

Class H:

HVX9000 drives have been designed to fulfill the requirements of the product standard EN 61800-3_A11 for the 1st environment restricted distribution and the 2nd environment.

The emission levels correspond to the requirements of EN 61000-6-4.

HVX9000 series drives fulfill all applicable EMC immunity requirements (standards EN 61000-6-1, EN 61000-6-2 and EN 61800-3+A11).

Declaration of Conformity

The Manufacturer's Declarations of Conformity assuring the compliance of the HVX9000 drives with the European Community (EC) EMC-directives is available upon request.

Warranty and Liability Information

Eaton Electrical Inc. warrants the product delivered in the shipping package to be free from defects in material and workmanship, under normal use and service, for twenty four (24) months from date of manufacturing. Products that fail during this period will be repaired or replaced at Eaton's discretion, with the same or a functionally equivalent product, provided the original purchaser (A) returns the failed product, and (B) provides proof of original date of purchase. This warranty does not apply, in the judgment of Eaton, to damage caused during shipment, handling, storage, or accidental misuse. The original purchaser of the product must obtain a Return Material Authorization (RMA) number prior to returning any defective product. (When purchased through an Authorized Distributor, the Distributor should supply an RMA number to their customer.)

The maximum liability of this warranty is limited to the purchase price of the product. In no event, regardless of cause, shall Eaton Electrical Inc. be liable (a) for penalties or penalty clauses of any description, or (b) for certification not otherwise specifically provided herein and/or indemnification of purchaser or others for costs, damages or expenses, each arising out of or related to the product or services of any order or (c) for any damages resulting from loss of profits, use of products or for any incidental indirect or consequential damages, even if advised of the possibility of such damages.

Appendix B — Parameter Tables

Table B-1: Parameter Group G1.1: Basic

Code	Parameter	Range	Step	Default	ID #	Description	Page
P1.1.1	Min Frequency	0.00 – Max Frequency	0.01 Hz	12.00	101	Minimum frequency setting	8-1
P1.1.2	Max Frequency	Min Frequency – 320.00	0.01 Hz	60.00	102	Maximum frequency setting	8-1
P1.1.3	Accel Time 1	0.1 – 3000.0	0.1 s	60.0	103	Time from f _{min} (<i>Minimum</i> <i>Frequency</i>) to f _{max} (<i>Maximum</i> <i>Frequency</i>)	8-1
V1.1.4	Accel Time 1, Read Only	0.1 – 3000.0	0.1 s	60.0	1690	Time from f _{min} (<i>Minimum</i> <i>Frequency</i>) to f _{max} (<i>Maximum</i> <i>Frequency</i>)	8-1
P1.1.5	Decel Time 1	0.1 – 3000.0	0.1 s	60.0	104	Time from f _{max} (<i>Maximum</i> <i>Frequency</i>) to f _{min} (<i>Minimum</i> <i>Frequency</i>)	8-1
V1.1.6	Decel Time 1, Read Only	0.1 – 3000.0	0.1 s	60.0	1691	Time from f _{max} (<i>Maximum</i> <i>Frequency</i>) to f _{min} (<i>Minimum</i> <i>Frequency</i>)	8-1
P1.1.7	Motor Nom Currnt ¹	0.3 x I _{nHVXL} – 2.0 x I _{nHVXL}	0.1 A	I _{nHVXL}	113	Motor nominal nameplate full load current	8-1
P1.1.8	Motor Nom Voltg ^①	180 – 690	1 V	230 or 460 (Drive Rating)	110	Motor nominal nameplate base voltage	8-2
P1.1.9	Motor Nom Freq ¹	30.00 - 320.00	1 Hz	60.00	111	Motor nominal nameplate base frequency	8-2
P1.1.10	Motor Nom Speed ^①	300 – 20,000	1 rpm	1760	112	Motor nominal nameplate base speed	8-2
P1.1.11	MotorPowerFactor ^①	0.30 – 1.00	0.1 A	0.85	120	Motor nominal nameplate full load power factor	8-2
P1.1.12	Current Limit	0.1 x IL – 2.5 x InHVX Units: Amperes	0.01	InHVX	107	Output current limit level of the HVX9000	8-2
P1.1.14	HOA Control Src ^①	0 – 2	1	0	1530	Hand-Off-Auto control source 0 Control from keypad 1 Control from I/O terminals 2 Control from communication bus	8-2
P1.1.15	Start Src Hand ^①	0 – 3	1	0	1531	Start source for Hand operation0Control from keypad1BAS23-wire Start/Stop3Keypad/Panel Damper	8-2
P1.1.16	Ref Source Hand ^①	0 – 7	1	4	201	Speed reference source for Hand operation0Analog input Al11Analog input Al22Analog input Al3 3Analog input Al4 4Keypad5Communication Bus6Motor potentiometer7PID-Controller	8-3
P1.1.17	Start Srce Auto ^①	0 – 3	1	1	1532	Start source for Auto operation0Control from keypad1BAS23-wire Start/Stop3Communication Bus	8-3

Drive must be stopped to edit these parameters.
Not operational at this time.

Table B-1: Parameter Group G1.1: Basic, continued

Code	Parameter	Range	Step	Default	ID #	Description	Page
P1.1.18	Ref Source Auto [®]	0 – 7	1	0	202	Speed reference source for Hand operation 0 Analog input Al1 1 Analog input Al2 2 Analog input Al3 ① 3 Analog input Al4 ② 4 Keypad 5 Communication Bus 6 Motor potentiometer 7 PID-Controller	8-3
P1.1.19	PM Setback Pct ^①	0.0 - 100.0	0.1%	30.0	1640	Frequency setting for PM setback operation	8-3
P1.1.20	Smoke Purge ^①	0.0 – 100.0	0.1%	60.0	1641	Speed setting for smoke range.	8-3

 $\ensuremath{\textcircled{}^{_{(1)}}}$ Drive must be stopped to edit these parameters.

Table B-2: Parameter Group G1.2: Input Signals

Code	Parameter	Range	Step	Default	ID #	Description	Page
P1.2.1	DIN1 Function ®	0 - 3	1	0 (Start)	1535	0 Start – standard start 1 Interlocked Start 2 Interlock Time Start 3 Delay Start	8-4
P1.2.2	Intlk Timeout [®]	1 – 32,500	1 s	5 s	1561	Used when DIN1 function = 2	8-4
P1.2.3	Delay Time ²	1 – 32,500	1 s	5 s	1580	Used when DIN1 function = 3	8-4
P1.2.4	DIN2 Function [®]	0 – 15	1	1 (Ext fault close)	1700	 0 Enable Bypass 1 Ext Fault Close 2 Bypass Overload Fault 3 Run enable/External interlock 4 Accel/decel time selection 5 Hand/Auto Select 6 PID Control 7 Motor potentiometer down 8 PID Reference 2 Select 9 PM Setback 10 Fault reset 11 Accel/decel prohibited 12 HOA On/Off 13 Speed Select 3 14 Fire Mode 15 Fire Mode Reference Select 1/2 	8-5
P1.2.5	DIN3 Function ®	0 – 15	1	10 (Fault Reset)	301	0Enable Bypass1External fault, contact closed2External fault, contact open3Run enable/External interlock4Accel/decel time selection5Hand/Auto Select6Motor potentiometer up7PID Control8PID Reference 2 Select9Speed Select 110Fault reset11Accel/decel prohibited12DC braking command13Smoke Purge14Fire Mode15Fire Mode Reference Select 1/2	8-6

 $\ensuremath{\textcircled{}^{2}}$ Drive must be stopped to edit these parameters.
Code	Parameter	Range	Step	Default	ID #	Description	Page
P1.2.6	DIN4 Function [®]	0 – 15	1	4 (Accel/ decel time sel)	1536	 0 Enable Bypass 1 External fault, contact closed 2 External fault, contact open 3 Run enable/External interlock 4 Accel/decel time selection 5 Hand/Auto Select 6 PID Control 7 Motor potentiometer down 8 Reverse 9 PM Setback 10 Fault reset 11 Speed Select 2 12 DC braking command 13 HOA ON/OFF 14 Fire Mode 15 Fire Mode Reference Select 1/2 	8-7
P1.2.7	DIN5 Function [®]	0 – 15	1	13 (PM Setback)	330	 Enable Bypass External fault, contact closed External fault, contact open Run enable/External interlock Accel/decel time selection Hand/Auto Select Motor potentiometer up PID Control Reverse D C Brake Comm Fault reset Accel/decel prohibited HOA On/Off Pine Mode Fire Mode Reference Select 1 / 2 	8-8
P1.2.8	DIN6 Function [®]	0 – 15	1	11 (Speed Select 3)	1537	 0 Not Used 1 External fault, contact closed 2 External fault, contact open 3 Run enable/External interlock 4 Accel/decel time selection 5 Hand/Auto Select 6 Motor potentiometer up 7 Motor potentiometer down 8 PID Reference 2 Select 9 PM Setback 10 Fault reset 11 Speed Select 3 12 HOA On/Off 13 Bypass Overload Fault 14 Fire Mode 15 Fire Mode Reference Select 1 / 2 	8-9
P1.2.9	Al1 Signal Range 🛈	0-2	1	0 (0 – 20 mA / 0 – 100%)	320	0 0 – 20 mA 1 4 – 20 mA 2 ID #ized signal range	8-9
P1.2.10	Al1 Custom Min	0.00 – Al1 Custom Minimum	0.01 %	0.00%	321	Used when setting of Al1 Signal Range = 2	8-9
P1.2.11	Al1 Custom Max	Al1 Custom Maximum – 100.00%	0.01 %	100.00%	322	Used when setting of Al1 Signal Range = 2	8-9
P1.2.12	Al1 Signal Inv ^①	0 – 1	1	0 (No Inversion)	323	0 No inversion 1 Signal inverted	8-10
P1.2.13	Al1 Filter Time	0.00 - 10.00	0.01 s	0.10 s	324	0 No filtering	8-10
P1.2.14	Al2 Signal Range ^①	0-2	1	1 (4 – 20 mA / 20 – 100%)	325	0 0 – 20 mA 1 4 – 20 mA 2 ID #ized signal range	8-10

^① Drive must be stopped to edit these parameters.

Table B-2: Parameter Group	G1.2: Input Signals, continued
----------------------------	--------------------------------

Code	Parameter	Range	Step	Default	ID #	Description	Page
P1.2.15	Al2 Custom Min	0.00 – Al2 Custom Max	0.01 %	0.00%	326	Used when setting of Al2 Signal Range = 2	8-10
P1.2.16	Al2 Custom Max	Al2 Custom Min – 100.00%	0.01 %	100.00%	327	Used when setting of <i>Al2 Signal</i> <i>Range</i> = 2	8-10
P1.2.17	Al2 Signal Inv ^①	0 – 1	1	0 (No Inversion)	328	0 No inversion 1 Signal inverted	8-11
P1.2.18	Al2 Filter Time	0.00 - 10.00	0.01 s	0.10 s	329	0.00 No filtering	8-11
P1.2.19	MotorPot Ramp Time	0.1 – 2000.0	0.1 s	10.0 s	331	Ramp rate of motor pot	8-11
P1.2.20	MotorPotMemFreqRef	0 – 2	1	1	367	0 No reset 1 Reset at stop and power down 2 Reset at power down	8-11
P1.2.21	MotorPotMemPIDRef	0 – 2	1	0 (No Reset)	368	0 No reset 1 Reset at stop and power down 2 Reset at power down	8-11
P1.2.22	Ref Scale Min	0.00 – Ref Scale Max	0.01 Hz	60.00	344	Sets the frequency corresponding to the minimum reference signal	8-12
P1.2.23	Ref Scale Max	Ref Scale Min – 320.00	0.01 Hz	60.00	345	Sets the frequency corresponding to the maximum reference signal	8-12
P1.2.24	Al3 Signal Sel ^①	AnIN:0.1 – AnIN:E.10	—	AnIN:0.1	141	Connect the AI3 signal to the analog input	8-12
P1.2.25	Al3 Signal Range 🛈	0 – 1	1	1 (4 – 20 mA/20 – 100%)	143	0 0 – 20 mA 1 4 – 20 mA	8-12
P1.2.26	Al3 Signal Inv	0 – 1	1	0 (No Inversion)	151	0 No inversion 1 Signal inverted	8-13
P1.2.27	Al3 Filter Time	0.00 - 10.00	0.01 s	0.10	142	0.00 No filtering	8-13
P1.2.28	Al4 Signal Sel ^①	AnIN:0.1 – AnIN:E.10	—	AnIN:0.1	152	Connect the Al4 signal to the analog input of your choice	8-13
P1.2.29	Al4 Signal Range ^①	0 – 1	1	1 (4 – 20 mA/20 – 100%)	154	0 0 – 20 mA 1 4 – 20 mA	8-13
P1.2.30	Al4 Signal Inv	0 – 1	1	0 (No Inversion)	162	0 No inversion 1 Signal inverted	8-13
P1.2.31	Al4 Filter Time	0.00 – 10.00	0.01 s	0.10	153	0 No filtering	8-13
P1.2.32	INTLK Text DIN2 – INTLK Text DIN6	0 - 9	1	0	1610 – 1614	 Ext Interlock Run Enable Vibration Cutout High Motor Temperature Freeze Stat Trip Low Pressure High Pressure Low Water Smoke Detect 3-Wire Off Damper Interlock Open Safety Seal Leakage Valve Sequence Megger Shutdown 	8-14

Drive must be stopped to edit these parameters.

Table B-3: Parameter Group G1.3: Output Signals

Code	Parameter	Range	Step	Default	ID #	Description	Page
P1.3.1	Analog Out Function	0 – 13	1	1 (Output Frequency)	307		8-15
P1.3.2	Aout Filter Time	0.00 - 10.00	0.01 s	1.00	308	0 No filtering	8-15
P1.3.3	Aout Invert ^①	0 – 1	1	0 (Not Inverted)	309	0 No inversion 1 Signal inverted	8-16
P1.3.4	Aout Minimum	0 – 1	1	0 (0 mA)	310	0 0 mA 1 4 mA	8-16
P1.3.5	Aout Scale	10 – 1000	10.0 %	100	311	100 % No scaling	8-16
P1.3.6	DO1 Function ®	1-26	1	1 (Ready)	312	 Ready Run Fault Fault inverted HVX9000 overheat warning External fault or warning Reference fault or warning Reversed Bypass Run At speed Motor regulator activated Output frequency limit 1 supervision Output frequency limit 2 supervision Torque limit supervision Reference limit supervision Reference limit supervision Control from I/O terminals Drive temp. limit supervision External brake control Kontrol fault or warning Pass Through Communication Fire mode is active In Auto Control mode In Hand Control mode 	8-17
P1.3.7	RO1 Function [®]	1 – 28	1	2 (Run)	313	Same as <i>Digital Output 1 (DO1)</i> <i>Function</i> except 0 Not used 27 Start Delay Relay 28 Run Bypass or Drive	8-18
P1.3.8	R02 Function ®	1 – 28	1	3 (Fault)	314	Same as <i>Digital Output 1 (DO1)</i> <i>Function</i> except 0 Not used 27 Start delay relay 28 Run Bypass or Drive	8-20
P1.3.9	R03 Content ^①	1 – 28	1	28 (Run Bypass or Drive)	1520	Same as Digital Output 1 (DO1) Function except 0 Not used 23 Fault Reset 27 Start delay relay 28 Run Bypass or Drive	8-21

Drive must be stopped to edit these parameters.

Code	Parameter	Range	Step	Default	ID #	Description	Page
P1.3.10	R04 Content ^①	1 – 28	1	10 (Bypass Run)	1522	Same as <i>Digital Output 1 (DO1)</i> <i>Function</i> except 0 Not used 23 Fault Reset 27 Start delay relay 28 Run Bypass or Drive	8-22
P1.3.11	R05 Content [®]	1 – 28	1	23 (Fault Reset)	1523	Same as <i>Digital Output 1 (DO1)</i> <i>Function</i> except 0 Not used 23 Fault Reset 27 Start delay relay 28 Run Bypass or Drive	8-22
P1.3.12	R06 Content [®]	1 – 28	1	0 (Not Used)	1626	With optional relay board only. Same as <i>Digital Output 1 (DO1) Function</i> except 0 Not used 23 Fault Reset 27 Start delay relay 28 Run Bypass or Drive	8-22
P1.3.13	R07 Content [®]	1 – 28	1	0 (Not Used)	1633	With optional relay board only. Same as <i>Digital Output 1 (DO1) Function</i> except 0 Not used 23 Fault Reset 27 Start delay relay 28 Run Bypass or Drive	8-23
P1.3.14	R08 Content ®	1 – 28	1	0 (Not Used)	1645	With optional relay board only. Same as <i>Digital Output 1 (DO1) Function</i> except 0 Not used 23 Fault Reset 27 Start delay relay 28 Run Bypass or Drive	8-23
P1.3.15	Freq Supv Function 1	0 – 2	1	0 (No Supervision)	315	0 No supervision 1 Low limit supervision 2 High limit supervision	8-23
P1.3.16	SpeedSuprValue1 ^①	0.0 - 200.0	0.1%	0.0	1591	Speed value supervised by <i>Frequency Supervision Function 1</i>	8-23
P1.3.17	Freq Supv Function 2	0 – 2	1	0 (No Supervision)	346	0 No supervision 1 Low limit supervision 2 High limit supervision	8-23
P1.3.18	SpeedSuprVal 2 ^①	0.0 - 200.0	0.1%	0.0	1592	Speed value supervised by <i>Frequency Supervision Function 2</i>	8-24
P1.3.19	Torque Supv Func	0 – 2	1	0 (No Supervision)	348	0 No supervision 1 Low limit supervision 2 High limit supervision	8-24
P1.3.20	Torque Supv Val	0.0 - 300.0	0.1 %	100.0%	349	Torque value supervised by <i>Torque</i> <i>Supervision Function</i>	8-24
P1.3.21	Ref SuperV Lim	0 – 2	1	0 (No Supervision)	350	0 No supervision 1 Low limit supervision 2 High limit supervision	8-24
P1.3.22	Ref SuperV Val	0.0 - 100.0	0.1 %	0.0	351	Torque value supervised by <i>Reference Supervision Limit</i>	8-25
P1.3.23	Ext Brake OffDel	0.0 - 100.0	0.1 s	0.5	352	Off delay after Start/Stop toggle	8-25
P1.3.24	Ext Brake OnDel	0.0 - 100.0	0.1 s	0.5	353	On delay after Start/Stop toggle	8-25
P1.3.25	Temp Func Supv	0 – 2	1	0 (No Supervision)	354	0 No supervision 1 Low limit supervision 2 High limit supervision	8-25
P1.3.26	Temp Supv Value	-10 – 75°C	1°C	40°C	455	Temperature value supervised by Temperature Function Supervision	8-26
P1.3.27	A2out Signal	AnOUT:0.1 – AnOUT:E.10	1	AnOUT:0.1	471	Connect the AO2 signal to the analog output of choice	8-26

Drive must be stopped to edit these parameters.

Table B-3: Parameter Group G1.3: Output Signals, continued

Code	Parameter	Range	Step	Default	ID #	Description	Page
P1.3.28	A2out Function	0 – 13	1	4 (Output Current)	472		8-26
P1.3.29	A2out Filter Time	0.00 - 10.00	0.01 s	1.00	473	0.00 No filtering	8-26
P1.3.30	A2out InVert	0 – 1	1	0 (No Inversion)	474	0 No inversion1 Signal inverted	8-26
P1.3.31	A2out Minimum	0 – 1	1	1 (4 mA)	475	0 0 mA 1 4 mA	8-26
P1.3.32	A2out Scale	0 – 1000	1 %	100%	476	—	8-27
P1.3.33	A3out Signal	AnOUT:0.1 – AnOUT:E.10	1	AnOUT:0.1	478	Connect the AO3 signal to the analog output of choice	8-27
P1.3.34	A3out Function	0 – 13	1	0 (Not used)	479	$ \begin{array}{c cccc} 0 & Not used \\ 1 & Output frequency (0 - f_{max}) \\ 2 & Frequency reference (0 - f_{max}) \\ 3 & Motor speed (0 - nominal speed) \\ 4 & Output current (0 - I_{nMotor}) \\ 5 & Motor torque (0 - T_{nMotor}) \\ 6 & Motor voltage (0 - N_{nMotor}) \\ 7 & Motor voltage (0 - V_{nMotor}) \\ 8 & DC-link voltage (0 - 1000V) \\ 9 & PID controller reference value \\ 10 & PID controller actual value 1 \\ 11 & PID controller actual value 2 \\ 12 & PID controller error value \\ 13 & PID controller output \\ \end{array} $	8-27
P1.3.35	A3out Filter Time	0.00 - 10.00	0.01 s	1.00	480	0.00 No filtering	8-27
P1.3.36	A3out InVert	0 – 1	1	0 (No Inversion)	481	 No inversion Signal inverted 	8-28
P1.3.37	A3out Minimum	0 – 1	1	0 (0 mA)	482	0 0 mA 1 4 mA	8-28
P1.3.38	A3out Scale	0 – 1000	1 %	100%	483	-	8-28

Code	Parameter	Range	Step	Default	ID #	Description	Page
P1.4.1	Ramp 1 Shape ^①	0.0 - 10.0	0.1	0.0	500	0 Linear >0 S-curve accel/decel	8-28
P1.4.2	Ramp 2 Shape ^①	0.0 - 10.0	0.1	0.0	501	0 Linear >0 S-curve accel/decel	8-29
P1.4.3	Accel Time 2	0.1 – 3000.0	0.1 s	10.0	502	Time from f _{min} (Minimum Frequency) to f _{max} (Maximum Frequency)	8-29
P1.4.4	Decel Time 2	0.1 – 3000.0	0.1 s	10.0	503	Time from f _{max} (<i>Maximum</i> <i>Frequency</i>) to f _{min} (<i>Minimum</i> <i>Frequency</i>)	8-29
P1.4.5	Brake Chopper 🕚	0 – 3	1	0 (Not Used)	504	 0 Brake chopper not used 1 Brake chopper in use (no testing) 2 External brake chopper (no testing) 3 In Ready state (no testing) 	8-30
P1.4.6	Start Mode ^①	0 – 1	1	0 (Ramping)	505	0 Ramp 1 Flying start	8-30
P1.4.7	Stop Mode ^①	0 – 3	1	1 (Ramp)	506	0 Coasting 1 Ramp 2 Normal-ramp, Run enable- coasting 3 Normal-coasting, Run enable- ramp	8-30
P1.4.8	DC-Brake Current ^①	0.15 x I _{nHVX} – 1.5 x I _{nHVX}	0.01	0.5 x I _{nHVX}	507	DC-brake current in amperes	8-30
P1.4.9	Stop DC-BrakeTm ^①	0.000 - 60.000	0.001 s	0.000	508	0 DC-brake not used at stop >0 DC-brake in use at stop for set time	8-31
P1.4.10	Stop DC-BrakeFr 1	0.10 - 10.00	0.01 Hz	1.50	515	Output frequency DC-brake applied	8-32
P1.4.11	Start DC-BrakeTm ^①	0.000 - 60.000	0.001 s	0.000	516	0 DC-brake not used at start >0 DC-brake in use at start for set time	8-32
P1.4.12	Flux Brake 1	0 – 1	1	0 (Off)	520	0 Flu braking off 1 Flux braking on	8-32
P1.4.13	FluxBrakeCurrent ^①	0.1 x I _{nMotor} – Current Limit	0.1 x I _{nMotor}	0.5 x I _{nMotor}	519	Flux brake current in amperes	8-33

Table B-4: Parameter Group G1.4: Drive Control

^① Drive must be stopped to edit these parameters.

Table B-5: Parameter Group G1.5: Skip Frequencies

Code	Parameter	Range	Step	Default	ID #	Description	Page
P1.5.1	SkipF 1 Low Lim	0.00 – Skip Frequency 1 High Limit	0.01 Hz	0.00	509	Skip frequency range 1 low limit	8-33
P1.5.2	Skipf 1 High Lim	Skip Frequency 1 Low Limit – Max Frequency	0.01 Hz	0.00	510	Skip frequency range 1 high limit	8-33
P1.5.3	Skipf 2 Low Lim	0.00 – Skip Frequency 2 High Limit	0.01 Hz	0.00	511	Skip frequency range 2 low limit	8-33
P1.5.4	Skipf 2 High Lim	Skip Frequency 2 Low Limit – Max Frequency	0.01 Hz	0.00	512	Skip frequency range 2 high limit	8-33
P1.5.5	Skipf 3 Low Lim	0 – Skip Frequency 3 High Limit	0.01 Hz	0.00	513	Skip frequency range 3 low limit	8-33
P1.5.6	Skipf 3 High Lim	Skip Frequency 3 Low Limit – Max Frequency	0.01 Hz	0.00	514	Skip frequency range 3 high limit	8-34
P1.5.7	PH Acc/Dec Ramp	0.1 – 10.0	0.1	1.0	518	Ramp time multiplier in skip range	8-34

Table B-6: Parameter Group G1.6: Motor Control

Code	Parameter	Range	Step	Default	ID #	Description	Page
P1.6.1	Motor Ctrl Mode ^①	0 – 1	1	0 (Frequency control)	600	0 Frequency control 1 Speed control	8-35
P1.6.2	V/Hz Optimization ^①	0 – 1	1	0 (None)	109	0 None 1 Automatic torque boost	8-35
P1.6.3	V/Hz Ratio Select ^①	0 – 3	1	0 (Linear)	108	0 Linear 1 Squared 2 Programmable V/f curve 3 Linear with flux optimization	8-36
P1.6.4	Field WeakngPnt ^①	30.00 - 320.00	0.01 Hz	60.00	602	Usually corresponds to <i>Motor</i> <i>Nominal Frequency</i>	8-37
P1.6.5	Voltage at FWP ^①	10.00 - 200.00	0.01 %	100.00	603	Usually corresponds to <i>Motor</i> <i>Nominal Voltage</i>	8-37
P1.6.6	V/Hz Mid Freq ^①	0.00 – Field Weakening Point	0.01 Hz	60.00	604	Midpoint frequency of the curve	8-37
P1.6.7	V/Hz Mid Voltg ^①	0.00 - 100.00	0.01 %	100.00	605	Maximum value is <i>Voltage at Field</i> <i>Weakening Point</i>	8-37
P1.6.8	Zero Freq Voltg 1	0.00 - 40.00	0.01 %	1.50	606	Voltage at zero frequency	8-38
P1.6.9	Switching Freq	1.0 - 16.0	0.1 kHz	Based on drive Amp size	601	HVX9000 model dependent	8-38
P1.6.10	Overvolt Contr ^①	0 – 1	1	1 (Enabled)	607	0 Overvoltage control disabled 1 Overvoltage control enabled	8-38
P1.6.11	Undervolt Contr ¹	0 – 1	1	1 (Enabled)	608	0 Undervoltage controller disabled 1 Undervoltage controller enabled	8-38

 $^{\scriptsize (1)}$ Drive must be stopped to edit these parameters.

Table B-7: Parameter Group G1.7: Protections

Code	Parameter	Range	Step	Default	ID #	Description	Page
P1.7.1	4mA Fault Resp 🛛	0 – 5	1	0 (No Response)	700	 No response Warning Warning, 10 s earlier set frequency used as reference Warning, preset frequency 4 mA Fault Frequency used as reference Fault, stop as set by Stop Mode Fault, stop by coasting 	8-39
P1.7.2	4mA Fault Freq 1	0.00 – Maximum Frequency	0.01 Hz	0.00	728	Used for 4 mA fault when 4 mA (<i>Reference) Fault Response</i> = 3	8-39
P1.7.3	AI1 VDC Fault Response ^①	0 – 2	1	0	1784	0 No action 1 Warning 2 Fault	8-39
P1.7.4	External Fault ®	0 – 3	1	2 (Fault)	701	 No response Warning Fault, stop as set by <i>Stop Mode</i> Fault, stop by coasting 	8-39
P1.7.5	Input Phase Supv [®]	0 – 3	1	0 (No Response)	730	 No response Warning Fault, stop as set by <i>Stop Mode</i> Fault, stop by coasting 	8-39
P1.7.6	UVolt Fault Resp ^①	0 – 1	1	0 (Fault Stored)	727	0 Fault Stored 1 No History	8-39
P1.7.7	OutputPh Superv ^①	0 – 3	1	2 (Fault)	702	 No response Warning Fault, stop as set by <i>Stop Mode</i> Fault, stop by coasting 	8-40
P1.7.8	Ground Fault ^①	0 – 3	1	2 (Fault)	703	0 No response 1 Warning 2 Fault, stop as set by Stop Mode 3 Fault, stop by coasting	8-40
P1.7.9	Motor Therm Prot ^①	0 – 3	1	2 (Fault)	704	 No response Warning Fault, stop as set by <i>Stop Mode</i> Fault, stop by coasting 	8-40
P1.7.10	MotAmbTempFactor	-100.0 – 100.00	0.1 %	0.0	705	0 Motor at same ambient as HVX9000 heatsink <>0 Motor at different ambient than HVX9000 heatsink	8-40
P1.7.11	MTP f0 Current	0.0 – 150.0	0.1 %	40.0	706	Current allowed at zero frequency based on a percentage of <i>Motor Nominal Frequency</i>	8-41
P1.7.12	MTP Motor T	1 – 200	1 m	24 min.	707	Motor thermal time constant - t ₆ time	8-42
P1.7.13	Motor Duty Cycle	0 – 100	1%	100	708	Defines how much of the nominal motor nameplate load is normally applied	8-42
P1.7.14	Stall Protection ®	0 – 3	1	1 (Warning)	709	 No response Warning Fault, stop as set by <i>Stop Mode</i> Fault, stop by coasting 	8-43
P1.7.15	Stall Current	0.01 – Motor Nominal Current x 2	0.1 A	Motor Nominal Current x 1.3	710	Stall current	8-43
P1.7.16	Stall Time Lim	1.00 – 120.00	0.01 s	15.00	711	Maximum stall time	8-43
P1.7.17	Stall Freq Lim	1.00 – Maximum Frequency	0.01 Hz	25.00	712	Maximum stall frequency	8-43

^① Drive must be stopped to edit these parameters.

Table B-7: Parameter Group	G1.7: Protections, continued
----------------------------	------------------------------

Code	Parameter	Range	Step	Default	ID #	Description	Page
P1.7.18	Underload Protec ®	0 – 3	1	0 (No Response)	713	 No response Warning Fault, stop as set by <i>Stop Mode</i> Fault, stop by coasting 	8-44
P1.7.19	UP fnom Torque	10.0 – 150.0	0.1 %	50.0	714	Minimum torque setting as percentage of the nominal motor nameplate torque at <i>Motor Nominal</i> <i>Frequency</i>	8-44
P1.7.20	UP f0 Torque	5.0 - 150.0	0.1 %	10.0	715	Minimum torque setting as percentage of the nominal motor nameplate torque at f0	8-45
P1.7.21	UP Time Limit	2.00 - 600.00	0.01 s	20.00	716	Maximum time allowed for underload	8-45
P1.7.22	ThermistorF Resp ^①	0 – 3	1	0 (No Response)	732	 No response Warning Fault, stop as set by <i>Stop Mode</i> Fault, stop by coasting 	8-45
P1.7.23	Comm Fault Resp ®	0 – 3	1	2 (Fault)	733	 No response Warning Fault, stop as set by <i>Stop Mode</i> Fault, stop by coasting 	8-45
P1.7.24	SlotComFaultResp ^①	0 – 3	1	2 (Fault)	734	 No response Warning Fault, stop as set by <i>Stop Mode</i> Fault, stop by coasting 	8-46

Drive must be stopped to edit these parameters.

Table B-8: Parameter Group G1.8: Auto-Restart Parameters

Code	Parameter	Range	Step	Default	ID #	Description	Page
P1.8.1	Wait Time	0.10 - 10.00	0.01 s	0.50	717	Auto restart delay after fault cause clears	8-46
P1.8.2	Trial Time	0.00 - 60.00	0.01 s	30.00	718	Time limit for max set number of faults before fault is maintained	8-46
P1.8.3	Start Mode	0-2	1	0 (Ramping)	719	0 Ramp start 1 Flying start 2 Start per Start Mode	8-47
P1.8.4	Undervolt Tries	0 – 10	1	0	720	0 No auto restart >0 Number of auto restarts allowed during trial time	8-47
P1.8.5	Overvolt Tries	0 – 10	1	0	721	0 No auto restart >0 Number of auto restarts allowed during trial time	8-47
P1.8.6	Overcurr Tries	0-3	1	0	722	0 No auto restart >0 Number of auto restarts allowed during trial time	8-47
P1.8.7	4 mA Fault Tries	0 – 10	1	0	723	0 No auto restart >0 Number of auto restarts allowed during trial time	8-47
P1.8.8	MotTempF Tries	0 – 10	1	0	726	0 No auto restart >0 Number of auto restarts allowed during trial time	8-47
P1.8.9	ExtFault Tries	0 – 10	1	0	725	0 No auto restart >0 Number of auto restarts allowed during trial time	8-47

Table B-9: Parameter Group G1.9: Fire Mode

Code	Parameter	Range	Step	Default	ID #	Description	Page
P1.9.1	FireModeFunction ^①	0 – 1	1	0 (Closed Contact)	1501	0 Closed contact initiates fire mode 1 Open contact initiates fire mode	8-48
P1.9.2	FMRefSelFunction ^①	0 – 1	1	0	1502	0 Disabled 1 Enabled	8-48
P1.9.3	FireModeMiniFreq	Minimum Frequency – Maximum Frequency	0.01 Hz	15.00	1503	Minimum HVX9000 frequency in fire mode	8-48
P1.9.4	FireModeFreqRef1	0.0 - 100.0%	0.1%	75.0	1712	HVX9000 reference 1 frequency in fire mode	8-48
P1.9.5	FireModeFreqRef2	0.0 - 100%	0.1%	100.0	1711	HVX9000 reference 2 frequency in fire mode	8-48
P1.9.6	FMAutoResetDelay	0.50 - 10.00	0.01 s	5.00	1506	Auto restart delay in fire mode after fault cause clears	8-49

 $^{\scriptsize \textcircled{1}}$ Drive must be stopped to edit these parameters.

Table B-10: Parameter Group G1.10: IntelliPass Parameters

Code	Parameter	Range	Step	Default	ID #	Description	Page
P1.10.1	IntelliPass [®]	0 – 1	1	0 (IntelliPass Disabled)	1521	0 Disabled – Not used 1 IntelliPass enabled	8-49
P1.10.2	Bypass Start Delay [®]	1 – 32,765	1 s	5	1545	Time delay before motor is switched from HVX9000 to bypass after digital input closed	8-49
P1.10.3	Auto Bypass ®	0 – 1	1	0 (Auto Bypass Disabled)	1525	0 Auto bypass disabled 1 Auto bypass enabled	8-50
P1.10.4	Auto BypassDelay 2	0 - 32,765	1 s	10	1526	Time delay before auto bypass occurs	8-50
P1.10.5	Over 1 BypasEnab [®]	0 – 1	1	0	1553	 Auto bypass on overcurrent disabled Auto bypass on overcurrent after restart tries exceeded enabled 	8-50
P1.10.6	IGBT FLT BypasEn [®]	0 – 1	1	0	1552	 Auto bypass on IGBT fault disabled Auto bypass on IGBT fault after restart tries exceeded enabled 	8-50
P1.10.7	No Ref BypasEnab [®]	0 – 1	1	0	1554	 Auto bypass on 4 mA loss disabled Auto bypass on 4 mA loss after restart tries exceeded enabled 	8-50
P1.10.8	UV BypassEnab [®]	0 – 1	1	0	1550	 Auto bypass on undervoltage disabled Auto bypass on undervoltage after restart tries exceeded enabled 	8-50
P1.10.9	Ovolt BypassEnab ²	0 – 1	1	0	1555	 Auto bypass on overvoltage disabled Auto bypass on overvoltage after restart tries exceeded enabled 	8-50

^② Drive must be stopped to edit these parameters.

Table B-11: Parameter Group G1.11: PID Control

Code	Parameter	Range	Step	Default	ID #	Description	Page
P1.11.1	PID Reference ®	0-4	1	0 (AI1)	332	 Analog voltage Al1, terminals 2-3 Analog current Al2, terminals 4-5 Reference from keypad Reference from communication bus Reference from motor potentiometer 	8-51
P1.11.2	Engineering Unit	0 - 9	1	0 (% Percent)	1796	0 % Percent 1 Temperature Fahrenheit 2 Temperature Centigrade 3 PSIG 4 BAR 5 Feet 6 Inches of Water Column 7 Gallons per minute 8 Feet per minute 9 CFM (Cubic Feet per Minute) 10 PPM (Parts per Million)	8-51
P1.11.3	Sensor Min.	Varies dependent on P1.11.2	1	0.00%	1538	This parameter sets the minimum value for the sensor in eng. units.	8-51
P1.11.4	Sensor Max.	Varies dependent on P1.11.2		100.0%	1539	This parameter sets the maximum value for the sensor in eng. units.	8-51
P1.11.5	PID Setpoint Min	Varies dependent on P1.11.2	1	0.00%	359	This parameter sets the minimum value for the PID Setpoint in eng. units.	8-51
P1.11.6	PID Setpoint Max	Varies dependent on P1.11.2	1	100.0%	360	This parameter sets the maximum value for the PID setpoint in eng. units.	8-51
P1.11.7	Act Value Select ^①	0 – 7	1	0 (Actual Value 1)	333	 0 Actual value 1 1 Actual value 1 + actual value 2 2 Actual value 1 - actual value 2 3 Actual value 1 x actual value 2 4 Greater of actual value 1 and actual value 2 5 Smaller of actual value 1 and actual value 2 6 Mean value of actual value 1 and actual value 2 7 Square root of actual value 1 	8-52
P1.11.8	Actual 1 Input [®]	0 - 9	1	2 (AI2)	334	0 Not used 1 Analog voltage Al1, terminals 2-3 2 Analog current Al2, terminals 4-5 3 Analog current Al3 [®] 4 Analog current Al4 [®] 5 Communication bus 6 Motor torque 7 Motor speed 8 Motor current 9 Motor power	8-52
P1.11.9	Act 1 Max Scale	-1000.0 - 1000.0	0.1 %	100.0%	337	100 % = no maximum scaling	8-52
P1.11.10	Act 1 Min Scale	-1000.0 - 1000.0	0.1 %	0.0	336	0 % = no minimum scaling	8-52
P1.11.11	Actual 2 Input ⁽¹⁾	0 – 9	1	0 (Not used)	335	 Not used Analog voltage Al1, terminals 2-3 Analog current Al2, terminals 4-5 Analog current Al3 [®] Analog current Al4 [®] Communication bus Motor torque Motor speed Motor power 	8-53
P1.11.12	Actual 2 Max Scale	-1000.0 - 1000.0	0.1 %	100.0	339	100 % no maximum scaling	8-53
	Actual 2 Min Scale	-1000.0 - 1000.0	0.1 %	0.0	338	0 % no minimum scaling	8-53

^① Drive must be stopped to edit these parameters.
^② Not available at this time.

Code	Parameter	Range	Step	Default	ID #	Description	Page
P1.11.14	PID-Contr Gain	0.0 - 1000.0	0.1 %	10.0%	118	0 % PID controller acts as ID controller	8-53
P1.11.15	PID-Contr Gain, Read Only	0.0 – 1000.0	0.1 %	10.0%	1622	0 % PID controller acts as ID controller	8-53
P1.11.16	PID-Contr I Time	0.00 - 320.00	0.01 s	10.00	119	0.00 s PID controller acts as PD controller	8-53
P1.11.17	PID-Contr I Time, Read Only	0.00 - 320.00	0.01 s	10.00	1644	0.00 s PID controller acts as PD controller	8-53
P1.11.18	PID-Contr D Time	0.00 - 10.00	0.01 s	0.00	132	0.00 s PID controller acts as PI controller	8-54
P1.11.19	PID-Contr D Time, Read Only	0.00 - 10.00	0.01 s	0.00	1688	0.00 s PID controller acts as PI controller	8-54
P1.11.20	PID Ref Rise Tim	0.0 – 100.0	0.1 s	5.0	341	Time for reference to rise from 0 % to 100 %	8-56
P1.11.21	PID Ref Fall Tim	0.0 – 100.0	0.1 s	5.0	342	Time for reference to fall from 100 % to 0 %	8-56
P1.11.22	Error Inversion ^①	0 – 1	1	0 (No Inversion)	340	0 No inversion 1 Signal inverted	8-56
P1.11.23	Sleep Func Enabl 🛈	0 – 1	1	0	1560	0 Disabled 1 Enabled	8-56
P1.11.24	Sleep Frequency	Min Frequency – Max Frequency	0.01 Hz	15.00	1016	Level below which a sleep stop will occur	8-56
P1.11.25	Sleep Delay	0 – 32,500	1 s	30	1017	Delay before which a sleep stop will occur	8-56
P1.11.26	Wake Up Limit	0.00 – 100.00	0.01 %	25.00	1018	Actual value to cause run after sleep stop	8-57
P1.11.27	Wake Up Action	0 – 1	1	0 (Below Level)	1019	0 Wake up after falling below limit1 Wake up after exceeding limit	8-57
P1.11.28	PID SumPoint Ref [®]	0 – 7	1	0 (No additional reference)	376	 No additional reference (direct output) PID output + Al1, terminals 2-3 PID output + Al2, terminals 4-5 PID output + Al3 reference ⁽²⁾ PID output + Al4 reference ⁽²⁾ PID output + PID keypad reference PID output + Communication bus PID output + Motor potentiometer 	8-58

Table B-11: Parameter Group G1.11: PID Control, continued

^① Drive must be stopped to edit these parameters.

⁽²⁾ Not available at this time.

Table B-12: Parameter Group G1.12: Preset Speeds

Code	Parameter	Range	Step	Default	ID #	Description	Page
P1.12.1	#1 Preset Speed	0.0 - 100.0	0.1%	10.0	1600	Defines #1 preset speed as a percentage of Max Frequency.	8-59
P1.12.2	#2 Preset Speed	0.0 - 100.0	0.1%	20.0	1601	Defines #2 preset speed as a percentage of Max Frequency.	8-59
P1.12.3	#3 Preset Speed	0.0 - 100.0	0.1%	30.0	1602	Defines #3 preset speed as a percentage of Max Frequency.	8-59
P1.12.4	#4 Preset Speed	0.0 - 100.0	0.1%	40.0	1603	Defines #4 preset speed as a percentage of Max Frequency.	8-59
P1.12.5	#5 Preset Speed	0.0 - 100.0	0.1%	50.0	1604	Defines #5 preset speed as a percentage of Max Frequency.	8-59
P1.12.6	#6 Preset Speed	0.0 - 100.0	0.1%	75.0	1605	Defines #6 preset speed as a percentage of Max Frequency.	8-59
P1.12.7	#7 Preset Speed	0.0 - 100.0	0.1%	100.0	1606	Defines #7 preset speed as a percentage of Max Frequency.	8-59

Code	Parameter	Range	Step	Default	ID #	Description	Page
P1.13.1	FBDataOut1Sel	0 – 10000	1	1590 (Motor speed – %)	852	Motor Speed (Percent)	8-60
P1.13.2	FBDataOut2Sel	0 – 10000	1	1 (Output frequency – Hz)	853	Output Frequency (Hz)	8-60
P1.13.3	FBDataOut3Sel	0 – 10000	1	25 (Frequency reference – Hz)	854	Frequency Reference (Hz)	8-60
P1.13.4	FBDataOut4Sel	0 – 10000	1	2 (Motor speed – rpm)	855	Motor Speed (rpm)	8-60
P1.13.5	FBDataOut5Sel	0 – 10000	1	1780 (Motor current)	856	Motor Current	8-60
P1.13.6	FBDataOut6Sel	0 – 10000	1	5 (Motor power)	857	Motor Power	8-60
P1.13.7	FBDataOut7Sel	0 – 10000	1	1701 (Motor run time – minutes)	858	Motor Run Time (Minutes)	8-61
P1.13.8	FBDataOut8Sel	0 – 10000	1	1666 (Energy meter – kW)	859	Energy Meter (Kilowatts)	8-61
P1.13.9	FLN Address	0 - 99	1	99	1900	Sets communications address for Siemens Apogee System.	8-61
P1.13.10	FLN Address ^①	0 – 99	1	99	1589	Reads communications address for Siemens Apogee System.	8-61

¹ This Read Only Value is only present when the Parameter Lock is set to "Change Disable". Also when the "Lock Panel" is "On" from the Siemens Apogee Network. The preceding parameter becomes invisible.

Code	Signal Name	Unit	ID #	Description
V5.1	Motor speed	rpm	2	Calculated motor speed
V5.2	Motor speed %	%	1590	Motor Nominal Speed %
V5.3	Frequency reference	Hz	25	Frequency reference setting
V5.4	Output frequency	Hz	1	Frequency to the motor
V5.5	Motor current	A	1780	Measured motor current
V5.6	Motor torque	%	4	Calculated torque based on nominal motor torque
V5.7	Motor power	%	5	Calculated power based on nominal motor power
V5.8	Instantaneous	kW	1888	Calculated power based on output to motor
V5.9	Energy meter	KwH	1666	Kilowatt hours total usage ^①
V5.10	Motor voltage	V	6	Calculated motor voltage
V5.11	DC-bus voltage	V	7	Measured DC-bus voltage
V5.12	Motor run time	Hrs	1701	Motor run time total ^①
P5.13	Run Display Format	—	1565	Changes motor run time between seconds, minutes, hours and days [®]
V5.14	Unit temperature	°C	8	Heatsink temperature
V5.15	Calculated motor temperature	°C	1917	Calculated motor temperature based on the motor nameplate information and the calculated motor load
V5.16	Analog Input 1	V	13	Voltage Input at Terminal AI1+ and GND
V5.17	Analog Input 2	mA	14	Current Input at Terminals AI2+ and AI2–
V5.18	Analog Input 3	mA	1680	Current Input at Terminals AI3+ and AI3–
V5.19	Analog Input 4	mA	1710	Current Input at Terminals AI4+ and AI4–
V5.20	DIN1, DIN2, DIN3	_	15	Digital input status (Figure 6-10)
V5.21	DIN4, DIN5, DIN6	_	16	Digital input status (Figure 6-11)
V5.22	DIN Status	_	1904	Digital Input status. All digital Inputs.
V5.23	DO1, RO1, RO2	_	17	Digital and relay output status (Figure 6-12)
V5.24	RO3, RO4, RO5	_	1678	Relay output status
V5.25	Relay out status	_	1773	Status of all relay outputs ^②
V5.26	Analog lout	mA	26	Current Output at Terminals AO1+ and AO1–
V5.27	Analog Output 2	mA	1874	Current Output at Terminals AO2+ and AO2-
V5.28	Analog Output 3	mA	1875	Current Output at Terminals AO3+ and AO3-
V5.29	PID Setpoint	%	20	PID Setpoint Level
V5.30	PID Actual Level	%	21	PID Actual Level
V5.31	PID Error Value	%	22	PID Error Value
V5.32	PID Output	%	23	PID Output
G5.33	Active Faults	—		See Page 6-22
G5.34	Fault History	_		See Page 6-24
G5.35	Multimonitor	—		See Page 6-24

Table B-14: Monitoring Menu Items

^① Resettable via S.3.8.2 trip counters.

 $^{\odot}\,$ Includes BIN — Binary to decimal converted value for all digital and relay outputs.

³ See description on **Page 6-17**.

Appendix C — Fault and Warning Codes

Fault Code	Fault	Possible Cause	Solution
1	Overcurrent	 HVX9000 has detected a high current (>4xl_n) in its output due to: sudden heavy load increase short in the motor short in the cables to the motor unsuitable motor 	Check loading. Check motor. Check cables.
2	Overvoltage	 The DC-link voltage has exceeded its high limit due to: too short a deceleration time high voltage levels or surges in the utility supply 	Make the deceleration time longer. Use brake chopper and brake resistor (standard on some models, available as options on others). Correct utility supply voltage (level is too high). Add input impedance to limit surges.
3	Ground (Earth) Fault	Current sensing indicates that the sum of motor phase currents is not zero. • insulation failure in motor or motor cables	Check motor and motor cables.
5	Charging Switch	The charging switch was open, when the START command was given due to: • faulty operation • component failure	Reset the fault and restart. Should the fault re-occur, contact your distributor.
6	Emergency stop	An Emergency stop signal was received from one of the digital inputs	Determine reason for the Emergency stop and remedy it.
7	Saturation trip	 defective component motor or motor cable short 	Cannot be reset from the keypad. Switch off power. IF THE PROBLEM IS NOT IN THE MOTOR OR ITS CABLES, DO NOT RE-CONNECT POWER! Contact your distributor. If this fault appears simultaneously with Fault 1, check the motor and motor cables.
8	System fault	 component failure faulty operation Note: exceptional fault data record, see Active Fault Menu for more information 	Reset the fault and restart. Should the fault re-occur, contact your distributor.

Table C-1: Fault Codes

Fault Code	Fault	Possible Cause	Solution
9	Undervoltage	 DC-link voltage is less than the minimum safe operating voltage limit most probable cause: too low a utility supply voltage HVX9000 internal fault 	If there was a supply voltage loss or dip, reset the fault and restart the HVX9000. Check the supply voltage. If it was within specification at the time of the fault, an internal failure has occurred. Contact your distributor.
10	Input line supervision	Input line phase is low or missing.	Check the utility supply voltage, cables and connections.
11	Output phase supervision	Current sensing indicates that there is no current in one motor phase	Check the motor cables, connections and motor.
12	Brake chopper supervision	 no brake resistor installed brake resistor is broken brake chopper failure 	Check the brake resistor. If the resistor is ok, the chopper is faulty. Contact your distributor.
13	HVX9000 undertemperature	Heatsink temperature is under -10°C	Provide supplemental heating or relocate the HVX9000 to a warmer location.
14	HVX9000 overtemperature	Heatsink temperature is over 90°C.	An overtemperature warning is issued when the heatsink temperature exceeds 85°C, a fault occurs at 90°C. Check for the correct amount and unrestricted flow of cooling air. Check the heatsink for dust or dirt buildup. Check the highest ambient temperature level. Make sure that the switching frequency is not set too high in relation to the ambient temperature and motor load.
15	Motor stalled	 motor or load mechanical failure load too high stall parameter settings incorrect 	Check the motor, mechanical system and load level. Confirm the stall parameter settings.
16	Motor overtemperature	 motor is overloaded motor overheating has been detected by HVX9000 motor temperature model 	Decrease the motor load. If no motor overload exists, check the temperature model parameters.
17	Motor underload	 mechanical or load problem underload parameter settings incorrect 	Check the motor, check for a loose belt, broken coupling or load problems. Confirm underload parameter settings.

Table C-1: Fault Codes, continued

Table C-1: Fault Codes, continued

Fault Code	Fault	Possible Cause	Solution
22 23	EEPROM checksum fault	Parameter save faultfaulty operationcomponent failure	Upon reset of this fault, the HVX9000 will automatically reload the parameter default settings. Check all parameter settings after reset. If the fault reoccurs, contact your distributor.
25	Microprocessor watchdog fault	faulty operationcomponent failure	Reset the fault and restart. If the fault reoccurs, contact your distributor.
26	Start-up prevented	Start-up of the drive has been prevented.	Check Start Enable/Interlock settings.
29	Thermistor fault	The thermistor input of an option board has detected a high motor temperature	Check the motor cooling and the motor loading. Check the thermistor connection. (If the thermistor input of an option board is not being used, it must be short-circuited.)
32	Fan cooling	The HVX9000 cooling fan did not start when commanded	Contact your distributor.
34	CAN bus communication	Sent message not acknowledged	Ensure that there is another device on the bus with the appropriate configuration.
36	Control unit	Control unit cannot control the power unit and vise-versa	Change control unit.
37	Device change	 option board changed different power rating of drive	Reset. Note: No fault time data record!
38	Device added	 option board added drive of different power rating added 	Reset. Note: No fault time data record!
39	Device removed	 option board removed drive removed	Reset. Note: No fault time data record!
40	Device unknown	Unknown option board or drive	Contact your distributor.
41	IGBT temperature	IGBT Inverter Bridge overtemperature protection has detected high short term overload current	Check loading. Check motor size.
42	Brake resistor overtemperature	Brake resistor overtemperature protection has detected excessive braking	Set the deceleration time longer. Use an external brake resistor.

Fault Code	Fault	Possible Cause	Solution
43	Encoder fault	 Note: the exceptional Fault data record. See Active Fault Menu for more information. Additional codes: 1 Encoder 1 channel A is missing 2 Encoder 1 channel B is missing 3 Both encoder 1 channels are missing 4 Encoder reversed 	Check encoder channel connections. Check the encoder board.
50	Analog input l _{in} < 4 mA (for signal range 4 to 20 mA)	Current at the analog input is < 4 mA • control cable is broken or loose • signal source has failed	Check the current loop, signal source and wiring.
51	External fault	Digital input set as an external fault input has been triggered.	Check source of trigger.
52	Keypad communication fault	The connection between the control keypad and the HVX9000 has been lost.	Check keypad connection and keypad cable.
53	Communication bus fault	The data connection between the communication bus master and the communication bus board has failed	Check installation. If installation is correct, contact your distributor.
54	Slot fault	Defective option board or slot	Check that the board is properly installed and seated in slot. If installation is correct, contact your distributor.
82	BypassOverLoad	The motor has been overloaded while connected to the bypass	Decrease the motor load. Disable the Current Imbalance feature – see the <i>IT.</i> manual.

Table C-1: Fault Codes, continued

Appendix D — Figures and Tables by Topics

List of Figures

Acceleration/Deceleration Curve (S-Shaped) (Figure 8-10) Active Fault Display Example (Figure 6-13) Al1 Signal Filtering (Figure 8-2) Al2 Signal Filtering (Figure 8-3) Analog Output Filtering (Figure 8-5) Analog Output Inversion (Figure 8-6) Analog Output Scale (Figure 8-7)	6-22 8-10 8-11 8-15 8-16
Cable Protection Plate (Figure 3-4) Control Place B with and without Reference Scaling (Figure 8-4)	3-6 8-12
DC Braking Command (Figure 8-1) DC Braking Time at Start (Figure 8-13) DC Braking Time When Stop Mode = Coasting (Figure 8-11) DC Braking Time When Stop Mode = Ramp (Figure 8-12) Digital Inputs DIN1, DIN2, DIN3 Status (Figure 6-10) Digital Inputs DIN4, DIN5, DIN6 Status (Figure 6-11) Digital Outputs DO1, RO1, RO2 Status (Figure 6-12)	8-31 8-32 6-22 6-22
Enable Bypass (Figure 6-3)Example of Automatic Restart with Two Restarts (Figure 8-23)Examples of Actual Value Signal Scaling (Figure 8-25)Expander Board Menu Structure (Figure 6-9)External Brake Control (Figure 8-9)	8-52 6-19
 FR4 Power and Motor Wiring Terminals (Figure 3-8) FR5 Power and Motor Wiring Terminals (Figure 3-9) FR6 Power and Motor Wiring Terminals (Figure 3-10) FR7 Power and Motor Wiring Terminals (Figure 3-11) FR8 Power and Motor Wiring Terminals (Figure 3-12) FR9 Power and Motor Wiring Terminals (Figure 3-13) Frequency Converter Sleep Function (Figure 8-29) Frequency Reference Logic of the Fire Mode PID Application When Running in Fire Mode (Figure 8-24) 	3-11 3-12 3-13 3-14 3-15 8-57
Ground Terminal Locations (Figure 3-3)	3-5
 HVX IntelliPass/IntelliDisconnect Dimensions (Figure 5-1) HVX Series Enclosed Drive Dimensions — Box A (Figure 5-2) HVX Series Enclosed Drive Dimensions — Box A (Figure 5-5) HVX Series Enclosed Drive Dimensions — Box B (Figure 5-3) HVX Series Enclosed Drive Dimensions — Box B (Figure 5-6) HVX Series Enclosed Drive Dimensions — Box C (Figure 5-4) HVX Series Enclosed Drive Dimensions — Box C (Figure 5-7) HVX Series Enclosed Drive Dimensions — Box C (Figure 5-7) HVX Series Enclosed Drive Dimensions — Box C (Figure 4-16) HVX9000 Dimensions, FR10 Open Chassis (Figure A-16) HVX9000 Dimensions, NEMA Type 1 and NEMA Type 12 FR9 (Figure A-13) HVX9000 Dimensions, NEMA Type 1 and NEMA Type 12 FR9 with Flange Kit (Figure A-14) HVX9000 Dimensions, NEMA Type 1 and NEMA Type 12 with Flange Kit, 	A-19 A-14
FR4, FR5 and FR6 (Figure A-8)	A-9 A-10
······································	

List of Figures, continued

HVX9000 Dimensions, NEMA Type 1 and NEMA Type 12, FR8 (Figure A-10)A-7HVX9000 Dimensions, NEMA Type 1 and NEMA Type 12, FR9 (Figure A-12)A-7HVX9000 Dimensions, NEMA Type 1 and NEMA Type 12, with Flange Kit, FR7 and FR8 (Figure A-11)A-7	13
HVX9000 Dimensions, NEMA Type 1 FR11 Freestanding Drive (Figure A-17) A-7 HVX9000 Dimensions, NEMA Type 1 and NEMA Type 12 FR10 Freestanding Drive (Figure A-15) A-7	18
Identification of TYPE 1 Components (Figure 5-11)5-7Identification of TYPE 3R Components (Figure 5-8)5Input Power and Motor Cable Stripping and Wire Lengths (Figure 3-1)3IntelliPass Control Diagram (Figure 5-13)5-7IntelliPass Power and Motor Terminal Wiring Example (Figure 5-12)5-7	5-9 3-4 •22
	5-1 5-9
Linear and Squared Change of Motor Voltage (Figure 8-16)	36
Minimum Load Setting (Figure 8-21) 8-4 Motor Cooling Power (Figure 8-18) 8-4 Motor Temperature Calculation (Figure 8-19) 8-4	5-8 -44 -41
NEMA Type 1 and NEMA Type 12 HVX9000 Drive Dimensions, FR4, FR5 and FR6 (Figure A-7) A	۹-8
Option Board A2 Terminal Locations (Figure 4-5)4Option Board A2 Wiring Diagram (Slot B) (Figure 4-4)4Option Board A9 Jumper Location and Settings (Slot A) (Figure 4-3)4Option Board A9 Wiring Diagram (Figure 4-2)4Option Board B5 Terminal Location (Figure 5-15)5-2Option Board B5 Wiring Diagram (Figure 5-14)5-2Option Board Slots (Figure 4-1)4Output Frequency Supervision (Figure 8-8)8-2	6-5 4-6 4-5 4-3 -24 -23 4-1 -24
Power Loss as Function of Switching Frequency: 1 – 3 hp 230V, 1-1/2 – 7-1/2 hp 480V (Figure A-1)	-54 -55 -55
Power Loss as Function of Switching Frequency: 100 – 150 hp 480V (Figure A-5) A	۹-7
	۹-6
	\- 7
Power Loss as Function of Switching Frequency: 5 – 10 hp 230V, 10 – 20 hp 480V (Figure A-2) A	۹-5

List of Figures, continued

Power Loss as Function of Switching Frequency:	
50 – 75 hp 480V (Figure A-4)	A-6
Principle Wiring Diagram of HVX Power Unit,	
FR4, FR5 and FR6 (Figure 3-5)	3-7
Principle Wiring Diagram of HVX Power Unit,	2.0
FR6, FR7 and FR8 (Figure 3-6)	3-8
Principle Wiring Diagram of HVX Power Unit, FR9 and FR10 (Figure 3-7)	3-9
Programmable V/f Ratio (Figure 8-17)	
Ramp Speed Scaling Between Skip Frequencies (Figure 8-15)	8-34
Sample Fault History Display (Figure 6-14)	6-24
Schematic for Static Checks (Figure 5-10)	5-15
Skip Frequency Area Setting (Figure 8-14)	
Stall Characteristics Settings (Figure 8-20)	8-43
System Menu Structure (Figure 6-8)	6-11
Tools Required (Figure 5-9)	5-9
Underload Time Counter Function (Figure 8-22)	8-45
Wiring Plate (Figure 3-2)	3-5

List of Tables

230V I _L Output Power Ratings (Table A-2)	A-3
Application Information (Table 6-8)	6-18
Binary Inputs for Seven Preset Speeds (Table 8-8)Bypass Power Wiring Instructions — TYPE 1 (Table 5-13)Bypass Power Wiring Instructions — TYPE 3R and 12 (Table 5-9)	5-16
Cable and Fuse Sizes — 208 – 240V Ratings (Table 3-2)Cable and Fuse Sizes — 380 – 500V Ratings (Table 3-3)Cable and Fuse Sizes — 575 – 690V Ratings (Table 3-4)Cable Spacings (Table 3-1)Control Wiring Instructions (Table 4-2)Cooling Airflow Requirements (Table 2-2)	3-2 3-3 3-1 4-2
Dimensions for HVX9000, FR10 Open Chassis (Table A-16) Dimensions for HVX9000, FR11 Open Chassis (Table A-18) Dimensions for HVX9000, FR4, FR5 and FR6 with Flange Kit (Table A-6) Dimensions for HVX9000, FR7 and FR8 with Flange Kit (Table A-10) Dimensions for HVX9000, FR9 (Table A-13) Dimensions for HVX9000, FR9 with Flange Kit (Table A-14) Dimensions for HVX9000, NEMA Type 1 FR11 Freestanding Drive (Table A-17) Dimensions for HVX9000, FR10 Freestanding Drive (Table A-15) Dimensions for the Flange Opening, FR4 to FR6 (Table A-7) Dimensions for the Flange Opening, FR7/FR8 (Table A-11) DO1 Function Settings (Table 8-2)	A-19 A-9 A-12 A-14 A-15 A-18 A-16 A-9 A-12
Fault Codes (Table C-1)Fault Time Data (Table 6-13)Fault Types (Table 6-12)Fieldbus Output Selection Examples (Table 8-9)	6-24 6-23
Hardware Information (Table 6-9)HVX IntelliPass Drive Catalog Numbering System (Table 5-1)HVX Series TYPE 12 Enclosed IntelliPass/IntelliDisconnect	
Drive Dimensions (Table 5-5)	5-5
Drive Dimensions (Table 5-3)	5-3
Drive Dimensions (Table 5-4) HVX Series TYPE 3R Enclosed IntelliPass/IntelliDisconnect	
Drive Dimensions (Table 5-8) HVX Series TYPE 3R Enclosed IntelliPass/IntelliDisconnect	5-8
Drive Dimensions (Table 5-6) HVX Series TYPE 3R Enclosed IntelliPass/IntelliDisconnect	
Drive Dimensions (Table 5-7) HVX9000 Drive Catalog Numbering System (Table 1-1) HVX9000 Drive Dimensions (Table A-5) HVX9000 Drive Dimensions, FR7 (Table A-8) HVX9000 Drive Dimensions, FR8 (Table A-9) HVX9000 Drive Dimensions, FR9 (Table A-12) HVX9000 Drive Specifications (Table A-1)	1-2 A-8 A-10 A-11 A-13 A-1
LCD Status Indicators (Table 6-1) LED Status Indicators (Table 6-2)	6-2 6-2

List of Tables, continued

Maximum Symmetrical Supply Current (Table 3-5)Monitoring Menu Items (Table 6-11)Monitoring Menu Items (Table B-14)	6-21 B-16
Navigation Buttons (Table 6-3) NEMA TYPE 1 IntelliPass/IntelliDisconnect Drive Dimensions (Table 5-2)	
Operate Menu Items — IntelliPass Application Example (Table 6-14)Operate Menu Items — IntelliPass Application Example (Table 6-4)Option Board A2 Terminal Descriptions (Table 4-4)Option Board A9 Terminal Descriptions (Table 4-3)Option Board B5 Terminal Descriptions (Table 5-14)	6-5 4-6 4-4
Parameter Group G1.1: Basic (Table B-1) Parameter Group G1.10: IntelliPass Parameters (Table B-10) Parameter Group G1.11: PID Control (Table B-11) Parameter Group G1.12: Preset Speeds (Table B-12) Parameter Group G1.13: Communication Bus (Table B-13) Parameter Group G1.2: Input Signals (Table B-2) Parameter Group G1.3: Output Signals (Table B-3) Parameter Group G1.4: Drive Control (Table B-3) Parameter Group G1.5: Skip Frequencies (Table B-5) Parameter Group G1.5: Skip Frequencies (Table B-5) Parameter Group G1.6: Motor Control (Table B-6) Parameter Group G1.7: Protections (Table B-6) Parameter Group G1.8: Auto-Restart Parameters (Table B-8) Parameter Group G1.9: Fire Mode (Table B-9) Power and Motor Cable Stripping Lengths (Table 3-7) Power Connection Tightening Torque (Table 3-6)	B-12 B-13 B-14 B-15 B-2 B-5 B-8 B-9 B-9 B-9 B-9 B-10 B-11 B-12 3-4 3-3
RO1 Function Settings (Table 8-3)RO2 Function Settings (Table 8-4)RO3 Content Settings (Table 8-5)	8-20 8-21
Scaling Factor for the Analog Output (Table 8-1)	8-27 8-28 6-18 6-18 2-1 5-14 5-14
Tightening Torques of Terminals (Table 4-1)Total Counters (Table 6-5)Trip Counters (Table 6-6)	6-17

Company Information

Eaton's electrical business is a global leader in electrical control, power distribution, and industrial automation products and services. Through advanced product development, world-class manufacturing methods, and global engineering services and support, Eaton's electrical business provides customer-driven solutions under brand names such as Cutler-Hammer[®], Powerware[®], Durant[®], Heinemann[®], Holec[®] and MEM[®], which globally serve the changing needs of the industrial, utility, light commercial, residential, and OEM markets. For more information, visit **www.EatonElectrical.com**.

Eaton Corporation is a diversified industrial manufacturer with 2005 sales of \$11.1 billion. Eaton is a global leader in fluid power systems and services for industrial, mobile and aircraft equipment; electrical systems and components for power quality, distribution and control; automotive engine air management systems, powertrain solutions and specialty controls for performance, fuel economy and safety; and intelligent truck drivetrain systems for safety and fuel economy. Eaton has 60,000 employees and sells products to customers in more than 125 countries. For more information, visit **www.eaton.com**.

> © 2006 Eaton All Rights Reserved Printed in USA Publication No. TD04008003E/CPG August 2006

