Quick Start Guide For MVX9000 AF Drives March 2006 Supersedes November 2004 MN04002001E March 2006 # Step 1 — Wiring ### **Hazardous High Voltage** #### HIGH VOLTAGE! Motor control equipment and electronic controllers are connected to hazardous line voltages. When servicing drives and electronic controllers, there may be exposed components with housings or protrusions at or above line potential. Extreme care should be taken to protect against shock. For the best results with the MVX9000 inverter, carefully read the manual and all of the warning labels attached to the inverter before installing and operating it, and follow the instructions exactly. Wire Type: 75°C Copper Only | Catalog Number | Voltage
Horsepower | Max. Current (A)
(Input/Output) | Wire
Gauge
(AWG) | Torque
Rating
(kgf-cm) | |----------------------|-----------------------|------------------------------------|------------------------|------------------------------| | MVXF25A0-1 (1-phase) | 115V AC, 1/4 hp | 6/1.6 | 12 – 14 | 14 | | MVXF50A0-1 (1-phase) | 115V AC, 1/2 hp | 9/2.5 | 12 – 14 | | | MVX001A0-1 (1-phase) | 115V AC, 1 hp | 16/4.2 | 12 | | | MVXF50A0-2 (1-phase) | 240V AC, 1/2 hp | 6.3/2.5 | 12 – 14 | | | MVXF50A0-2 (3-phase) | 240V AC, 1/2 hp | 3.2/2.5 | 12 – 14 | | | MVX001A0-2 (1-phase) | 240V AC, 1 hp | 11.5/5 | 12 – 14 | 14 | | MVX001A0-2 (3-phase) | 240V AC, 1 hp | 6.3/5 | 12 – 14 | | | MVX002A0-2 (1-phase) | 240V AC, 2 hp | 15.7/7 | 12 | | | MVX002A0-2 (3-phase) | 240V AC, 2 hp | 9/7 | 12 – 14 | | | MVX003A0-2 (1-phase) | 240V AC, 3 hp | 27/10 | 8 | 15 | | MVX003A0-2 (3-phase) | 240V AC, 3 hp | 15/10 | 8 – 12 | | | MVX005A0-2 | 240V AC, 5 hp | 19.6/17 | 8 – 10 | 10 | | MVX007A0-2 | 240V AC, 7-1/2 hp | 28/25 | 8 | | | MVX001A0-4 | 480V AC, 1 hp | 4.2/3 | 12 – 14 | 14 | | MVX002A0-4 | 480V AC, 2 hp | 5.6/4 | 12 – 14 | | | MVX003A0-4 | 480V AC, 3 hp | 6/5 | 12 – 14 | | | MVX005A0-4 | 480V AC, 5 hp | 8.5/8.2 | 8 – 14 | 15 | | MVX007A0-4 | 480V AC, 7-1/2 hp | 14/13 | 8 – 12 | | | MVX010A0-4 | 480V AC, 10 hp | 23/18 | 8 – 10 | | # Step 1 — Wiring (Continued) ### Hazardous High Voltage, continued | Catalog Number | Voltage
Horsepower | Max. Current (A)
(Input/Output) | Wire
Gauge
(AWG) | Torque
Rating
(kgf-cm) | |----------------|-----------------------|------------------------------------|------------------------|------------------------------| | MVX001A0-5 | 575V AC, 1 hp | 1.7A/2.4A | 12 – 14 | 14 | | MVX002A0-5 | 575V AC, 2 hp | 3.0A/4.2A | 12 – 14 | | | MVX003A0-5 | 575V AC, 3 hp | 4.2A/5.9A | 12 – 14 | | | MVX005A0-5 | 575V AC, 5 hp | 6.6A/7.0A | 8 – 14 | 15 | | MVX007A0-5 | 575V AC, 7-1/2 hp | 9.9A/10.5A | 8 – 14 | | | MVX010A0-5 | 575V AC, 10 hp | 12.2A/12.9A | 8 – 12 | | ### **Basic Wiring Diagram** Users must connect wiring according to the following circuit diagram. # Control Terminal Wiring (Factory Settings) #### Terminal Symbols | Terminal
Symbols | Terminal Name | Remarks | |------------------------------|--|---| | R01 - R02 | Digital Output Relay | Refer to 40.04 Relay output contact | | R03 - R02 | Digital Output Relay | RO1 - RO2 (NC Contact)
RO3 - RO2 (NO Contact) | | D01 - DCM | Digital photocouple output | Refer to 40.03 | | RJ-12 | Serial communication port | RS-485 serial communication interface | | +10V - COM | | Power Supply (+10V) | | AI1 - COM
AI2 - COM | Analog voltage input
Analog current input | 0 to +10V Input
0 to 20 mA or 4 to 20 mA Input | | AO+ - COM | Analog frequency/current meter | 0 to +10V Output | | DI1 - COM | Digital input 1 | Refer to 30.11 | | DI1 - COM
to
DI6 - GND | Digital input 1
to
Digital input 6 | | **Note:** Use twisted-shielded, twisted-pair or shielded-lead wires for the control signal wiring. It is recommended to run all signal wiring in a separate steel conduit. The shield wire should only be connected at the drive. Do not connect shield wire on both ends. #### HIGH VOLTAGE! Wiring work shall be carried out only by qualified personnel. Otherwise, there is a danger of electric shock or fire. # Step 2 — Keypad Operation ### Digital Keypad Operation The digital keypad includes the display panel and the keypad. The display panel provides the parameter display and shows the operation status of the AC drive. The keypad provides programming and control interface. #### Description of Digital Keypad #### **Explanation of the LED Indicators** | Keypad Opera | Ceypad Operators | | | | | | | |---------------|--|--|--|--|--|--|--| | START | START This button operates as Start button for normal operation • Motor START from the panel; active control place has to be selected at "Panel" | | | | | | | | ENTER | ENTER This button in the parameter edit mode is used to enter the programming mode and enter the parameter selection. • used for parameter edit confirmation, acceptance (confirmation) of the edited parameter value with exit from parameter edit mode | | | | | | | | STOP
RESET | STOP / RESET This button has two integrated operations. The button operates as Stop button for normal operation. In the parameter edit mode it is used to cancel previous action and back-up one step, and in fault mode it is used to reset the fault. STOP • motor STOP from the panel; active control place has to be selected at "Panel" RESET • used for active fault resetting - fault history is reset if ENTER is pressed on the "Fault History" menu group in "Main Menu" or - if ENTER is pressed while in the "Fault History" menu • in programming mode press RESET key to cancel previous action and back up one step | | | | | | | # Step 2 — Keypad Operation (Continued) #### Keypad Operators, continued #### LEFT Arrow - · navigation button, movement to left - in display mode, enter parameter group mode in parameter edit mode, exits mode, backs up one step - cancels edited parameter (exit from a parameter edit mode) #### RIGHT Arrow - navigation button, movement to right - enter parameter group mode enter parameter mode from group mode #### **UP and DOWN Arrows** - move either up or down the group list in order to select the desired group menu. - move either up or down the parameter list in order to select the - desired parameter in the group. increasing/decreasing of reference value on the keyboard (when selected). #### SPEED POT increase/decrease reference value on the keypad (when selected) #### **Explanation of Display Messages** | Displayed
Message | Descriptions | |----------------------|--| | * 50.0 | The AC drive Input Frequency Reference. | | ** 60.0 | The Actual Operation Frequency at the output terminals T1, T2 and T3. | | ₩2.5 | The output current present at the output terminals T1, T2 and T3. | | <u>₽</u> 5.0 | The value of the user defined units. | | :20 | The output voltage present at the output terminals T1, T2 and T3. | | <u> </u> | The temperature of the unit. | | Frd | The AC drive forward run status. | | rEu | The AC drive reverse run status. | | 20. | Parameter group selection. | | 20.05 | The specific parameter selection. | | End | "End" displays for approximately 1 second if input has been accepted. After a parameter value has been set, the new value is automatically stored in memory. | | Err | "Err" displays, if the input is invalid. | # Step 3 — Parameter Navigation This page contains the descriptions of the MVX9000 parameters. Parameters are addressed and changed via the keypad for the MVX9000. For more information on keypad operation, see Keypad Operation located in Chapter 2 of the manual. ### Viewing and Changing Parameter Settings #### Page Groups Parameters are grouped in a page arrangement. Each page will contain a list of the parameters associated with that group. Move into the page groups from the display menu by using the right arrow key. #### Parameter Groups Select the desired parameter group by using the up and down keys. Once the parameter group is located, use the right arrow key to enter the group. Use the up and down keys to scroll the parameters on that page. #### **Parameters** Once the parameter has been located, use the right arrow key to view the parameter setting. #### **Programming Mode** Use the ENTER key to enter the programming mode. The displayed parameter will flash indicating the parameter can be changed. #### **Parameter Changes** Use the up and down keys to change the parameter setting. Press ENTER to enter the new parameter setting. If the parameter change is successful, the keypad will display the end (End) message and return to the parameter number display. If the parameter change is unsuccessful the keypad will display an error (Err) message, the parameter will not be changed, and the parameter number will again be displayed. Note: Some parameters cannot be changed while the unit is the RUN/START mode. #### To Exit Programming Mode Pressing left arrow backs out of Parameter Mode and returns you to Display Mode. # Step 4 — Parameter Groups & Default Values ### **Parameter Groups** The parameters are grouped according to the following descriptions: 10 Reserved (and not displayed) | 20 Basic Grouping | 6 | |--------------------------------|----| | 30 Inputs | 7 | | 40 Outputs | 8 | | 50 Drive Control | 9 | | 60 Motor Control | 12 | | 70 Protective Functions | 13 | | 80 Display | 13 | | 90 Communications | 15 | ### MVX9000 Parameter Listing #### 20 - BASIC GROUPING (Quick Start) | Modbus | Groups | Description | Range | Default | User
Settings | |--------|-----------------------|-------------------------------|--|---------|------------------| | 0000H | 20.01
50.05 | Motor Nameplate
Frequency | 10.0 to 400.0 Hz | 60.0 | | | 0001H | 0001H 20.02
50.06 | Motor Nameplate | 115/230V drives: 1.0 to 255V | 230 | | | | 50.06 | Voltage | 460V drives: 1.0 to 510V | 460 | | | | | | 575V drives: 1.0 to 637V | 575 | | | 0002H | 20.03
50.01 | Source of Master
Frequency | 00: Master frequency determined by digital keypad up/down | 01 | | | | | | 01: Master frequency determined by
keypad potentiometer | | | | | | | 02: Master frequency determined by 0 to +10V input on Al terminal | | | | | | | 03: Master frequency determined by
4 to 20 mA input on Al terminal | | | | | | | 04: Master frequency determined by
RS-485 communication interface | | | | 0003H | 20.04
50.02 | Source of Operation command | 00: Operation commands
determined by digital keypad | 00 | | | | | | 01: Operation commands
determined by external control
terminals, keypad STOP is effective | | | | | | | 02: Operation commands
determined by external control
terminals, keypad STOP is
ineffective | | | | | | | 03: Operation commands
determined by RS-485 interface,
keypad STOP is effective | | | | | | | 04: Operation commands
determined by RS-485 interface,
keypad STOP is ineffective | | | | 0004H | 20.05
60.01 | Motor Rated Current | 30 to 120% | FLA | | | 0005H | 20.06
50.09 | Minimum Output
Frequency | 0.0 to 20.0 Hz | 1.5 | | | 0006H | 20.07
50.04 | Maximum Output
Frequency | 50.0 to 400.0 Hz | 60.0 | | | 0007H | 20.08
50.12 | Acceleration Time 1 | 0.01 to 600.0 sec | 10.0 | | | 0008H | 20.09
50.13 | Deceleration Time 1 | 0.01 to 600.0 sec | 10.0 | | 30 — INPUTS | Modbus | Groups | Description | Range | Default | User
Settings | |--------|--------|--|--|---------|------------------| | 0100H | 30.01 | Minimum reference
value (0 – 10V) | 0.0 to 10.0V | 0.0 | | | 0101H | 30.02 | Maximum reference
value (0 – 10V) | 0.0 to 10.0V | 10.0 | | | 0102H | 30.03 | Invert reference
signal (0 - 10V) | 00: Not inverted | 00 | | | | | - | 01: Inverted | | | | 0103H | 30.04 | Minimum reference
value (4 – 20 mA) | 0.0 to 20.0 mA | 4.0 | | | 0104H | 30.05 | Maximum reference
value (4 – 20 mA) | 0.0 to 20.0 mA | 20.0 | | | 0105H | 30.06 | Invert reference
signal (4 – 20 mA) | 00: Not inverted
01: Inverted | 00 | | | 0106H | 30.07 | Potentiometer Offset | 0.0 to 100.0% | 0.0 | | | 0107H | 30.08 | Potentiometer Bias
Polarity | 00: Positive, 01: Negative | 00 | | | 0108H | 30.09 | Potentiometer Slope | 0.1 to 300.0% | 100.0 | | | 0109H | 30.10 | Potentiometer | 00: Forward Motion Only | 00 | | | | | Direction | 01: Reverse Motion Enable | | | | 010AH | 30.11 | Digital Input Terminal | 01: DI1-FWD / STOP, DI2-REV / STOP | 02 | | | | | (DI1, DI2) | 02: DI1-RUN / STOP, DI2-REV / FWD | | | | | | | 03: DI1 - RUN momentary (NO), DI2 -
REV / FWD, DI3 - STOP momentary
(NC) | | | | 010BH | 30.12 | Digital Input Terminal | 00: Not used | 05 | | | 010CH | 30.13 | (DÍ3)
Digital Input Terminal | 01: External Fault (NO) | 06 | | | | | (DÍ4) | 02: External Fault (NC) | 1 | | | 010DH | 30.14 | Digital Input Terminal (DI5) | 03: External Reset (NO) | 07 | | | 010EH | 30.15 | Digital Input Terminal (DI6) | 04: External Reset (NC) | 03 | | | | | (DIO) | 05: Multi-Speed 1 | | | | | | | 06: Multi-Speed 2 | | | | | | | 07: Multi-Speed 3 | | | | | | | 08: Jog | | | | | | | 09: Second Acceleration/
Deceleration Time | | | | | | | 10: Control Place: I/O Terminal | | | | | | | 11: Control Place: Keypad | | | | | | | 12: Control Place: Communication | | | | | | | 13: Increase Speed during RUN command | | | | | | | 14: Decrease Speed during RUN command | | | | | | | 15: Forward/Reverse | | | | | | | 16: Parameter Lock | | | | | | | 17: Acceleration/Deceleration I
Prohibit | | | | | | | 18: Run Enable | | | | | | | 19: Base Block (NO) | | | | | | | 20: Base Block (NC) | | | | | | | 21: PID Disable | | | | | | | 22: Run PLC Program | | | | | | | 23: Pause PLC Program | | | | | | | 24: Counter Trigger signal | | | | | | | 25: Counter Reset | 1 | | | | | | 26: First/second Source of Master Frequency | | | | | | | 27: Increase speed during RUN or STOP state | | | | | | | 28: Decrease speed during RUN or STOP state | | | # 30 — INPUTS (Continued) | Modbus | Groups | Description | Range | Default | User
Settings | |--------|--------|--|--|---------|------------------| | 010BH | 30.12 | Digital Input Terminal | 29: Output Shut Off (NO) | 05 | | | 010CH | 30.13 | (DÍ3)
Digital Input Terminal | 30: Output Shut Off (NC) | 06 | | | 010DH | 30.14 | (DI4)
Digital Input Terminal
(DI5) | 31: Auto Location – Operation &
Frequency by First source (P50.01 &
P50.02) | 07 | | | 010EH | 30.15 | Digital Input Terminal
(DI6) | 32: Hand Location – Operation &
Frequency by Second source
(P50.57 & P50.60) | 03 | | | | | | 33: LOC – Operation & Frequency by
Second source (P50.57 & P50.60) | | | | 010FH | 30.16 | Final Count Value | 00 to 9999 | 00 | | | 0110H | 30.17 | Intermediate Count
Value | 00 to 9999 | 00 | | | 0111H | 30.18 | 1st Preset Speed | 0.0 to 400.0 Hz (100.0%) | 0.0 | | | 0112H | 30.19 | 2nd Preset Speed | 0.0 to 400.0 Hz (100.0%) | 0.0 | | | 0113H | 30.20 | 3rd Preset Speed | 0.0 to 400.0 Hz (100.0%) | 0.0 | | | 0114H | 30.21 | 4th Preset Speed | 0.0 to 400.0 Hz (100.0%) | 0.0 | | | 0115H | 30.22 | 5th Preset Speed | 0.0 to 400.0 Hz (100.0%) | 0.0 | | | 0116H | 30.23 | 6th Preset Speed | 0.0 to 400.0 Hz (100.0%) | 0.0 | | | 0117H | 30.24 | 7th Preset Speed | 0.0 to 400.0 Hz (100.0%) | 0.0 | | | 0118H | 30.25 | Display Hz or % | 00: Frequency (Hz) | 00 | | | | | | 01: Percentage (%) | | | | | | | 02: User Definition by 0.000 - max.
unit | | | | 0119H | 30.26 | Extension Input DI7 | same 30.12 to 30.15 | 00 | | | 011AH | 30.27 | Extension Input DI8 | same 30.12 to 30.15 | 00 | | | 011BH | 30.28 | User Definition
Display Frequency
Max Unit | 0.000 - 1.000 | 1.000 | | #### 40 — OUTPUTS | Modbus | Groups | Description | Range | Default | User
Settings | |--------|--------|---|--|---------|------------------| | 0200H | 40.01 | Analog Output Signal | 00: Frequency Hz | 00 | | | | | | 01: Current A | | | | | | | 02: Feedback signal 0 – 100 | | | | | | | 03: Output Power 0 – 100% | | | | 0201H | 40.02 | Analog Output Gain | 00 to 200% | 100 | | | 0202H | 40.03 | Digital Output | 00: Not used | 02 | | | | | Terminal
(DO1-DCM) | 01: Ready | | | | 0203H | 40.04 | Relay Output
Terminal
(RO1, RO2, RO3) | 02: Inverter Output is active | 03 | | | | | | 03: Inverter Fault | | | | | | | 04: Warning (PID feedback loss, communication fault) | | | | | | | 05: At speed | | | | | | | 06: Zero speed | | | | | | | 07: Above Desired Frequency (40.05) | | | | | | | 08: Below Desired Frequency (40.05) | | | | | | | 09: PID supervision | | | | | | | 10: Over Voltage Warning | | | | | | | 11: Over Heat Warning | 1 | | | | | | 12: Over Current Stall Warning | | | | | | | 13: Over Voltage Stall Warning | | | | | | | 14: Low voltage | | | | | | | 15: PLC Program running | | | | | | | 16: PLC Program Step completed | | | | | | | 17: PLC Program completed | | | | | | 18: PLC Operation paused | 1 | | | # 40 — OUTPUTS (Continued) | Modbus | Groups | Description | Range | Default | User
Settings | |--------|----------|-----------------------------------|---------------------------------------|---------|------------------| | 0202H | 40.03 | Digital Output | 19: Final count value attained | 02 | | | 0203H | 40.04 | | 20: Intermediate count value attained | 03 | | | | Terminal | Terminal
(RO1, RO2, RO3) | 21: Reverse direction notification | | | | | | (RO1, RO2, RO3) | 22: Under current detection | | | | | | | 23: Inverter RUN command state | | | | 0204H | 40.05 | Desired Frequency
Attained | 0.0 to 400.0 Hz | 0.0 | | | 0205H | 40.06 | Digital Output (RO4,
RO5, RO6) | same as 40.03 to 40.04 | 0 | | | 0206H | 40.07 | Digital Output (RO7,
RO8, RO9) | same as 40.03 to 40.04 | 0 | | #### 50 — DRIVE CONTROL | Modbus | Groups | Description | Range | Default | User
Settings | |--------|--------|--------------------------------|--|---------|------------------| | 0300H | 50.01 | Source of Master
Frequency | 00: Master Frequency determined
by digital keypad up/down | 01 | | | | | | 01: Master Frequency determined
by keypad potentiometer | | | | | | | 02: Master Frequency determined
by 0 to +10V input on Al1 terminal | | | | | | | 03: Master Frequency determined
by 4 – 20 mA input on Al2 terminal | | | | | | | 04: Master Frequency determined
by RS-485 communication interface | | | | 0301H | 50.02 | Source of Operation
Command | 00: Operation command determined
by digital keypad | 00 | | | | | | 01: Operation command determined
by external control terminals,
keypad STOP is effective | | | | | | | 02: Operation command determined
by external control terminals,
keypad STOP is ineffective | | | | | | | 03: Operation command determined
by RS-485 interface, keypad STOP is
effective | | | | | | | 04: Operation command determined
by RS-485 interface, keypad STOP is
ineffective | | | | 0302H | 50.03 | Stop Methods | 00: Ramp to Stop | 00 | | | | | | 01: Coast to Stop | 1 | | | 0303H | 50.04 | Maximum Output
Frequency | 50.0 to 400.0 Hz | 60.0 | | | 0304H | 50.05 | Motor Nameplate
Frequency | 10.0 to 400.0 Hz | 60.0 | | | 0305H | 50.06 | Motor Nameplate | 115/230V 0.1 to 255.0V | 230.0 | | | | | Voltage | 460V 0.1 to 510.0V | 460.0 | | | | | | 575V 0.1 to 637.0V | 575.0 | | | 0306H | 50.07 | Mid-point Frequency | 0.1 to 400.0 Hz | 1.5 | | | 0307H | 50.08 | Mid-point Voltage | 115/230V 0.1 to 255.0V | 10.0 | | | | | | 460V 0.1 to 510.0V | 20.0 | | | | | | 575V 0.1 to 637.0V | 26.1 | | | 0308H | 50.09 | Minimum Output
Freq | 0.1 to 20.0 Hz | 1.5 | | | 0309H | 50.10 | Minimum Output | 115/230V 0.1 to 50.0V | 10.0 | | | | | Voltage | 460V 0.1 to 100.0V | 20.0 | | | | | | 575V 0.1 to 637.0V | 26.1 | | | 030AH | 50.11 | Sensorless Vector | 00: Disable | 00 | | | | | Enable | 01: Enable | 1 | | 50 — DRIVE CONTROL (Continued) | 50 — DNI | VE COIL | THOL (Continued | , | | User | |----------|---------|---|---|---------|----------| | Modbus | Groups | Description | Range | Default | Settings | | 030BH | 50.12 | Acceleration Time 1 | 0.01 to d 600.0 sec | 10.00 | | | 030CH | 50.13 | Deceleration Time 1 | 0.01 to d 600.0 sec | 10.00 | | | 030DH | 50.14 | Acceleration Time 2 | 0.01 to d 600.0 sec | 10.00 | | | 030EH | 50.15 | Deceleration Time 2 | 0.01 to d 600.0 sec | 10.00 | | | 030FH | 50.16 | Transition Point for
Acceleration 1 to | 0.0:Disable | 0.0 | | | | | Acceleration 2 | Above min freq.: Enable, 0.0 to 400.0 Hz | | | | 0310H | 50.17 | Transition Point for
Deceleration 1 to | 0.0:Disable | 0.0 | | | | | Deceleration 2 | Above min freq.: Enable, 0.0 to 400.0
Hz | | | | 0311H | 50.18 | Acceleration S-curve | 00 to 07 | 00 | | | 0312H | 50.19 | Deceleration S-curve | 00 to 07 | 00 | | | 0313H | 50.20 | Jog Acceleration /
Deceleration Time | 0.01 to d 600.0 sec | 1.00 | | | 0314H | 50.21 | Jog Frequency | 0.1 to 400.0 Hz | 6.0 | | | 0315H | 50.22 | Reserve Operation | 00: Enable Reverse Operation | 00 | | | | | | 01: Disable Reverse Operation | | | | 0316H | 50.23 | Momentary Power
Loss (Ride Through) | 00: Stop operation after momentary power loss | 00 | | | | | | 01: Continue operation after
momentary power loss, speed
search from Speed Reference | | | | | | | 02: Continue operation after
momentary power loss, speed
search from Minimum Speed | | | | 0317H | 50.24 | Maximum Allowable
Power Loss Time | 0.3 to 5.0 sec | 2.0 | | | 0318H | 50.25 | Pause Time after
Momentary Power
Loss | 0.3 to 10.0 sec | 0.5 | | | 0319H | 50.26 | Maximum Speed
Search Current Level | 30 to 200% | 150 | | | 031AH | 50.27 | Upper Limit of
Output Frequency | 0.1 to 400.0 Hz | 400.0 | | | 031BH | 50.28 | Lower Limit of
Output Frequency | 0.0 to 400.0 Hz | 0.0 | | | 031CH | 50.29 | Skip Frequency 1 | 0.0 to 400.0 Hz | 0.0 | | | 031DH | 50.30 | Skip Frequency 2 | 0.0 to 400.0 Hz | 0.0 | | | 031EH | 50.31 | Skip Frequency 3 | 0.0 to 400.0 Hz | 0.0 | | | 031FH | 50.32 | Skip Frequency
Bandwidth | 0.1 to 20.0 Hz (0.0 = Disable) | 0.0 | | | 0320H | 50.33 | Auto Restart After
Fault | 00 to 10 | 00 | | | 0321H | 50.34 | PID Set Point
Location | 00: Disable
01: Keypad (based on 20.03 setting)
02: Al1 (external 0 - 10V)
03: Al2 (external 4 - 20 mA)
04: PID set point (50.43) | 00 | | | 0322H | 50.35 | Feedback Signal
Selection | 00: Positive Al1 (0 – 10V)
01: Negative Al1 (0 – 10V)
02: Positive Al2 (4 – 20 mA)
03: Negative Al2 (4 – 20 mA) | 00 | | | 0323H | 50.36 | P Gain Adjustment | 0.0 to 10.0 | 1.0 | | | 0324H | 50.37 | I Gain Adjustment | 0.00 to 100.0 sec | 1.00 | | | 0325H | 50.38 | D Gain Adjustment | 0.00 to 1.0 sec | 0.00 | | | 0326H | 50.39 | Upper Limit of
Integral Control | 00 to 100% | 100 | | | 0327H | 50.40 | PID Output Delay
Filter Time | 0.0 to 2.5 sec | 0.0 | | | 0328H | 50.41 | 4 – 20 mA Input Loss
Detection Time | 00: Disable
0.1 to 3600 sec | 60 | | | 0329H | 50.42 | 4 – 20 mA Input Loss
Operation | 00: Warn and Inverter Stop
01: Warn and Continue Operation | 00 | | | | | | | | | # 50 — DRIVE CONTROL (Continued) | Modbus | Groups | Description | Range | Default | User
Settings | |-------------|--------|--|---|---------|------------------| | 032AH | 50.43 | PID Set Point | 0.0 to 400.0 Hz (100.0%) | 0.0 | | | 032BH 50.44 | 50.44 | PLC Operation Mode | 00: Disable PLC performing | 00 | | | | | | 01: Execute one program cycle | 1 | | | | | | 02: Continuously execute program cycles | | | | | | | 03: Execute one program cycle step by step | | | | | | | 04: Continuously execute program cycles step by step | | | | 032CH | 50.45 | PLC Forward/Reserve
Motion | 00 to 127 | 00 | | | 032DH | 50.46 | Time Duration of 1st
Preset Speed | 0 to 9999 | 0 | | | 032EH | 50.47 | Time Duration of 2nd
Preset Speed | 0 to 9999 | 0 | | | 032FH | 50.48 | Time Duration of 3rd
Preset Speed | 0 to 9999 | 0 | | | 0330H | 50.49 | Time Duration of 4th
Preset Speed | 0 to 9999 | 0 | | | 0331H | 50.50 | Time Duration of 5th
Preset Speed | 0 to 9999 | 0 | | | 0332H | 50.51 | Time Duration of 6th
Preset Speed | 0 to 9999 | 0 | | | 0333H | 50.52 | Time Duration of 7th
Preset Speed | 0 to 9999 | 0 | | | 0334H 50.53 | 50.53 | 50.53 Auto Acceleration/
Deceleration | 00: Linear Acceleration/Deceleration | 00 | | | | | | 01: Auto Acceleration, Linear
Deceleration | | | | | | | 02: Linear Acceleration/Auto
Deceleration | | | | | | | 03: Auto Acceleration/Deceleration | | | | | | | 04: Auto Acceleration/Deceleration
Stall Prevention (Limited by 50.12 to
50.15) | | | | 0335H | 50.54 | Sleep Frequency | 0.0: Disabled | 0.0 | | | | | | 0.1 to 400 Hz Enabled | | | | 0336H | 50.55 | Wake Frequency | 0.1 to 400 Hz (0.0 = Disable) | 0.0 | | | 0337H | 50.56 | Sleep Time Delay | 0.0 to 600 sec. | 1.0 | | | 0338H | 50.57 | Second Source of
Master Frequency | 00: Master Frequency determined
by digital keypad up/down | 00 | | | | | | 01: Master Frequency determined
by keypad potentiometer | | | | | | | 02: Master Frequency determined
by 0 to +10V input on AI terminal
with jumpers | | | | | | | 03: Master Frequency determined
by 4 to 20 mA input on Al terminal
with jumpers | | | | | | | 04: Master Frequency determined
by RS-485 communication interface | | | | 0339H | 50.58 | Zero Speed Output
Selection | 00: Standby
01: Zero Speed Output | 00 | | | 033AH | 50.59 | Zero Speed Holding
Torque | 0.0 to 30.0% | 5.0% | | # 50 — DRIVE CONTROL (Continued) | Modbus | Groups | Description | Range | Default | User
Settings | |--------|-----------------------|---------------------------------------|--|---------|------------------| | 033BH | 50.60 | Second Source of
Operation Command | 00: Operation determined by digital keypad | 03 | | | | | | 01: Operation determined by external control terminals, keypad STOP is effective | | | | | | | 02: Operation determined by external control terminals, keypad STOP is ineffective | | | | | | | 03: Operation determined by RS-485 interface, keypad STOP is effective | | | | | | | 04: Operation determined by RS-485 interface, keypad STOP is ineffective | | | | 033CH | 50.61 HOA and LOC/REM | 00: Ramp to Stop | 01 | | | | | | Stop Methods | 01: Coast to Stop | | | | 033DH | 50.62 | OV Fault During Stop
State | 00: Disable | 00 | | | | | | 01: Enable | | | #### 60 — MOTOR CONTROL | Modbus | Groups | Description | Range | Default | User
Settings | |--------|--------|--|------------------------------|----------|------------------| | 0400H | 60.01 | Motor Rated Current | 30 to 120% | FLA | | | 0401H | 60.02 | Motor No-Load
Current | 00 to 99% | 0.4* FLA | | | 0402H | 60.03 | 03 Motor Auto Tuning | 00: Disable | 00 | | | | | | 01: DC test | | | | | | | 02: DC test and no load test | | | | 0403H | 60.04 | Motor's Stator
Resistance
(calculated via auto
tune or entered
manually) | 00 to 65535 m Ohms | 00 | | | 0404H | 60.05 | DC Braking Current
Level | 00 to 100% | 00 | | | 0405H | 60.06 | DC Braking Time
upon Start-up | 0.0 to 5.0 sec | 0.0 | | | 0406H | 60.07 | DC Braking Time
upon Stopping | 0.0 to 25.0 sec | 0.0 | | | 0407H | 60.08 | Frequency-point for
DC Braking | 0.0 to 60.0 Hz | 0.0 | | | 0408H | 60.09 | Torque
Compensation | 00 to 10 | 00 | | | 0409H | 60.10 | Slip Compensation | 0.00 to 10.00 | 0.0 | | | 040AH | 60.11 | PWM Carrier | 115V/230V/460V: 1 to 15 KHz | 9 | | | | | Frequency | 575V: 1 to 10 KHz | 6 | | ### 70 — PROTECTIVE | Modbus | Groups | Description | Range | Default | User
Settings | |--------|--------|---|--|---------|------------------| | 0500H | 70.01 | Over-voltage Stall | 00: Disable | 01 | | | | | Prevention | 01: Enable | | | | 0501H | 70.02 | Over Current Stall
Prevention during
Acceleration | 00: Disable
20 to 200% | 150 | | | 0502H | 70.03 | Over Current Stall
Prevention during
Operation | 00: Disable
20 to 200% | 150 | | | 0503H | 70.04 | Over-Torque
Detection Mode | 00: Disabled | 00 | | | | | (OL2) | 01: Enabled during constant speed operation, drive halted after fault | | | | | | | 02: Enabled during constant speed operation, operation continues after fault | | | | | | | 03: Enabled during operation, drive halted after fault | | | | | | 04: Enabled during operation, operation continues after fault | | | | | 0504H | 70.05 | Over-Torque
Detection Level | 30 to 200% | 150 | | | 0505H | 70.06 | Over-Torque
Detection Time | 0.1 to 10.0 sec | 0.1 | | | 0506H | 70.07 | Electronic Thermal
Overload Relay | 00: Constant Torque | 01 | | | | | | 01: Variable Torque | | | | | | | 02: Inactive | | | | 0507H | 70.08 | Electronic Thermal
Motor Overload Time | 30 to 300 sec | 60 | | | 0508H | 70.09 | Auto Voltage | 00: AVR enabled | 00 | | | | | Regulation (AVR) | 01: AVR disabled | | | | | | | 02: AVR disabled during deceleration | | | | | | | 03: AVR disabled during stop | | | | 0509H | 70.10 | Auto Energy-Saving | 00: Disable | 00 | | | | | | 01: Enable | | | | 050AH | 70.11 | Under Current
Detection Value | 0.0 Disable | 0.0 | | | | | Detection Value | 0.1 to No Load Amps | | | | 050BH | 70.12 | Under current
Detection Mode | 0 or 1 | 0 | | | 050CH | 70.13 | Under current
Detection Time | 0.0 to 20.0 sec. | 1.0 | | ### 80 — KEYPAD/DISPLAY | Modbus | Groups | Description | Range | Default | User
Settings | |--------|--------|-----------------------------------|---|---------|------------------| | 0600H | 80.01 | Software Version | | | | | 0601H | 80.02 | AC Drive Rated
Current Display | | ##.# | | | 0602H | 80.03 | Manufacturer Model
Information | 00: MVXF50#0-2
(230V 1ph/3ph 1/2 hp) | ## | | | | | | 01: MVX001#0-2
(230V 1ph/3ph 1 hp) | | | | | | | 02: MVX002#0-2
(230V 1ph/3ph 2 hp) | 1 | | | | | | 03: MVX003#0-2
(230V 1ph/3ph 3 hp) | | | | | | | 04: MVX005#0-2
(230V 3ph 5 hp) | 1 | | | | | | 05: MVX007#0-2
(230V 3ph 7-1/2 hp) | 1 | | | | | | 06: Reserved | | | | | | | 07: Reserved | | | # 80 — KEYPAD/DISPLAY (Continued) | Modbus | Groups | Description | Range | Default | User
Settings | |--------|--------|------------------------------------|--|---------|------------------| | 0602H | 80.03 | Manufacturer Model
Information | 08: MVX001#0-4
(460V 3ph 1 hp) | ## | | | | | | 09: MVX002#0-4
(460V 3ph 2 hp) | | | | | | | 10: MVX003#0-4
(460V 3ph 3 hp) | | | | | | | 11: MVX005#0-4
(460V 3ph 5 hp) | | | | | | | 12: MVX007#0-4
(460V 3ph 7-1/2 hp) | | | | | | | 13: MVX010#0-4
(460V 3ph 10 hp) | | | | | | | 14 - 19: Reserved | | | | | | | 20: MVXF25#0-1
(115V 1ph 1/4 hp) | | | | | | | 21: MVXF50#0-1
(115V 1ph 1/2 hp) | | | | | | | 22: MVX001#0-1
(115V 1ph 1 hp) | | | | | | | 23 – 49: Reserved | | | | | | | 50: MVX001#0-5
(575V 3ph 1 hp) | | | | | | | 51: MVX002#0-5
(575V 3ph 2 hp) | | | | | | | 52: MVX003#0-5
(575V 3ph 3 hp) | | | | | | | 53: MVX005#0-5
(575V 3ph 5 hp) | | | | | | | 54: MVX007#0-5
(575V 3ph 7-1/2 hp) | | | | | | | 55: MVX010#0-5
(575V 3ph 10 hp) | | | | 0603H | 80.04 | Present Fault Record | 00: No Fault occurred | 00 | | | 0604H | 80.05 | Second Most Recent
Fault Record | 01: Over-current (oc) | 00 | | | 0605H | 80.06 | Third Most Recent
Fault Record | 02: Over-voltage (ov) | 00 | | | | | rault necord | 03: Overheat (oH) | | | | | | | 04: Overload (oL) | | | | | | | 05: Overload 1 (oL1) | | | | | | | 06: Overload 2 (oL2) | | | | | | | 07: External Fault (EF) | | | | | | | 08: CPU Failure 1 (CF1)
09: CPU Failure 2 (CF2) | | | | | | | 10: CPU Failure 2 (CF2) | | | | | | | 11: Hardware Protection Failure (hpF) | | | | | | | 12: Over-current During Accel (OCA) | | | | | | | 13: Over-current During Accel (OCd) | | | | | | | 14: Over-current During Steady
State (OCn) | | | | | | | 15:Ground Fault or Fuse Failure
(GFF) | | | | | | | 16: Reserved | | | | | | | 17: 3 Phase Input Power Loss | | | | | | | 18: External Pause Function (bb) | | | | | | | 19: Auto Adjust Accel/Decel Failure (cFA) | | | | | | | 20: Software Protection Code (codE) | 1 | | # 80 — KEYPAD/DISPLAY (Continued) | Modbus | Groups | Description | Range | Default | User
Settings | |--------|-------------|-------------------------------------|--|---------|------------------| | 0606H | 0606H 80.07 | Keypad Display | 00: Command Frequency ("F") | 00 | | | | | selection
(also order of | 01: Output Frequency ("H") | 1 | | | | | appearance when | 02: Output Current ("A") | | | | | | scrolling through
display modes) | 03: User Defined ("U") | 1 | | | | | | 04: Output Voltage (u) | | | | | | | 05: Unit Temperature (t) | | | | | | | 06: Forward/Reverse Direction ("Frd / rEv") | | | | | | | display only when enabled: Counter ("c") | xx | | | | | | display only when enabled: PLC steps | | | | | | | display only when enabled: PID
Feedback | | | | 0607H | 80.08 | User Defined
Multiplier | 0.01 to 160.00 | 1.00 | | | 0608H | 80.09 | External Terminal
Scan Time | 01 to 20 | 01 | | | 0609H | 80.10 | Parameter Lock and
Configuration | 00: All parameters can be set and read | 00 | | | | | | 01: All parameters are read only | 1 | | | | | | 10: Reset all parameters to the factory defaults | | | | 060AH | 80.11 | Elapsed Time (Run):
Day | 0 to 65535 (show 6553.) | 0 | | | 060BH | 80.12 | Elapsed Time (Run):
Minutes | 0 to 65535 (show 6553.) | 0 | | | 060CH | 80.13 | Elapsed Time (Power on): Day | 0 to 65535 (show 6553.) | 0 | | | 060DH | 80.14 | Elapsed Time (Power on): Minutes | 0 to 65535 (show 6553.) | 0 | | | 060EH | 80.15 | Automatic Display
Scroll | 00: Disable
01: Scroll every 5 seconds after 1
minute delay
02: Scroll every 15 seconds after 1
minute delay | 00 | | ### 90 — COMMUNICATION PARAMETERS | Modbus | Groups | Description | Range | Default | User
Settings | |--------|--------|---------------------------|--|---------|------------------| | 0700H | 90.01 | Communication
Protocol | 00: MODBUS ASCII mode
< 7 data bits, no parity, 2 stop bits > | 00 | | | | | | 01: MODBUS ASCII mode
< 7 data bits, even parity,
1 stop bit > | | | | | | | 02: MODBUS ASCII mode
< 7 data bits, odd parity,
1 stop bit > | | | | | | | 03: MODBUS RTU mode
< 8 data bits, no parity, 2 stop bits > | | | | | | | 04: MODBUS RTU mode
< 8 data bits, even parity,
1 stop bit > | | | | | | | 05: MODBUS RTU mode
< 8 data bits, odd parity,
1 stop bit > | | | | 0701H | 90.02 | RS-485
Communication | 01 to d 254 | 01 | | | 0702H | 90.03 | Transmission Speed | 00: 4800 baud | 01 | | | | | | 01: 9600 baud | 1 | | | | | | 02: 19200 baud | | | | | | | 03: 38400 baud | | | # Step 5 — Troubleshooting Information The AC drive has a comprehensive fault diagnostic system that includes several different alarms and fault messages. Once a fault is detected, the corresponding protective functions will be activated. The following faults are displayed as shown on the AC drive digital keypad display. The three most recent faults can be read on the digital keypad display by viewing 80.04 through 80.06. Note: Faults can be cleared by resetting at the keypad or with the Input Terminal. #### Common Problems and Solutions | Fault
Name | Fault Descriptions | Corrective Actions | |---------------|--|---| | oc | The AC drive detects an abnormal increase in current. | Check that the motor horsepower corresponds to the AC drive output power. Check the wiring connections between the AC drive and motor for possible short circuits. Increase the acceleration time (20.08). Check for possible excessive loading conditions at the motor. If there are any abnormal conditions when operating the AC drive after a short circuit is removed, it should be sent back to manufacturer. | | 00 | The AC drive detects that the DC bus voltage has exceeded its maximum allowable value. | Check that the input voltage falls within the rated AC drive input voltage. Check for possible voltage transients. Bus over-voltage may also be caused by motor regeneration. Either increase the deceleration time or add an optional braking resistor. Check whether the required braking power is within the specified limits. | | οH | The AC drive temperature sensor detects excessive heat. | Make sure that the ambient temperature falls within the specified temperature range. Make sure that the ventilation holes are not obstructed. Remove any foreign objects from the heatsink and check for possible dirty heatsink fins. Provide enough spacing for adequate ventilation. | | Lu | The AC drive detects that the DC bus voltage has fallen below its minimum value. | Check that the input voltage falls within the rated AC drive's input voltage. | | οL | The AC drive detects excessive drive output current. Note: The AC drive can withstand up to 150% of the rated current for a maximum of 60 seconds. | Check if the motor is overloaded. Reduce the torque compensation setting in 60.09. Replace the AC drive with one that has a higher output capacity (next hp size). | | οLI | Internal electronic overload trip | Check for possible motor overload. Check electronic thermal overload setting. Increase motor capacity. Reduce the current level so that the drive output current does not exceed the value set by the Motor Rated Current (60.01). | | oL2 | Motor overload. Check the parameter settings (70.04 through 70.06) | Reduce the motor load. Adjust the over-torque detection setting to an appropriate setting. | # **Step 5** — Troubleshooting Information (Continued) # Common Problems and Solutions (Continued) | Fault
Name | Fault Descriptions | Corrective Actions | |---------------|---|--| | ocR | Over-current during acceleration: . Short-circuit at motor output. 2. Torque boost too high. 3. Acceleration time too short. 4. AC drive output capacity is too small. | Check for possible poor insulation at the output line. Decrease the torque boost setting in 60.09. Increase the acceleration time. Replace the AC drive with one that has a higher output capacity (next hp size). | | ocd | Over-current during deceleration: 1. Short-circuit at motor output. 2. Deceleration time too short. 3. AC drive output capacity is too small. | Check for possible poor insulation at the output line. Increase the deceleration time. Replace the AC drive with one that has a higher output capacity (next hp size). | | ocn | Over-current during steady state operation: 1. Short-circuit at motor output. 2. Sudden increase in motor loading. 3. AC drive output capacity is too small. | Check for possible poor insulation at the output line. Check for possible motor stall. Replace the AC drive with one that has a higher output capacity (next hp size). | | cFl | Internal memory cannot be programmed. | Switch off power supply. Check whether the input voltage falls within the rated AC drive input voltage. Switch the AC drive back on. | | cF2 | Internal memory cannot be read. | Check the connections between the main control board and the power board. Reset the drive to factory defaults. | | HPF | Hardware protection failure | Return the drive to the factory. | | codE | Software protection failure | Return the drive to the factory. | | cF3 | Drive's internal circuitry is abnormal. | Switch off power supply. Check whether the input voltage falls within the rated AC drive input voltage. Switch on the AC drive. | | EF | The external terminal DI1-COM goes from OFF to ON. | When external terminal DI1-COM is closed, the drive's output will be turned off and will display EF. | | cFR | Auto acceleration/deceleration failure | Don't use the auto acceleration/ deceleration function. | | GFF | Ground fault: The AC drive output is abnormal. When the output terminal is grounded (short circuit current is 50% more than the AC drive rated current), the AC drive rower moved module may be damaged. The short circuit protection is provided for AC drive protection, not user protection. | Ground fault: 1. Check whether the IGBT power module is damaged. 2. Check for possible poor insulation on the output wires or on the motor. | | ЬЬ | External Pause.
AC drive output is turned off. | When the external input terminal (pause) is active, the AC drive output will be turned off. Disable this (pause) and the AC drive will begin to work again. |