Description	Page
Introduction | 2
Receiving, Handling, and Storage | 5
Equipment Description | 6
Installation and Wiring | 13
Operation | 20
Testing and Problem Solving | 21
Adjustments | 23
Maintenance | 24
Renewal Parts Guide | 25
ATC-300+ Contactor Based ATS Quick Start Instructions | 26
Appendix A: Pickup / Dropout Tables | 35
Section 1: Introduction

1.1 Preliminary Comments and Safety Precautions

This technical document is intended to cover most aspects associated with the installation, application, operation, and maintenance of the Automatic Transfer Controller (ATC-300+ or ATC-900) controlled contactor based ATS with ratings from 40 through 1200 amperes (A). It is provided as a guide for authorized and qualified personnel only. Please refer to the specific WARNING and CAUTION in Section 1.1.2 before proceeding. If further information is required by the purchaser regarding a particular installation, application, or maintenance activity, please contact an authorized Eaton sales representative or the installing contractor.

1.1.1 Warranty and Liability Information

No warranties, expressed or implied, including warranties of fitness for a particular purpose of merchantability, or warranties arising from course of dealing or usage of trade, are made regarding the information, recommendations and descriptions contained herein. In no event will Eaton be responsible to the purchaser or user in contract, in tort (including negligence), strict liability or otherwise for any special, indirect, incidental or consequential damage or loss whatsoever, including but not limited to damage or loss of use of equipment, plant or power system, cost of capital, loss of power, additional expenses in the use of existing power facilities, or claims against the purchaser or user by its customers resulting from the use of the information and descriptions contained herein.

1.1.2 Safety Precautions

All possible contingencies that may arise during installation, operation, or maintenance, and all details and variations of this equipment do no purport to be covered by these instructions. If further information is desired by the purchaser regarding a particular installation, application, or maintenance activity, please contact an authorized Eaton sales representative or the installing contractor.

THE WARNINGS AND CAUTIONS INCLUDED AS PART OF THE PROCEDURAL STEPS IN THIS DOCUMENT ARE FOR PERSONAL SAFETY AND PROTECTION OF EQUIPMENT FROM DAMAGE. AN EXAMPLE OF A TYPICAL WARNING LABEL HEADING IS SHOWN ABOVE TO FAMILIARIZE PERSONNEL WITH THE STYLE OF PRESENTATION. THIS WILL HELP TO INSURE THAT PERSONNEL ARE ALERT TO WARNINGS, WHICH APPEAR THROUGHOUT THE DOCUMENT. IN ADDITION, WARNINGS AND CAUTIONS ARE ALL UPPER CASE AND BOLDFACE.

CAUTION

COMPLETELY READ AND UNDERSTAND THE MATERIAL PRESENTED IN THIS DOCUMENT BEFORE ATTEMPTING INSTALLATION, OPERATION, OR APPLICATION OF THE EQUIPMENT. IN ADDITION, ONLY QUALIFIED PERSONS SHOULD BE PERMITTED TO PERFORM ANY WORK ASSOCIATED WITH THIS EQUIPMENT. ANY WIRING INSTRUCTIONS PRESENTED IN THIS DOCUMENT MUST BE FOLLOWED PRECISELY. FAILURE TO DO SO COULD CAUSE PERMANENT EQUIPMENT DAMAGE.
1.2 General Information

Transfer switches are used to protect critical electrical loads against loss of power. The load’s Source 1 power source is backed up by a Source 2 power source. A transfer switch is connected to both the Source 1 and Source 2 power sources and supplies the load with power from one of the two sources. In the event that power is lost from Source 1, the transfer switch transfers the load to the Source 2 power source. This transfer is automatic. Once Source 1 power is restored, the load is automatically transferred back to the Source 1 power source (Figure 2).

ATSs automatically perform the transfer function and include three basic elements:

1. A power contactor to connect and disconnect the load to and from either power source.
2. Solenoids to make the transfer of the main contacts from source to source.
3. Intelligence/supervisory circuits to constantly monitor the condition of the power sources and thus provide the intelligence necessary for the switch and related circuit operation.

1.2.1 Design Configuration

The Eaton contactor based ATS is a compact design that uses a power contactor to transfer essential loads from one power source to another (Figure 3 [1200A]).

![Figure 2. Typical Load Transfer Switch Schematic (Contactor Type).](image1)

In ATS equipment, the switch’s intelligence system initiates the transfer when the Source 1 power fails, falls below, or rises above a preset voltage. If the Source 2 power source is a standby generator, the ATS initiates generator startup and transfers to the Source 2 power source when sufficient generator voltage is available. When Source 1 power is restored, the ATS automatically transfers back and initiates generator shutdown. In the event the Source 1 power source fails and the Source 2 power source does not appear, the ATS remains connected to the Source 1 power source until the Source 2 power source does appear. Conversely, if connected to the Source 2 power source and the Source 2 power source fails while the Source 1 power source is still unavailable, the ATS remains connected to the Source 2 power source.

The Eaton contactor based ATS is designed with easy installation and simplified maintenance in mind. Three main panels comprise the contactor based ATS design:

1. Power panel;
2. Voltage selection and transformer panel; and
3. Microprocessor-based logic panel.

![Figure 3. Typical 1200A ATS.](image2)
1.3 ATS Catalog Number Identification

Transfer switch equipment catalog numbers provide a significant amount of relevant information that pertains to a particular piece of equipment. The Catalog Number Identification Table (Table 2) provides the required interpretation information. An example is offered here to initially simplify the process.

Example: Catalog Number (circled numbers correspond to position headings in Table 2).

```
ATC  C 3  C3  X  3  1200  X  R  U
```

Table 2. Transfer Switch Catalog Number Explanation

<table>
<thead>
<tr>
<th>Position 7</th>
<th>Position 8</th>
<th>Positions 9 to 12</th>
<th>Position 13</th>
<th>Position 14</th>
<th>Position 15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Switching Device Arrangement</td>
<td>Number of Poles</td>
<td>Ampere Rating</td>
<td>Voltage/Frequency</td>
<td>ENCLOSURE</td>
<td>LISTING</td>
</tr>
<tr>
<td>Fixed Mount X</td>
<td>Two (2)</td>
<td>40A – 0840</td>
<td>120 Vac/60 Hz</td>
<td>A</td>
<td>Type 1 S</td>
</tr>
<tr>
<td></td>
<td>Three (3)</td>
<td>80A – 0880</td>
<td>208 Vac/60 Hz</td>
<td>B</td>
<td>Type 12 J</td>
</tr>
<tr>
<td></td>
<td>Four (4)</td>
<td>200A – 0110</td>
<td>240 Vac/60 Hz</td>
<td>W</td>
<td>Type 3R R</td>
</tr>
<tr>
<td></td>
<td>100A – 0150</td>
<td>225A – 0225</td>
<td>480 Vac/60 Hz</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td></td>
<td>220A – 0200</td>
<td>260A – 0260</td>
<td>220 Vac/50 Hz</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td></td>
<td>400A – 0400</td>
<td>400A – 0600</td>
<td>380 Vac/50 Hz</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td></td>
<td>800A – 0800</td>
<td>1000A – 1000</td>
<td>415 Vac/50 Hz</td>
<td>O</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1200A – 1200</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 4. Contactor Based ATS (1200A).

Each panel is independently mounted with interconnecting wiring terminated at the connector receptacles on the ATC-300+ Controller.

Enclosure mounting is simplified by utilizing mounting flanges with elongated (teardrop) mounting holes on top and floor mount (wall supported) flanges with two standard mounting holes on the bottom. Refer to Section 4 for specific mounting & modification details.

Table 1. Withstand Ratings.

<table>
<thead>
<tr>
<th>UL 1008 Withstand and Close-on Ratings (kA)</th>
<th>480 volts</th>
<th>600 volts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Switch Rating (Amps)</td>
<td>Any Breaker (Amps)</td>
<td>Specific Breaker (Amps)</td>
</tr>
<tr>
<td>100A</td>
<td>50,000</td>
<td>65,000</td>
</tr>
<tr>
<td>200A</td>
<td>50,000</td>
<td>65,000</td>
</tr>
<tr>
<td>280A</td>
<td>50,000</td>
<td>65,000</td>
</tr>
<tr>
<td>320A</td>
<td>50,000</td>
<td>65,000</td>
</tr>
<tr>
<td>400A</td>
<td>50,000</td>
<td>65,000</td>
</tr>
<tr>
<td>600A</td>
<td>50,000</td>
<td>65,000</td>
</tr>
<tr>
<td>800A</td>
<td>50,000</td>
<td>65,000</td>
</tr>
<tr>
<td>1000A</td>
<td>50,000</td>
<td>65,000</td>
</tr>
<tr>
<td>1200A</td>
<td>50,000</td>
<td>65,000</td>
</tr>
</tbody>
</table>
1.4 Environmental Conditions

1.4.1 Operational Conditions

Normally, an ATS is applied indoors in an electrical equipment room. In the appropriate enclosure, it can be used for outdoor applications where the equipment is subject to falling rain, freezing temperatures, and no greater than 90% humidity (non-condensing). The ambient temperature range for operation is between -20 and 70°C (-4 to 158°F).

1.5 Glossary

With respect to their use within this document and as they relate to transfer switch and controller operation, the following terminology is defined.

Available
A source is defined as “available” when it is within its undervoltage/overvoltage/underfrequency/overfrequency (if applicable) setpoint ranges for the nominal voltage and frequency setting.

Connected
Connected is defined as when the input is shorted by an external contact or connection.

Failed or Fails
A source is defined as “failed” when it is outside of the applicable voltage and frequency setpoint ranges for the nominal voltage and frequency setting after the time delay emergency fail (TDEF) time delays expires.

Failsafe
Failsafe is a feature that prevents disconnection from the only available power source and also forces a transfer or re-transfer operation to the only available power source.

Re-Transfer
Re-transfer is defined as a change of the load connection from the Source 2 to the Source 1.

Source 1
Source 1 is the primary source (normal source, normal power source, or normal).

Source 2
Source 2 is the secondary source (emergency source, emergency power source, emergency, standby, or backup source).

Source 1: Failed or Fails
Source 1 is defined as “failed” when it is outside of its undervoltage/overvoltage/underfrequency/overfrequency (if applicable) setpoint ranges for the nominal voltage and frequency setting.

Source 2: Failed or Fails
Source 2 is defined as “failed” when it is outside of its undervoltage/overvoltage/underfrequency/overfrequency (if applicable) setpoint ranges for the nominal voltage and frequency setting for a time exceeding 0.5 seconds after the Time Delay Emergency Fail (TDEF) time delay expires.

Transfer
Transfer is defined as a change of the load connection from the Source 1 to the Source 2 power source.

Unconnected
Unconnected is defined as when the input is not shorted by an external contact or connection.

Section 2: Receiving, Handling, and Storage

2.1 Receiving

Every effort is made to ensure that the ATS equipment arrives at its destination undamaged and ready for installation. Packing is designed to protect internal components as well as the enclosure. Care should be exercised, however, to protect the equipment from impact at all times. Do not remove the protective packaging until the equipment is ready for installation.

When the ATS equipment reaches its destination, the customer should inspect the shipping container for any obvious signs of rough handling and/or external damage that occurred during transportation. Record any external and internal damage for reporting to the transportation carrier and Eaton, once a thorough inspection is complete. All claims should be as specific as possible and include the catalog and General Order numbers.

A shipping label affixed to the shipping container includes a variety of equipment and customer information, such as General Order Number and catalog numbers. Make certain that this information matches other shipping paper information.

Each transfer switch is packed securely with appropriate shipping materials to prevent damage during shipment. Do not remove or discard the packing material until the equipment is ready for installation.

Once the top packaging is removed from the shipment, the enclosure door can be opened. A plastic bag of documents will be found in the enclosure, usually attached to the inside of the enclosure. Important documents, such as test reports, wiring diagrams, and appropriate instruction leaflets, are enclosed within the bag and should be filed in a safe place.

2.2 Handling

As previously mentioned, ATS equipment is packaged for forklift movement. Protect the equipment from impact at all times and DO NOT double stack.

Once the equipment is at the installation location and ready to be installed, packaging material can be removed and discarded. Once the enclosure is unbolted from the wooden pallet, it can be hand moved to its installation position. Be careful not to damage the top or bottom enclosure mounting flanges. Refer to Section 4 of this manual for specific installation instructions.

2.3 Storage

Although well packaged, this equipment is not suitable for outdoor storage. The equipment warranty will not be applicable if there is evidence of outdoor storage. If the equipment is to be stored indoors for any period of time, it should be stored with its protective packaging material in place. Protect the equipment at all times from excessive moisture, construction dirt, corrosive conditions, and other contaminants.

It is strongly suggested that the package-protected equipment be stored in a climate-controlled environment with temperatures from -30 to 85°C (-22 to 185°F) and with a relative humidity of 80% or less. DO NOT, under any circumstance, stack other equipment on top of a transfer switch equipment enclosure, whether packaged or not.
Section 3: Equipment Description

3.1 General
The ATS consists of three basic panels:
1. The power panel;
2. The voltage selection and transformer panel; and
3. The microprocessor-based logic panel.
These panels are interconnected via connector plugs and mounted in an enclosure (Figure 5).

Figure 5. Three Basic Panels of the ATS (1200A).

3.2 Power Panel
The power panel is used for making load, power, and neutral connections. The power contactor is mounted on a steel base-plate (Figure 6).

3.2.1 Main Contacts
This ATS incorporates a power contactor. The main contacts connect and disconnect the load to and from the different power sources. The power contactor is mechanically and electrically interlocked to prevent the two sets of main contacts from being closed simultaneously.

Figure 6. Typical for 1200A Models.

3.3 Voltage Selection
3.3.1 North American Voltage Selection (120, 208, 240, 480, 600, 60 Hz)
The North American market voltage selection panel consists of multi-tap transformers, contained in a steel case mounted in the transfer switch enclosure (Figure 7). The cover has two connectors on it, with the one on the right being selectable depending on the voltage applied to S1 and S2. The transformer unit is easily removed by removing the two front screws and disconnecting the two plugs. The rear of the transformer enclosure has two flanges that are inserted into two slots. The voltage is selected by simply removing the plug from the default selected voltage on the cover plate and installing the plug to the desired available voltage. Plugs are provided for 120 to 600 Vac to satisfy any required North American market application voltage. The factory default position is 480 Vac or 600 Vac. There is a similar selection panel for international voltages.
DANGER

WHEN CHANGING THE VOLTAGE SELECTION, THE POWER MUST BE REMOVED FROM THE TRANSFER SWITCH. ALWAYS VERIFY THAT NO VOLTAGE IS PRESENT ON EQUIPMENT PRIOR TO SERVICING. FAILURE TO FOLLOW THIS WARNING COULD LEAD TO DEATH OR SEVERE INJURY. WHILE ENERGIZED, AN ARC FLASH AND SHOCK HAZARD EXISTS. CONSULT NFPA 70E AND OSHA GUIDELINES FOR OPERATOR SAFETY PRIOR TO SERVICING, INSPECTING OR OPERATING EQUIPMENT.

3.4 ATC-300+ Logic Panel

The ATC-300+ is a microprocessor-based transfer switch logic control package. The hardware and software of the controller contain the intelligence/supervisory circuits that constantly monitor the condition of the power sources. It provides the intelligence necessary for the operation of the ATS (Figure 8).

Figure 8. ATC-300+ Logic Control Panel.

The ATC-300+ and the ATC-900 controller has an operating temperature of -20 to 70°C (-4 to 158°F).

The controller circuit board is protected by an insulating conformal coating.

The specifications, under normal operating conditions, are as follows:

- Tolerance for voltage sensing function: ±1% of full scale
- Tolerance for frequency sensing function: ±0.3 Hz of setting

Note: See Instruction IBs for the ATC-300+ and the ATC-900 for specific workings of the controllers.
3.5 Features

A variety of standard and optional features are available for Eaton ATSs. All features or combinations of features may not be available on specific ATSs. All features and/or accessories are Underwriters Laboratories (UL) listed unless noted. See specific controller Instruction Booklets for additional options and standards.

3.5.1 Standard Features

The following is a list of the standard features of the ATC-300+ Controller. The ATC-900 controller has many new standard features compared to the ATC-300+. If the ATC-900 is used on the switch, please see the ATC-900’s Instruction Booklet for these additional user features.

1. Time Delay Normal to Emergency (TDNE)
 This feature provides a time delay when transferring from the Source 1 to the Source 2 power source. Timing begins when Source 2 becomes available. It permits controlled transfer of the load circuit to Source 2.
 Adjustable $0 - 1800$ Seconds

2. Time Delay on Engine Starting (TDES)
 This feature provides a time delay of the signal to initiate the engine/start cycle in order to override momentary power outages or voltage fluctuations of Source 1.
 Adjustable $0 - 120$ Seconds

3. Time Delay Emergency to Normal (TDEN)
 This feature provides a time delay of the re-transfer operation to permit stabilization of Source 1. Timing begins when Source 1 becomes available. If Source 2 fails during timing, then re-transfer is immediate, overriding the time delay.
 Adjustable $0 - 1800$ Seconds

4. Time Delay for Engine Cool-down (TDEC)
 This feature provides a time delay of the signal to initiate the engine/start cycle after the re-transfer operation. This allows the engine to cool down by running unloaded. Timing begins on completion of the re-transfer cycle.
 Adjustable $0 - 1800$ Seconds

5. Source 2 Monitoring and Protection
 This feature provides monitoring and protection based on the Source 2 voltage and/or frequency setpoints. All feature 5 functions are “failsafe” operations.

5H. Phase Reversal
 For a 3-phase wye source, this feature monitors the phase sequence of the sources. If a source does not have the same ABC or CBA sequence as the setpoint value, that source will be considered “Unavailable.”
 For a 3-phase delta source, this feature should be turned off via the PHASE REV setpoint.

5J. All Phase Undervoltage and Underfrequency Protection
 Adjustable Undervoltage:
 Dropout: 78 - 97% of nominal
 Pick-up: (Dropout + 2%) to 99% of nominal
 Adjustable Underfrequency:
 Dropout: 90 - 97% of nominal
 Pick-up: (Dropout + 1Hz) to 99% of nominal

5K. All Phase Overvoltage/Overfrequency
 Adjustable Overvoltage:
 Dropout: 105 - 110% of nominal
 Pick-up: 103% to (Dropout – 2%) of nominal
 Adjustable Overfrequency:
 Dropout: 103 - 105% of nominal
 Pick-up: 101% to (Dropout - 1Hz) of nominal

5L. Source 2 3-Phase Voltage Unbalance
 For a 3-phase wye source, this feature monitors phase voltage ratios. Voltage unbalance (%) is calculated as the difference between the maximum and minimum phase voltage, divided by the minimum phase voltage. User-selectable setpoints are available for dropout and pickup unbalance settings (minimum 2% differential). Dropout is adjustable from 5 to 20%. Pickup is adjustable from 3 to (Dropout – 2%). A setpoint for user-selectable time delay from 10 to 30 seconds is provided. The factory default setpoints are: 5% dropout, 3% pickup, and 30 seconds time delay. A user-selectable setpoint for enable and disable is also provided.

 When an unbalance condition is detected on Source 2, the Unbalance Timer (TD UNBAL) starts timing. After TD UNBAL times out, Source 2 is declared “failed”.

 For a 3-phase delta source, this feature should be turned off via the VOLT UNBAL setpoint.

6. Test Operators
 Eaton ATSs are provided with a Test Pushbutton that simulates a loss of the Source 1 power source as standard (Feature 6B). All programmed time delays (TDNE, TDEN, etc.) will be performed as part of the Test. Engine run time of the Test is equal to the Plant Exerciser (Feature 23) programmed setpoint. All Tests are Failsafe protected.

6B. Test Pushbutton
 Programmable setpoints include:
 1. Load, No Load Testing, or Disabled and
 2. Engine run time is equal to the Plant Exerciser (Feature 23) setting.

7. Time Delay Emergency Fail (TDEF)
 This feature provides a time delay that prevents a connected emergency source from being declared “failed” in order to override momentary generator fluctuations. If the Source 2 power source remains in the failed state then, 0.5 seconds after the TDEF timer expires, the transfer switch will proceed with the programmed sequence for re-transfer. This time delay is only implemented when the Source 2 power source is a generator.
 Adjustable $0 - 6$ Seconds

8. Time Delay Bypass Pushbutton
 This feature provides a way (by pushing the Help and Step pushbutton simultaneously) to bypass the TDNE (Feature 1) and/or TDEN (Feature 2) time delays. The Time Delay Bypass function, when activated by pushing the Help and Step pushbutton simultaneously, will reduce any or all of the programmed time delay to zero.

For more information visit: www.eaton.com
8C. Bypass TDEN
This feature provides a membrane pushbutton to bypass the TDEN time delay.

8D. Bypass TDNE
This feature provides a membrane pushbutton to bypass the TDNE time delay.

12. Power Source Annunciation
This feature provides LEDs to give switch position and power source availability indications.

Switch Position
Provides LEDs to indicate the switch position.

12C. Source 1 - Source Connected
This feature provides a green LED that, when lit, indicates the load is connected to Source 1.

12D. Source 2 - Source Connected
This feature provides a red LED that, when lit, indicates the load is connected to Source 2.

Power Source Availability
Provides LEDs to indicate if a power source is available. LEDs may be integral or separate from the controller.

12G. Source 1 - Available
This feature provides a white LED that, when lit, indicates Source 1 is available.

12H. Source 2 - Available
This feature provides an amber LED that, when lit, indicates Source 2 is available.

14. Relay Auxiliary Contacts: This feature provides form “C” relay auxiliary contacts

14G. Source 1 Present: Provides two (2) normally open and two (2) normally closed contacts. The relay is energized when Source 1 is available.

14H. Source 2 Present: Provides two (2) normally open and two (2) normally closed contacts. The relay is energized when Source 2 is available.

15. Switch Position Indication Contact
This feature provides a contact that indicates if the power-switching device is in the “Open” or “Closed” position.

15E. Source 1 Position Indication Contact
This feature provides 1 Dry Form “C” contact that indicates the position of the Source 1 power-switching device.

15F. Source 2 Position Indication Contact
This feature provides 1 Dry Form “C” contact that indicates the position of the Source 2 power-switching device.

23. Plant Exerciser (PE)
This feature provides a means for automatic testing of the engine/generator set or standby power system. All programmed time delays will be performed during plant exerciser operations.

23K. Plant Exerciser Selectable – Disabled/1/7/14/28 Day Interval
This feature provides for automatic test operation of the generator. Available test cycles are daily, 7, 14, or 28 days with duration equal to the programmed engine test time.

Programmable setpoints allow for selection of three test cycles:
- Engine Start/Run Only (No Load);
- Exercise with Load Transfer; or Disabled
- This is a “Failsafe” operation.

26. Source 1 - Monitoring and Protection
This feature provides Source 1 monitoring and protection functions. If the Source 1 power supply fails, then the ATC-300+ will begin the sequence of operations necessary to transfer the load circuit to the Source 2 power source. All Feature 26 monitoring and protection functions are “failsafe” operations.

26D. Go to Source 2
This feature provides the capability for an external contact opening to initiate a load power transfer to the Source 2 power source. This includes starting the engine/generator, performing the programmed time delays, and the transfer operation. Re-transfer will occur when the external contact is closed or under a “failsafe” condition. A connection point on the controller for the connection of an external contact is included.

26H. Phase Reversal Protection
For a 3-phase wye source, this feature monitors the phase sequence of the sources. If a source does not have the same ABC or CBA sequence as the phase reversal setpoint, the source will be considered “Unavailable”.

For a 3-phase delta source, this feature should be turned off via the PHASE REV setpoint.

26J. All Phase Undervoltage and Underfrequency Protection
Adjustable Undervoltage:
- Dropout: 78 - 97% of nominal
- Pickup: (Dropout +2%) to 99% of nominal

Adjustable Underfrequency:
- Dropout: 90 - 97% of nominal
- Pickup: 101% to (Dropout -1Hz) of nominal

26K. All Phase Overvoltage/Overfrequency
Adjustable Overvoltage:
- Dropout: 105 - 110% of nominal
- Pickup:103% to (Dropout -2%) of nominal

Adjustable Overfrequency:
- Dropout: 103 - 105% of nominal
- Pickup: 101% to (Dropout -1Hz) of nominal
26L. Source 1 3-Phase Voltage Unbalance

For a 3-phase wye source, this feature monitors phase voltage ratios. Voltage unbalance (%) is calculated as the difference between the maximum and minimum phase voltage, divided by the minimum phase voltage. User-selectable setpoints are available for dropout and pickup unbalance settings (minimum 2% differential). Dropout is adjustable from 5 to 20%. Pickup is adjustable from 3 to (Dropout –2%). A setpoint for user-selectable time delay from 10 to 30 seconds is provided. The factory default setpoints are: 5% dropout, 3% pickup, and 30 seconds time delay. A user-selectable setpoint for enable and disable is also provided.

When an unbalance condition is detected on Source 1, the Unbalance Timer (TD UNBAL) starts timing. After TD UNBAL times out, Source 1 is declared “failed”.

For a 3-phase delta source, this feature should be turned off via the VOLT UNBAL setpoint.

29. Alternate Transfer Modes of Operation

Provides standard or optional transfer modes, mode selection devices, and operational methods for ATSs.

29J. Manual Re-Transfer (MANTR) (new feature)

This feature provides for a selection between an automatic transfer and re-transfer mode or a manual push-button re-transfer to Normal from the Emergency Source mode. If this option is not selected the factory default selection is automatic.

32. Delayed Transition Transfer Modes for Open Transition Transfer Switches

This feature provides delayed transition transfer modes for an open transition transfer switch. Often used in systems with inductive loads, a delayed transition transfer switch may prevent or reduce in-rush currents due to out of phase switching of inductive loads.

35. Pre-Transfer Signal

This feature provides a signal to a remote device prior to a re-transfer operation. It provides one Form “C” contact (NO/NC) for interface with other equipment (typically elevator controls). The contacts close/open on a timed basis prior to transfer in either direction. After TDNE/TDEN times out, this relay closes and the Pre-transfer Timer (TPRE) starts timing. After the TPRE times out, the transfer proceeds by starting the TDN timer if enabled. The pre-transfer relay opens after the transfer is complete.

Adjustable 0 - 120 Seconds

35A. Pre-transfer Signal with 1 N.O. and 1 N.C. Contacts

This feature provides pre-transfer signal and includes 1 N.O. and 1 N.C. contact.

36. Emergency Inhibit (new feature)

This feature enables the Emergency inhibit control input to inhibit transfers to the Emergency Source. See Control Inputs section for more information.

42. Seismic Withstand Capability

Provides transfer switch with seismic capability exceeding the worst case Zone 4 required per both the Uniform Building Code and the California Building Code.

48F. RS-485 with Modbus Option

Provides transfer switch for the ATC-300+ via Modbus through an integrated RS-485 port. Registers are available to read back status, voltages, frequencies, and historical data. Registers are also available for transfer switch control. Setpoints may be read back and/or programmed via a pass-through command. See the ATC-300+ Modbus Communication Guide pn: 66A7787.

3.5.2 Optional Features

The following is a list of the optional features for the ATC-300+ Controlled ATS. All features or combinations of features may not be available on specific ATSs. The ATC-900 controller has many new features compared to the ATC-300+. Many of the ATC-300+ options are standard in the ATC-900 controller. If the ATC-900 is used on the switch, please see the ATC-900’s Instruction Booklet for these additional user features.

9B. Maintenance Selector Switch (MSS)

Marked “OFF”, “ON”. This feature provides selector switch disconnection of control to transfer thus allowing testing of the transfer switch control logic circuitry without initiating load transfer. Positioning the MSS in the “OFF” position isolates the control circuit, permitting manual operation of the transfer switch or testing of logic circuitry without load transfer. White indication light is lit ON and display on ATC-300+ controller shows “ATS NOT IN AUTOMATIC” when the switch is in maintenance mode.

14. Relay Auxiliary Contacts

This feature provides form “C” relay auxiliary contacts.

14C. Source 1 Present

Provides four (4) normally open and four (4) normally closed contacts. The relay is energized when source 1 is available.

14D. Source 2 Present

Provides four (4) normally open and four (4) normally closed contacts. The relay is energized when source 2 is available.

15. Switch Position Indication Contact

This feature provides a contact that indicates if the power switching device is in the “Open” or “Closed” position.

15G. Source 1 Position Indication Contact

This feature provides 3 Dry Form “C” contacts that indicate the position of the Source 1 power-switching device.

15H. Source 2 Position Indication Contact

This feature provides 3 Dry Form “C” contacts that indicate the position of the Source 2 power-switching device.

18. Metering

This feature includes all required external devices (CTs, shorting blocks, fuses, etc.) for a fully functional metering system.

For more information visit: www.eaton.com
3-Position Contactor Based Transfer Switch

23L. 24 Hour, 7day, 365 Day Programmable Plant Exerciser

29G. Auto/Manual Operation

This feature provides 2-position auto/manual selector switch marked “Auto/Manual” which permits the selection of automatic or manual operation. Once the selector switch is transferred to manual mode, manual transfer between Normal (S1), Neutral and Emergency (S2) can be achieved by operating 3-position selector switch marked “Normal-OFF-Emergency”. White indication light is lit ON and display on ATC-300+ controller shows “ATS NOT IN AUTOMATIC” when the switch is in manual mode.

32A. Time Delay Neutral (TDN)

This feature provides a time delay in the transfer switch Neutral position when both the source one and source two contacts are open. This delay takes place when the load is transferred in either direction to prevent excessive in-rush currents due to out-of-phase switching of large motor loads. This feature is not available with the Neutral Load Sense Delay (TDNLD) feature.

32D. In-Phase with Default to Time Delay Neutral

This feature provides an in-phase transfer with a default to a time delay neutral transfer which ensures that the ATS will complete a transfer whether or not the two live sources can synchronize. When in-phase with default to time delay in neutral is set and source synchronization does not occur in the specified amount of time, the transfer will default to a time delay in neutral transfer and the Alarm relay will energize and the failure will be logged into the Transfer History as either “Sync Fail - Freq” or “Sync Fail - Phase” depending on whether the frequency difference or the phase difference was excessive. This option allows the user to configure the switch in the field to be In-Phase only, Time Delay Neutral only, or In-Phase with default to TDN (factory setting).

38. Stainless Steel Logic Cover

38A. Stainless Steel Cover for Device Panel

Provides an added level of security by providing a pad lockable stainless steel cover for use with standard transfer switch device panel. The cover is designed for NEMA 1, 3R, 4X, and 12 applications.

38B. Stainless Steel Cover for Controller

Provides an added level of security by providing a pad lockable stainless steel cover for use with standard transfer switch logic controllers and/or associated device panels. These covers function with Eaton’s ATC series logic controllers and device panels. The covers are designed for NEMA 1, 3R, 4X, and 12 applications.

41. Space Heater With Thermostat

This feature provides a space heater and non-adjustable thermostat. External control power is not required.

41A. Space Heater With Thermostat - 100 Watt

This feature provides a 100 watt (W) space heater with a non-adjustable thermostat.

49B. Sensing Isolation Transformer (Up to 600 VAC only)

This feature provides 3-phase, 4-wire for Source -1 and Source-2 sensing input on ATC controller for a high resistance grounded delta system.

51D1. 50kA CVX Surge Device

This feature gives protection for surge current capacity rating 50kA, upto 480VAC by providing a low impedance surge path to ground while supporting rated voltage. It provides LED indication.

51F1. 100kA CVX Surge Device

This feature gives protection for surge current capacity rating 100kA, upto 480VAC by providing a low impedance surge path to ground while supporting rated voltage. It provides LED indication.
3.6 Enclosure

The rugged steel ATS enclosure is supplied with three door hinges, regardless of enclosure size. They ensure proper support of the door and door mounted devices (Figure 9). The hinges have removable hinge pins to facilitate door removal. Certain procedures, such as switch mounting, are simplified with the door removed. The doors are supplied as standard with pad-lockable latches.

Table 3. Transfer Switch Equipment Enclosures

<table>
<thead>
<tr>
<th>NEMA TYPE</th>
<th>DESIGN</th>
<th>PROTECTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Open</td>
<td>Indoor</td>
<td>Enclosed Equipment</td>
</tr>
<tr>
<td>1</td>
<td>Indoor</td>
<td>Rain, Ice Formation</td>
</tr>
<tr>
<td>3R</td>
<td>Outdoor</td>
<td>Dust, Dirt, and Non-Corrosive Liquids</td>
</tr>
</tbody>
</table>

3.7 Standards

Eaton ATS equipment, enclosed in any of the enclosures listed in Table 3, is listed for application by UL and ULC. In addition, Eaton ATSs are listed in File E38116 by Underwriters Laboratories, Inc. under Standard UL 1008. This standard covers requirements for automatic transfer switches intended for use in ordinary locations to provide lighting and power as follows:

a. In emergency systems, in accordance with articles 517 and 700 in the National Electrical Code, ANSI/ NFPA 70, and the National Fire Protection Association No. 76A; and/or

b. In standby systems, in accordance with article 702 of the National Electrical Code; and/or

c. In legally required standby systems in accordance with article 701 of the National Electrical Code.

Eaton ATSs are available to meet NFPA 110 for emergency and standby power systems, and NFPA 99 for health care facilities when ordered with the appropriate options.

Standard UL 1008 for ATSs lists devices under the reexamination program which only require a continual physical reexamination of the components used in the product to ensure consistency with the originally submitted device. Follow-up testing is not required by UL 1008.
Section 4: Installation and Wiring

4.1 General

Eaton ATSs are factory wired and tested. Installation requires solidly mounting the enclosed unit and connecting power cables and auxiliary pilot circuits. Physical mounting procedures and power cable connections are covered in this section. All other required wiring or electrical connection references are covered in a separate Customer Wiring Booklet packaged with the ATS.

Locate the wiring schematic, review it, and keep it readily available for reference purposes during installation and testing. Once an ATS is properly installed and wired, it should be mechanically and electrically checked for proper installation and operation. The procedures for these initial mechanical and electrical checks are outlined in Section 6 of this instruction manual.

WARNING

BE CERTAIN THAT THE SOLID STEEL DOOR IS PROPERLY INSTALLED BEFORE THE TRANSFER SWITCH EQUIPMENT IS PUT INTO SERVICE. THE DOOR PROVIDES PROTECTION FROM DANGEROUS VOLTAGES AT THE LINE AND LOAD TERMINALS WHEN THE EQUIPMENT IS IN OPERATION. FAILURE TO DO SO COULD RESULT IN PERSONAL INJURY OR DEATH.

WARNING

BE CERTAIN THAT THE PLASTIC COVER ON THE CONTACTOR POWER ASSEMBLY IS PROPERLY INSTALLED BEFORE THE TRANSFER SWITCH EQUIPMENT IS PUT INTO SERVICE. THE COVERS PROVIDE PROTECTION FROM DANGEROUS VOLTAGES AT THE CONTACTS. FAILURE TO DO SO COULD RESULT IN PERSONAL INJURY OR DEATH.

4.2 Mounting Location

Choose a location that offers a flat, rigid mounting surface capable of supporting the weight of the enclosed ATS equipment. For standard ATSs, avoid locations that are moist, hot, or dusty. However, Eaton offers optional enclosure designs that can be used in special environments. If there are any doubts as to a location’s suitability, discuss them with your Eaton representative.

Check to make certain that there are no pipes, wires, or other mounting hazards in the immediate mounting area that could create a problem.

Carefully remove all packing material from the ATS at the mounting location. Even though an equipment inspection should have been made when the equipment was received, make another careful inspection of the enclosure and the enclosed ATS components as the packing material is removed and the enclosure readied for mounting. Be especially alert for distorted metal, loose wires, or damaged components.

4.3 Mounting Procedure

CAUTION

SINCE THE ENCLOSED ATS MUST BE LIFTED INTO PLACE FOR MOUNTING, BE CERTAIN THAT ADEQUATE RESOURCES ARE AVAILABLE FOR LIFTING TO AVOID PERSONNEL INJURIES OR EQUIPMENT DAMAGE.

All equipment enclosures and power panels are of a similar design. Only the overall physical dimensions change. Note that the enclosure is provided with two teardrop (elongated) mounting holes in the top mounting flange and two standard holes in the bottom.

Cable entry holes are not part of the enclosure when shipped from the factory and must be provided in the field, either before or after mounting the enclosure. Cable access may be from the top, bottom, and/or side.

CAUTION

EXTREME CARE SHOULD BE TAKEN TO PROTECT THE TRANSFER SWITCH FROM DRILL CHIPS, FILINGS, AND OTHER CONTAMINANTS WHEN MAKING THE CABLE ENTRY HOLES. EXTREME CARE SHOULD ALSO BE TAKEN WHEN MOUNTING THE ENCLOSURE TO PREVENT COMPONENT DAMAGE OR A FUTURE MALFUNCTION.
With the enclosed ATS equipment unpacked and ready for mounting, proceed with the following steps.

Step 1: Install the required upper and lower mounting bolt anchors and the two upper mounting bolts in the mounting surface.

Step 2: Gently lift the enclosure, if desired to be off the floor, and guide the teardrop holes in the upper mounting flange over the upper mounting bolts. Do not completely tighten the bolts at this time. If sitting on the floor, install the bolts without lifting.

Step 3: While still supporting the enclosure, install the two lower mounting bolts in the lower mounting flange. Again, do not completely tighten the bolts at this time. Use shims, if required, to prevent deformation of the enclosure if the mounting surface is distorted.

Step 4: Tighten all four mounting bolts after any required shimming is completed.

Step 5: Double check to ensure that all packing and shipping materials have been removed.
4.4 Power Cable Connections

WARNING

POWER CONDUCTORS MAY HAVE VOLTAGE PRESENT THAT CAN CAUSE SEVERE PERSONAL INJURY OR DEATH. DE-ENERGIZE ALL POWER OR CONTROL CIRCUIT CONDUCTORS TO BE CONNECTED TO THE ATS EQUIPMENT BEFORE BEGINNING TO WORK WITH THE CONDUCTORS AND/OR TERMINATING THEM TO THE EQUIPMENT.

CAUTION

USE OF CABLE LUGS NOT DESIGNED FOR THE ATS MAY CAUSE HEATING PROBLEMS.

CAUTION

TO HELP PREVENT COMPONENT DAMAGE OR FUTURE MALFUNCTIONS, USE EXTREME CARE TO KEEP CONTAMINANTS OUT OF THE ATS EQUIPMENT WHEN MAKING POWER CABLE CONNECTIONS.

CAUTION

RUN THE POWER CABLE THROUGH THE GUTTER SPACE PROVIDED IN THE REAR OF POWER PANEL.

Test all power cables prior to connection to the unit to ensure that the conductors or cable insulation have not been damaged while being pulled into position.

Power cables are to be connected to solderless screw type lugs located on the ATS switching devices. Refer to the separate customer wiring diagram supplied with the ATS equipment for power termination. Verify that the lugs supplied will accommodate the power cables being used. Also verify that the cables comply with local electrical codes. Standard ATS equipment, as supplied from the factory, will accommodate the wire sizes shown in Table 4.
Carefully strip the insulation from the power cables to avoid nicking or ringing of the conductor strands. Prepare the stripped conductor termination end by cleaning it with a wire brush. If aluminum conductors are used, apply an appropriate joint compound to the clean conductor surface area.

Wrap line cables together with nominal 3/8 inch nylon rope or rope having tensile strength of 2,000 pounds. Wrap at 4 inches and 15 inches from the line terminals with 8 and 18 wraps respectively or every 1 inch with 1 wrap. Repeat the above for the load cables.

Table 4. Transfer Switch Equipment Wire Sizes

<table>
<thead>
<tr>
<th>TRANSFER SWITCH AMPERE RATING</th>
<th>WIRE SIZE RANGES</th>
<th>NUMBER OF CABLES PER PHASE</th>
<th>TERMINAL TEMPERATURE RATING °C (°F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>30-100</td>
<td>#14-3/0</td>
<td>1</td>
<td>75 (167)</td>
</tr>
<tr>
<td>150</td>
<td>#6-300KCMIL</td>
<td>1</td>
<td>75 (167)</td>
</tr>
<tr>
<td>225-300</td>
<td>#3-350KCMIL</td>
<td>1</td>
<td>75 (167)</td>
</tr>
<tr>
<td>400</td>
<td>#3-350KCMIL</td>
<td>2</td>
<td>75 (167)</td>
</tr>
<tr>
<td>600 (3P)</td>
<td>#1-500KCMIL</td>
<td>2</td>
<td>75 (167)</td>
</tr>
<tr>
<td>600 (4P)</td>
<td>#3/0-400KCMIL</td>
<td>3</td>
<td>75 (167)</td>
</tr>
<tr>
<td>800-1200</td>
<td>#3/0-500KCMIL</td>
<td>4</td>
<td>75 (167)</td>
</tr>
</tbody>
</table>

4.5 Wiring

WARNING

POWER CONDUCTORS AND CONTROL WIRING MAY HAVE VOLTAGE PRESENT THAT CAN CAUSE SEVERE PERSONAL INJURY OR DEATH. DEENERGIZE ALL POWER OR CONTROL CIRCUIT CONDUCTORS BEFORE BEGINNING TO PERFORM ANY WIRING ACTIVITY TO OR WITHIN THE ATS EQUIPMENT.

Power sources, load conductors, and control wiring should be connected to locations as indicated in the customer wiring diagram supplied with the ATS equipment.

CAUTION

ENSURE THE ATS VOLTAGE IS SET CORRECTLY. IT SHOULD BE THE SAME AS THE SOURCE 1 AND SOURCE 2 LINE VOLTAGES. OPERATING THE EQUIPMENT ON IMPROPER VOLTAGE CAN CAUSE EQUIPMENT DAMAGE.

Once the ATS equipment has been installed and wired, perform the initial mechanical and electrical procedures as outlined in Section 6 to verify that the equipment is installed and operating properly.

4.6 Engine Start Connection

The engine control contact connections are located on the logic panel of the ATS. Connect the engine start wires to the terminals marked 13 and 14 on J-5 connector on the ATC-300+ Controller (see Figure 13). The ATC-900’s engine starts are wired to a red terminal block. Please see drawings. A contact closes between these terminal when an engine start signal is provided by the ATS logic. The wiring diagram provides additional engine start connection information. Use the proper wire size as listed by the generator set (Genset) manufacturer.

NOTICE

PRIOR TO MAKING THE ENGINE START CONNECTION TO THE SWITCH, SET THE ENGINE GENERATOR CONTROLS SELECTOR SWITCH IN THE OFF POSITION TO PREVENT AN UNWANTED ENGINE START. CONTROL WIRING, SUCH AS THE ENGINE START WIRES, MUST BE RUN IN A SEPARATE CONDUIT FROM THE POWER CABLES.
Figure 13. Location of Terminals 13 and 14 on the J-5 Connector of ATC-300+ Controller.

ATC-300+ Controller - 2 Position Contactor type (In-Phase) - CAT#8160A00G27
ATC-300+ Controller - 3 Position Contactor type (TDN) - CAT#8160A00G28
4.7 Voltage Selection Adjustments

Certain devices, such as the Voltage Selection Panel, sensing relays, and timers, need to be set and/or calibrated prior to placing the ATS equipment in service. Adjustments for logic devices are described in the separate instructional document dedicated to the specific logic being used. Voltage selection adjustments are described in this section.

CAUTION

BE SURE THAT THE CORRECT VOLTAGE IS SELECTED TO MATCH THE SYSTEM VOLTAGE. AN IMPROPER SELECTION AND/OR CONNECTION COULD RESULT IN EQUIPMENT DAMAGE.

4.7.1 North American Market Voltage Selection Panels (120, 208, 240, 480, 600 V, - 60 Hz)

The North American market voltage selection panel consists of multi-tap transformers, contained in a steel case mounted in the transfer switch enclosure (Figure 14). The cover has two connectors on it, with the one on the right being selectable depending on the voltage applied to S1 and S2. The transformer unit is easily removed by removing the two front screws and disconnecting the two plugs. The rear of the transformer enclosure has two flanges that are inserted into two slots. The voltage is selected by simply removing the plug from the default selected voltage on the cover plate and installing the plug to the desired available voltage. Plugs are provided for 120 to 600 Vac to satisfy any required North American market application voltage. The factory default position is 480 Vac or 600 Vac. There is a similar selection panel for international voltages.

DANGER

WHEN CHANGING THE VOLTAGE SELECTION, THE POWER MUST BE REMOVED FROM THE TRANSFER SWITCH. ALWAYS VERIFY THAT NO VOLTAGE IS PRESENT ON EQUIPMENT PRIOR TO SERVICING. FAILURE TO FOLLOW THIS WARNING COULD LEAD TO DEATH OR SEVERE INJURY. WHILE ENERGIZED, AN ARC FLASH AND SHOCK HAZARD EXISTS. CONSULT NFPA 70E AND OSHA GUIDELINES FOR OPERATOR SAFETY PRIOR TO SERVICING, INSPECTING OR OPERATING EQUIPMENT.

4.8 Terminal Block Wire Installation and Removal

Proceed with the following steps and associated figures to install or remove terminal block wiring.

Step 1: Figure 15 shows two tension clamp terminal blocks. There is a large one and small one, but the operation is the same for both. A small tool, such as a screwdriver, will be pushed into the square hole next to the wire hole and a wire will be inserted into the larger circular hole on the outer edge.
Step 2: Begin by inserting a small, flathead screwdriver into the square (tool) hole with the flat surface of the screwdriver against the back wall of the hole. With a little bit of force, push the screwdriver in on a slight angle toward the center of the clamp. Be sure to slide it in until it clicks. You will then see the clamp open in the wire hole.

Step 3: Once the screwdriver is in place, obtain a stripped wire (strip about 1/4 in.) and insert it into the larger circular wire hole. Push the wire in until it can go no further.

Step 4: While holding the wire in place, pull the screwdriver out. The wire will now be held securely in the terminal block. Pull on the wire to insure that it is correctly inserted into the clamp.
Section 5: Operation

5.1 General
An ATS provides a power contactor to connect and disconnect the load to and from the Source 1 and Source 2 power sources (Section 3.2.1).

5.2 Manual Operation

WARNING

DO NOT ATTEMPT TO MANUALLY OPERATE THE ATS WITH SOURCE 1 OR SOURCE 2 AVAILABLE.

WARNING

HIGH VOLTAGES ARE PRESENT IN AND AROUND TRANSFER SWITCH EQUIPMENT. BEFORE ATTEMPTING TO MANUALLY TRANSFER, DISCONNECT THE LINE POWER FROM THE EQUIPMENT BEING SERVICED BY OPENING AND LOCKING OUT, IF POSSIBLE, THE NEXT HIGHEST DISCONNECT DEVICE. FAILURE TO FOLLOW THIS PROCEDURE COULD CAUSE SEVERE PERSONAL INJURY AND/OR DEATH.

ALWAYS TURN THE SOURCE 1 POWER OFF AND TURN THE SOURCE 2 (IF A GENERATOR) CONTROL SELECTOR SWITCH TO THE “OFF” POSITION BEFORE ATTEMPTING A MANUAL TRANSFER.

To manually operate:

1. Disconnect all sources of power.
2. Disconnect the J7 connector from the ATC-300+ controller.
3. Depress the “trip” button located on the operating mechanism of the contactor to bring the contactor to neutral (trip) position.
4. Locate the manual lever on the left side of the contactor.
5. Locate the handle used to manually transfer the switch.
6. Attach the handle to the manual lever (see Figure.19).
7. Rotate the lever up to go to Source 1.
8. Depress the “trip” button located on the operating mechanism of the contactor to bring the contactor to neutral (trip) position.
9. Depress the “select” button located on the operating mechanism of the contactor and rotate the lever up keeping the “select” button depressed to go to Source 2

10. Once the manual operation is complete and automatic operation is desired, connect the sources of power.
11. Check for 120 Vac at J7-4 to J7-3 if Source 1 is available.
12. Check for 120 Vac at J7-2 to J7-1 if Source 2 is available.

See Troubleshooting Guide (Table 3, Section 7 of ATC-300+ Controller Instruction Booklet IB01602009E) if values are above 130 Vac or below 110 Vac.
13. Insert the J7 connector into the controller.
14. Follow the testing procedure in Section 6 to ensure proper automatic operation.
5.3 Automatic Transfer

The operating sequence of an ATS is dictated by the switch’s standard features and selected options. Operation of an ATS during Source 1 power source failure and Source 1 power source restoration will be described here with only standard options included on the switch. Additional options, as described in Section 3.5.2, can change sequences and timing, depending upon the options selected. It is strongly suggested that you become familiar with additional options selected with the particular ATS and their effect on the normal operation of an ATS.

5.3.1 Source 1 Power Source Failure

Standard Source 1 power source failure is defined as a reduction or loss of voltage. If this occurs, the sequence of operation is as follows.

1. Failure of Source 1 is detected by the controller intelligence.
2. When the controller detects a failure, the engine contacts close (after delay if programmed) and start the engine-driven generator.
3. When the Source 2 voltage reaches its operation rating, the K2 and K4 relays inside ATC 300 controller operate to start transfer operation to Source 2. This operating sequence causes the contactor to open Source 1 and close on Source 2.
4. The load is now transferred to the Source 2 power source.

5.3.2 Source 1 Power Source Restoration

1. A return to the Source 1 power source begins when the voltage in all phases of a 3-phase sensing unit, or phase-to-phase in a single sensing unit, is restored to a preset value.
2. At the preset voltage, K1 and K3 relays inside ATC 300 controller operate to start transfer operation to Source 1.
3. During this sequence, the contactor opens Source 2 and closes on Source 1.
4. Simultaneously, the engine cool-down timer initiates the shut down of the engine driven generator.
5. Transfer of the load back to the Source 1 power source is now complete.

Section 6: Testing and Problem Solving

6.1 Testing

After the ATS equipment is initially installed or during planned outages, the installation should be tested to ensure that all equipment operates properly. This attention to detail will help avoid unexpected malfunctions. Mechanical and/or electrical tests should be performed as described in this section.

The frequency of subsequent testing should be based on recommendations of the Genset manufacturer. Use the test pushbutton on the ATC-300+ controller to check the electrical operation of the switch.

WARNING

HIGH VOLTAGES ASSOCIATED WITH OPERATIONAL TRANSFER SWITCH EQUIPMENT PRESENT A SHOCK HAZARD THAT CAN CAUSE SEVERE PERSONAL INJURY OR DEATH. USE EXTREME CAUTION TO AVOID TOUCHING ELECTRICAL CONNECTIONS WHENEVER INSPECTING OR TESTING THE EQUIPMENT.

IN ADDITION, IMPROPER OPERATION OF THE GENERATOR SET PRESENTS A HAZARD THAT CAN CAUSE SEVERE PERSONAL INJURY OR DEATH. OBSERVE ALL SAFETY PRECAUTIONS IN YOUR GENERATOR SET OPERATIONS AND INSTALLATION MANUALS.

6.1.1 Mechanical and/or Electrical Testing

NOTICE

SINCE FEATURE 4 (TIME DELAY ENGINE COOL-OFF), AS DESCRIBED IN SECTION 3, IS A STANDARD FEATURE, AN ENGINE START SIGNAL WILL BE PRESENT FOR A PERIOD OF TIME WHEN THE SWITCH IS FIRST ENERGIZED. THE PERIOD OF TIME IS EQUAL TO THE TIMER SETTING. TO AVOID STARTING THE ENGINE DURING THIS TIME PERIOD, TURN THE GENERATOR CONTROLS TO THE OFF POSITION.

Energize the ATS equipment as described in Sections 6.1.2 through 6.1.6. Insure that all safety precautions are taken and that all WARNINGS and CAUTIONS are observed.

6.1.2 No Voltage Steps

With no voltage available on either power source, proceed as follows.

Step 1: The generator engine start controls should be in the OFF position to prevent an undesired start.
Step 2: Ensure that the ATS has been set to the proper applied system voltage (See Section 4.7).
Step 3: Check all ATS loads to ensure that they are ready to be energized.

6.1.3 Connecting the Power Sources

Step 1: Close the Source 1 power source upstream protection device.
Step 2: Connect the engine start battery cable.
Step 3: With the emergency generator in the OFF position, close the Source 2 power source upstream protective device, assuming such a device used.
Step 4: Close any generator engine-start controls opened as a result of actions taken in Step 1, Section 6.1.2.

Step 5: Where required, use an accurate voltmeter to check phase-to-phase and phase-to-neutral voltages present at the transfer switch Source 1, Source 2, and/or load terminals.

6.1.4 Operational Checks

Step 1: Check to ensure that Source 1 switching device is in the CLOSED position. This should have been done in Section 6.1.3, Step 1.

Step 2: Initiate an automatic transfer operation from the Source 1 to the Source 2 power source by pressing the <Engine Test> pushbutton on the ATC-300+ Controller two times.

Note: The ATC-300+ Logic Controller provides the capability to set the Engine Test function to:
0. No Load Engine Test;
1. Load Engine Test; or
2. Disabled.

The factory default is set to 0 - No Load Engine Test

1. Load Engine Test
 a. After the Time Delay Engine Starting (TDES) has timed out, the engine should start, run, and build up to normal voltage and frequency.
 b. The transfer switch will transfer to the Source 2 power source after the Time Delay Normal to Emergency (TDNE) times out.

Step 3: Initiate an automatic transfer operation back to the Source 1 power source by pressing the <Engine Test> pushbutton on the ATC-300+ Controller one time.

1. After the Time Delay Emergency to Normal timer (TDEN) has timed out, the transfer switch will transfer back to the Source 1 power source.
2. The Time Delay for Engine Cool-Off (TDEC - Feature 4) will allow the engine to run unloaded for a preset time after transfer to the Source 1 power source is completed.

6.1.5 Alternate Tests

1. Alternate operational tests may be possible depending upon the options provided with any given ATS. Refer to the schematic diagram provided with the ATS equipment, along with the specification nameplate, to determine the exact options provided.

6.2 Problem Solving

WARNING
HAZARDOUS VOLTAGES IN AND AROUND NON-AUTOMATIC TRANSFER SWITCH EQUIPMENT DURING THE PROBLEM SOLVING PROCESS CAN CAUSE SEVERE PERSONAL INJURY AND/OR DEATH. AVOID CONTACT WITH ANY VOLTAGE SOURCE WHILE PROBLEM SOLVING.

WARNING
ONLY PROPERLY TRAINED PERSONNEL, FAMILIAR WITH THE NON-AUTOMATIC TRANSFER SWITCH EQUIPMENT AND ITS ASSOCIATED EQUIPMENT, SHOULD BE PERMITTED TO PERFORM THE PROBLEM SOLVING FUNCTION. IF AN INDIVIDUAL IS NOT QUALIFIED TO PERFORM THE PROBLEM SOLVING FUNCTION, THE INDIVIDUAL SHOULD NOT ATTEMPT ANY OF THESE PROCEDURES.

A basic problem solving effort is the first step to take prior to calling for assistance. Frequently, the effort will successfully address most problems encountered. In addition, several problem solving procedures are presented here which are specific to the type of switches or contactors used in this equipment.

If a problem persists after having completed the problem solving procedure, contact an Eaton representative for further assistance. When calling for assistance, the following is the minimum information required to properly address the need:

1. General Order Number (GO#) of transfer switch, plus related Item Number.
2. Catalog and/or Style Number of transfer switch.
3. Actual location of transfer switch (type of facility, address, etc.).
4. Company name.
5. Name and position of individual representing company.
6. Basic description of situation as it exists.
7. Any results of problem solving steps taken and/or readings taken.
6.2.1 Transfer Switch Appears Inoperative (Manual Operation)

Step 1: Initially verify that there is no voltage on any source (Source 1 or Source 2) inside the transfer switch.

Step 2: Depress the "TRIP" button located on the operating mechanism of the contactor to bring the contactor to neutral (trip) position.

Step 3: Attach the handle to the manual lever (see Figure 20) and rotate the lever up to go to Source 1.

Step 4: Depress the "TRIP" button located on the operating mechanism of the contactor to bring the contactor to neutral (trip) position.

Step 5: Depress the "SELECT" button located on the operating mechanism of the contactor and rotate the lever up keeping the "SELECT" button depressed to go to Source-2.

Following above steps, if the transfer switch does not transfer between two sources, contact factory personnel.

Section 7: Adjustments

WARNING

HAZARDOUS VOLTAGES IN AND AROUND ATS EQUIPMENT DURING THE PROBLEM SOLVING PROCESS CAN CAUSE SEVERE PERSONAL INJURY AND/OR DEATH. AVOID CONTACT WITH ANY VOLTAGE SOURCE WHILE PROBLEM SOLVING.

7.1 General

Refer to I.B. 01602009E, supplied with the ATS for ATC-300 + Controller adjustments and programming.
Section 8: Maintenance

8.1 Introduction

WARNING

HIGH VOLTAGES ARE PRESENT IN AND AROUND ATS EQUIPMENT. BEFORE INSPECTING OR MAINTAINING THIS EQUIPMENT, DISCONNECT THE LINE POWER FROM, THEN LOCK OUT, IF POSSIBLE, THE NEXT HIGHEST DISCONNECT DEVICE. FAILURE TO FOLLOW THIS PROCEDURE COULD CAUSE SEVERE PERSONAL INJURY AND/OR DEATH.

In general, ATS switch equipment is designed to be relatively maintenance free under normal usage. However, because of the variability of application conditions and the importance placed on dependable operation by this type of equipment, inspection and maintenance checks should be made on a regularly scheduled basis. Since equipment maintenance will consist mainly of keeping the equipment clean, the frequency of maintenance will depend to a large extent on the cleanliness of the equipment’s surroundings. If a significant amount of dust or foreign matter is present, a more frequent maintenance schedule should be followed.

It is suggested that visual inspections of the equipment be made on a regular basis, not just during scheduled periods. Always be alert for an accumulation of dirt in and around the structure; loose parts; and/or hardware, cracks, and/or discoloration to insulation; and damaged or discolored components.

8.2 Procedures

A suggested maintenance procedure is outlined in Table 5.

Table 5. Periodic Maintenance Procedures

<table>
<thead>
<tr>
<th>STEP</th>
<th>ACTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Make the ATS equipment safe for inspection and/or maintenance.</td>
<td>Disconnect the line power from equipment being serviced by opening the next highest disconnect device. Make certain that any accessory control power is switched off by disconnecting all control plugs.</td>
</tr>
<tr>
<td>b. Inspect the structure area for safety hazards or potential maintenance problems.</td>
<td>Inspect the area, especially where switching device is installed, for any safety hazards, including personnel safety and fire hazards. Exposure to certain chemical vapors can cause deterioration of electrical connections. Inspect for accumulated dirt, loose hardware, or physical damage. Examine the primary insulation for evidence of cracking or overheating. Overheating will show as discoloration, melting, or blistering of conductor insulation, or as pitting or melting of conductor surfaces due to arcing. Inspect the secondary control connections for damage and the control wiring for insulation integrity.</td>
</tr>
<tr>
<td>c. Inspect the power contactor for dust, dirt, soot, grease, moisture, or corrosion.</td>
<td>Remove dust, dirt, soot, grease, moisture, and corrosion contamination from the surface of the switching device using a dry soft lint-free cloth, dry soft bristle brush, and vacuum cleaner. Do not blow debris into the power contactor. If contamination is found, look for the source and fix the problem.</td>
</tr>
<tr>
<td>d. Check for material integrity, uneven wear, discoloration, or loose hardware.</td>
<td>Severe material cracking will require replacement and loose hardware will need to be tightened.</td>
</tr>
<tr>
<td>e. Check the terminals and connectors for looseness or signs of overheating.</td>
<td>Overheating will show as discoloration, melting, or blistering of the conductor insulation. Connections that do not have signs of looseness or overheating should not be disturbed.</td>
</tr>
<tr>
<td>f. Contact Inspection Procedure</td>
<td>Remove all the screws on the molded cover over the power assembly. Inspect the contacts. Contact Eaton Care (1-877-ETN-CARE, Option-2) if the contacts have excessive wear. Reinstall the molded cover and tighten screws to 17 in-lbs.</td>
</tr>
<tr>
<td>g. Exercise the power contactor if it is not often exercised while in operation.</td>
<td>This will permit a “wiping” action by the contacts. If the power contactor is used for frequent switching during normal operation, this step can be disregarded.</td>
</tr>
<tr>
<td>h. Return the ATS equipment to service.</td>
<td>Make certain all barriers are in place and doors closed. Reapply secondary and primary power.</td>
</tr>
</tbody>
</table>
Section 9: Renewal Parts Guide

9.1 General

Refer to Figure 21 for assistance with selecting and ordering selected ATS renewal parts. For more information please see Renewal Parts Publication (RP01603002E)

Example: To order the transformer pack for an ATC3C3X31200XRU transfer switch, order Catalog Number as shown in Figure 21.

![Typical ATC-300+ Controlled Contactor Type 40-1200A ATS.](image)

<table>
<thead>
<tr>
<th>Component</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATC-300+ Controller - 3-Position Contactor Type (TDN)</td>
<td>Cat# 8160A00G28</td>
</tr>
<tr>
<td>Transformer Pack</td>
<td>40-1200A, 480VAC, 2-Pole - Cat# 68C8241G03
40-1200A, 480VAC, 3-Pole - Cat# 68C8241G03
40-1200A, 480VAC, 4-Pole - Cat# 68C8241G03
40-1200A, 600VAC, 2-Pole - Cat# 68C8241G01
40-1200A, 600VAC, 3-Pole - Cat# 68C8241G01
40-1200A, 600VAC, 4-Pole - Cat# 68C8241G01</td>
</tr>
<tr>
<td>Power Panel (Does not include Contactor)</td>
<td>40-1200A (Domestic Switch), 480VAC/600VAC, 2-Pole - Cat# 68C8282H01
40-1200A (Domestic Switch), 480VAC, 3-Pole - Cat# 68C8282H01
40-1200A (Domestic Switch), 480VAC, 4-Pole - Cat# 68C8282H02
40-1200A (Domestic Switch), 600VAC, 3-Pole - Cat# 68C8282H02
40-1200A (Domestic Switch), 600VAC, 4-Pole - Cat# 68C8282H02</td>
</tr>
<tr>
<td>Contactor</td>
<td>40-1200A, 480VAC, 2-Pole - Cat# 67C5241G01
40-1200A, 480VAC, 3-Pole - Cat# 67C5241G02
40-1200A, 480VAC, 4-Pole - Cat# 67C5241G03
40-1200A, 600VAC, 3-Pole - Cat# 67C5241G06
40-1200A, 600VAC, 4-Pole - Cat# 67C5241G07</td>
</tr>
<tr>
<td>Wire Harness</td>
<td>Domestic Switch, up to 600VAC, 2-Pole - Cat# 68C8492G03 + 68C8492G04
Domestic Switch, up to 600VAC, 3-Pole - Cat# 68C8492G03 + 68C8492G06
Domestic Switch, up to 600VAC, 4-Pole - Cat# 68C8492G03 + 68C8492G06</td>
</tr>
<tr>
<td>100W Space Heater</td>
<td>Domestic Switch, up to 600VAC - Cat# 8160A41G54</td>
</tr>
<tr>
<td>Lugs</td>
<td>Up to 100A - Cat# 68C8289H01 + AB-125S (up to 480VAC)
Up to 100A - Cat# 68C8289H01 + AB-250S (up to 600VAC)
Up to 200A - Cat# 68C8289H01 + AB-250S
Up to 400A - Cat# 68C8289H01 + AB750-4
600A to 1200A - Cat# 4ABV-750</td>
</tr>
</tbody>
</table>
Section 10: ATC-300+ Controlled ATS
Quick Start Instructions

WARNING
THESE QUICK START INSTRUCTIONS ARE NOT A COMPLETE source of information on the ATC-300+ CONTROLLED ATS equipment. INSTALLATION SHOULD NOT BE STARTED UNTIL the entire instruction book has been reviewed and understood. FAILURE TO FOLLOW THE FULL INSTRUCTIONS can result in death, severe personal injury, or property damage.

WARNING
THESE QUICK START INSTRUCTIONS ARE PROVIDED FOR USE only by technicians highly familiar and experienced with ATC-300+ CONTROLLED ATS equipment installation, set up, and testing. IT IS STRONGLY SUGGESTED THAT THE FULL INSTRUCTIONS BE FOLLOWED FOR ALL INSTALLATIONS, SET UP, AND TESTING.

Step 1: Mount the ATS on a flat rigid surface (Figure 22). Shim if necessary.

Step 2: Install the power cables. Cables must be sized and installed per National Electrical Code, refer to NFPA70. The cables must be sized within the specified cable size range on the side of the cable connectors.

Connect the cables and torque to the correct value indicated on the label on the door in the following order:
1. Load Cables* (T1, T2, T3);
2. Source 1 or Utility Supply (N1, N2, N3); and
3. Source 2 or Generator Supply (E1, E2, E3).

For 4 pole transfer switches, connect the load cables (TN), Source 1 or utility supply (NN), and Source 2 or generator supply (EN). Refer to Figure 22 for the location of all parts discussed in this document.

*Load cables MUST be connected and torqued BEFORE installing the SUPPLY cables (Figures 23).
Figure 23. 1200A, 3-Pole, ATS Interior Components.
Step 3: Turn the generator OFF at the generator control panel. This will prevent unexpected activation of the generator.

Step 4: Connect the Engine Generator Start wires to terminals 13 and 14 on the J-5 connector on the ATC-300+ Controller (Figure 24). This contact is CLOSED whenever the engine generator is needed, and should be connected to a generator controller. **NEVER** connect directly to a starter solenoid or ignition system. See the Genset manufacturer instruction leaflet for recommended wire sizes and location procedures.

![Figure 24. Engine Generator Control Connection.](image)

ATC-300+ Controller - 2 Position Contactor type (In-Phase) - CAT#8160A00G27
ATC-300+ Controller - 3 Position Contactor type (TDN) - CAT#8160A00G28

Step 5: Apply Utility (Source 1) power. If the switch is properly applied for the system voltage ordered, the display should work and the Source 1 Available white LED should light (Figure 25). Using a voltmeter, check for proper system voltage on Source 1 and load terminals. Check all phases on a 3-phase switch. Voltage measurements should be taken phase to phase and phase to neutral.
Figure 25. ATC-300+ Logic (Utility Supplying Load).

Step 6: To view the setpoints, press the <Step/Enter> pushbutton and enter the Password.

Note: The factory default Password is 0300. Once all installation and testing is complete, the Password should be changed by authorized personnel to a unique Password for the equipment.

After entering the password, press the <Step/Enter> pushbutton until the VIEW SETPOINTS menu appears. Select YES. Press the <Step/Enter> pushbutton to scroll through the setpoints (Figures 26 through 27 and Table 6).
Utility - Generator Transfer Switch

Source 1 is available

Close Source 1
(Energize K1)

Source 1 is powering the load

Source 1 becomes unavailable
(or Engine Test, Plant Exercise, Go To Emergency)

TDES timer times out

Send "Engine Start" signal
(Energize Gen Start relay)

Is Source 2 Available?

Yes

TDNE timer times out

Sends pretransfer signal
TPRE timer times out

Open Source 2
(Energize K1)

Close Source 1
(Energize K1)

Source 1 is powering the load

TDEC timer times out

Remove "Engine Start" signal
(De-energize Gen Start relay)

No

Source 2 is powering the load

Is Source 1 Available?

Yes

TDEN timer times out

Sends pretransfer signal
TPRE timer times out

Open Source 2
(Energize K1)

Close Source 1
(Energize K1)

Source 1 is powering the load

TDEC timer times out

Remove "Engine Start" signal
(De-energize Gen Start relay)

No

Is Source 2 Available?

Yes

TDNE timer times out

Sends pretransfer signal
TPRE timer times out

Open Source 1
(Energize K2)

Close Source 2
(Energize K2)

Source 2 is powering the load

Figure 26. Utility - Generator Transfer Switch.
Figure 27. Dual Utility Transfer Switch.
Table 6. Setpoint Possibilities

<table>
<thead>
<tr>
<th>SETPOINT</th>
<th>SETPOINT UNITS</th>
<th>DESCRIPTION</th>
<th>RANGE</th>
<th>FACTORY DEFAULT</th>
</tr>
</thead>
<tbody>
<tr>
<td>New Password</td>
<td>Four Digits</td>
<td>Set New Password</td>
<td>0000 to 9999</td>
<td>0300</td>
</tr>
<tr>
<td>TDES</td>
<td>Minutes: Seconds</td>
<td>Time Delay Engine Start</td>
<td>0 to 120 seconds</td>
<td>0:03</td>
</tr>
<tr>
<td>TDNE</td>
<td>Minutes: Seconds</td>
<td>Time Delay Normal to Emergency</td>
<td>0 to 1800 seconds</td>
<td>0:00</td>
</tr>
<tr>
<td>TDEN</td>
<td>Minutes: Seconds</td>
<td>Time Delay Emergency to Normal</td>
<td>0 to 1800 seconds</td>
<td>5:00</td>
</tr>
<tr>
<td>TDEC</td>
<td>Minutes: Seconds</td>
<td>Time Delay Engine Cool-off</td>
<td>0 to 1800 seconds</td>
<td>5:00</td>
</tr>
<tr>
<td>NOM FREQ</td>
<td>Hertz</td>
<td>Nominal Frequency</td>
<td>50 or 60 Hz</td>
<td>As ordered</td>
</tr>
<tr>
<td>NOM VOLTS</td>
<td>Volts</td>
<td>Nominal Voltage</td>
<td>120 to 600 volts</td>
<td>As ordered</td>
</tr>
<tr>
<td>S1 UV DROP</td>
<td>Volts</td>
<td>Source 1 Undervoltage Drop Range: Contactor Style ATS (2-position/3-position)</td>
<td>78 to 97% of Nominal System Voltage</td>
<td>85%</td>
</tr>
<tr>
<td>S2 UV DROP</td>
<td>Volts</td>
<td>Source 2 Undervoltage Drop Range: Contactor Style ATS (2-position/3-position)</td>
<td>78 to 97% of Nominal System Voltage</td>
<td>85%</td>
</tr>
<tr>
<td>S1 UV PICK</td>
<td>Volts</td>
<td>Source 1 Undervoltage Pickup Range: Contactor Style ATS (2-position/3-position)</td>
<td>(Dropout +2%) to 99% of Nominal System Voltage</td>
<td>90%</td>
</tr>
<tr>
<td>S2 UV PICK</td>
<td>Volts</td>
<td>Source 2 Undervoltage Pickup Range: Contactor Style ATS (2-position/3-position)</td>
<td>(Dropout +2%) to 99% of Nominal System Voltage</td>
<td>90%</td>
</tr>
<tr>
<td>S1 OV DROP</td>
<td>Volts</td>
<td>Source 1 Overvoltage Drop Range: Contactor Style ATS (2-position/3-position)</td>
<td>105 to 110% of Nominal System Voltage</td>
<td>110%</td>
</tr>
<tr>
<td>S2 OV DROP</td>
<td>Volts</td>
<td>Source 2 Overvoltage Drop Range: Contactor Style ATS (2-position/3-position)</td>
<td>105 to 110% of Nominal System Voltage</td>
<td>110%</td>
</tr>
<tr>
<td>S1 OV PICK</td>
<td>Volts</td>
<td>Source 1 Overvoltage Pickup Range: Contactor Style ATS (2-position/3-position)</td>
<td>103% to (Dropout -2%) of Nominal System Voltage</td>
<td>105%</td>
</tr>
<tr>
<td>S2 OV PICK</td>
<td>Volts</td>
<td>Source 2 Overvoltage Pickup Range: Contactor Style ATS (2-position/3-position)</td>
<td>103% to (Dropout -2%) of Nominal System Voltage</td>
<td>105%</td>
</tr>
<tr>
<td>S1 UF DROP</td>
<td>Hertz</td>
<td>Source 1 Underfrequency Drop Range: Contactor Style ATS (2-position/3-position)</td>
<td>90 to 97% of Nominal System Frequency</td>
<td>90%</td>
</tr>
<tr>
<td>S2 UF DROP</td>
<td>Hertz</td>
<td>Source 2 Underfrequency Drop Range: Contactor Style ATS (2-position/3-position)</td>
<td>90 to 97% of Nominal System Frequency</td>
<td>90%</td>
</tr>
<tr>
<td>S1 UF PICK</td>
<td>Hertz</td>
<td>Source 1 Underfrequency Pickup Range: Contactor Style ATS (2-position/3-position)</td>
<td>(Dropout +1 Hz) to 99% of Nominal System Frequency</td>
<td>95%</td>
</tr>
<tr>
<td>S2 UF PICK</td>
<td>Hertz</td>
<td>Source 2 Underfrequency Pickup Range: Contactor Style ATS (2-position/3-position)</td>
<td>(Dropout +1 Hz) to 99% of Nominal System Frequency</td>
<td>95%</td>
</tr>
<tr>
<td>S1 OF DROP</td>
<td>Hertz</td>
<td>Source 1 Overfrequency Drop Range: Contactor Style ATS (2-position/3-position)</td>
<td>103 to 105% of Nominal System Frequency</td>
<td>105%</td>
</tr>
<tr>
<td>S2 OF DROP</td>
<td>Hertz</td>
<td>Source 2 Overfrequency Drop Range: Contactor Style ATS (2-position/3-position)</td>
<td>103 to 105% of Nominal System Frequency</td>
<td>105%</td>
</tr>
<tr>
<td>S1 OF PICK</td>
<td>Hertz</td>
<td>Source 1 Overfrequency Pickup Range: Contactor Style ATS (2-position/3-position)</td>
<td>101% to (Dropout -1 Hz) of Nominal System Frequency</td>
<td>102%</td>
</tr>
<tr>
<td>S2 OF PICK</td>
<td>Hertz</td>
<td>Source 2 Overfrequency Pickup Range: Contactor Style ATS (2-position/3-position)</td>
<td>101% to (Dropout -1 Hz) of Nominal System Frequency</td>
<td>102%</td>
</tr>
<tr>
<td>TDN</td>
<td>Minutes: Seconds</td>
<td>Time Delay Neutral</td>
<td>0 to 120 seconds</td>
<td>0:00</td>
</tr>
<tr>
<td>BAUD RATE</td>
<td></td>
<td>Modbus Baud Rate</td>
<td>9600 or 19200</td>
<td>9600</td>
</tr>
<tr>
<td>ADDRESS</td>
<td></td>
<td>Modbus Address</td>
<td>1 to 247</td>
<td>1</td>
</tr>
<tr>
<td>PLANT EXER</td>
<td>Days</td>
<td>Plant Exerciser Programming</td>
<td>OFF, DAILY, 7-DAY, 14-DAY or 28 DAY</td>
<td>OFF</td>
</tr>
<tr>
<td>PE LOAD XFR</td>
<td></td>
<td>Plant Exerciser Load Transfer</td>
<td>0 or 1 (1 = yes)</td>
<td>0</td>
</tr>
</tbody>
</table>
Table 6. Setpoint Possibilities (cont’)

<table>
<thead>
<tr>
<th>SETPOINT</th>
<th>SETPOINT UNITS</th>
<th>DESCRIPTION</th>
<th>RANGE</th>
<th>FACTORY DEFAULT</th>
</tr>
</thead>
<tbody>
<tr>
<td>PE DAY</td>
<td>Days</td>
<td>Plant Exerciser Day of the Week</td>
<td>1 SUN, 2 MON, 3 TUE, 4 WED, 5 THU, 6 FRI or 7 SAT</td>
<td></td>
</tr>
<tr>
<td>PE HOUR</td>
<td>Hours</td>
<td>Plant Exerciser Hour</td>
<td>0 to 23</td>
<td>0</td>
</tr>
<tr>
<td>PE MINUTE</td>
<td>Minutes</td>
<td>Plant Exerciser Minute</td>
<td>0 to 58</td>
<td>0</td>
</tr>
<tr>
<td>TEST MODE</td>
<td></td>
<td>Test Mode</td>
<td>0, 1 or 2 (0 = No Load Engine Test, 1 = Load Engine Test, 2 = Disabled)</td>
<td>0</td>
</tr>
<tr>
<td>T6R</td>
<td>Hours: Minutes</td>
<td>Engine run test time</td>
<td>0 min to 600 min</td>
<td>5:00</td>
</tr>
<tr>
<td>TPRE</td>
<td>Minutes: Seconds</td>
<td>Pretransfer delay timer</td>
<td>0 sec to 120 sec</td>
<td>0:00</td>
</tr>
<tr>
<td>PHASES</td>
<td></td>
<td>Three phase or single phase</td>
<td>1 or 3</td>
<td>AS ORDERED</td>
</tr>
<tr>
<td>VOLT UNBAL</td>
<td>Volts</td>
<td>Voltage Unbalanced</td>
<td>0 or 1 (1 = Enabled)</td>
<td>1</td>
</tr>
<tr>
<td>UNBAL DROP %</td>
<td>Percent</td>
<td>Percent for Unbalanced Voltage Dropout</td>
<td>5 to 20% of Phase to Phase Voltage Unbalance</td>
<td>20%</td>
</tr>
<tr>
<td>UNBAL PICK %</td>
<td>Percent</td>
<td>Percent for Unbalanced Voltage Pickup</td>
<td>Dropout minus (UNBAL DROP % -2) to 3%</td>
<td>10%</td>
</tr>
<tr>
<td>UNBAL DELAY</td>
<td>Seconds</td>
<td>Unbalanced Delay Timer</td>
<td>10 to 30</td>
<td>0:20</td>
</tr>
<tr>
<td>TDEF</td>
<td>Seconds</td>
<td>Time Delay Emergency Fail Timer</td>
<td>0 sec to 6 sec</td>
<td>6</td>
</tr>
<tr>
<td>IN-PHASE</td>
<td>Hertz</td>
<td>In-Phase to TDN Transition (C5)</td>
<td>0 or 1 (1 = Enabled)</td>
<td>0</td>
</tr>
<tr>
<td>IP FREQ DIFF</td>
<td>Hertz</td>
<td>In-Phase Transition Frequency Difference</td>
<td>0.0 Hz to 3.0 Hz</td>
<td>1.0</td>
</tr>
<tr>
<td>SYNC TIME</td>
<td>Minutes</td>
<td>In-Phase Transition Synchronization Timer</td>
<td>1 min to 60 min</td>
<td>5</td>
</tr>
<tr>
<td>IN-PHASE</td>
<td>Hertz</td>
<td>In-Phase Transition</td>
<td>0 or 1 (1 = Enabled)</td>
<td>1</td>
</tr>
<tr>
<td>IP FREQ DIFF</td>
<td>Hertz</td>
<td>In-phase Transition Frequency Difference</td>
<td>0.0 Hz to 3.0 Hz</td>
<td>1.0</td>
</tr>
<tr>
<td>SYNC TIME</td>
<td>Minutes</td>
<td>In-phase Transition Synchronization Timer</td>
<td>1 min to 60 min</td>
<td>5</td>
</tr>
<tr>
<td>PHASE REV</td>
<td></td>
<td>Phase Reversal</td>
<td>OFF, ABC, or CBA</td>
<td>OFF</td>
</tr>
<tr>
<td>DST ADJUST</td>
<td></td>
<td>Day Light Savings</td>
<td>0 or 1 (1 = Enabled)</td>
<td>1</td>
</tr>
<tr>
<td>MAN RETRAN</td>
<td></td>
<td>Manual Retransfer</td>
<td>0 or 1 (1 = Enabled)</td>
<td>0</td>
</tr>
<tr>
<td>LANGUAGE</td>
<td></td>
<td>Selected Language</td>
<td>English, French, or Spanish</td>
<td>English</td>
</tr>
<tr>
<td>CHANGE TIME/DATE?</td>
<td></td>
<td>Set Time and Date</td>
<td>Eastern Standard Time</td>
<td></td>
</tr>
<tr>
<td>MINUTES</td>
<td></td>
<td>Set Minute</td>
<td>0 to 59</td>
<td>Eastern Standard Time</td>
</tr>
<tr>
<td>WEEKDAY</td>
<td></td>
<td>Set Weekday</td>
<td>SUN, MON, TUE, WED, THU, FRI or SAT</td>
<td>Eastern Standard Time</td>
</tr>
<tr>
<td>MONTH</td>
<td></td>
<td>Set Month</td>
<td>JAN or 01</td>
<td>Eastern Standard Time</td>
</tr>
<tr>
<td>DAY</td>
<td></td>
<td>Set Day</td>
<td>1 to 31</td>
<td>Eastern Standard Time</td>
</tr>
<tr>
<td>YEAR</td>
<td></td>
<td>Set Year</td>
<td>Current Year</td>
<td>Eastern Standard Time</td>
</tr>
<tr>
<td>RESET SYSTEM COUNTERS?</td>
<td>Yes or No</td>
<td>Yes or No</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>RESET ALL?</td>
<td></td>
<td>Resets all System Counters</td>
<td>Yes or No</td>
<td>No</td>
</tr>
<tr>
<td>RESET ENGINE RUN?</td>
<td></td>
<td>Resets ENGINE RUN Counter</td>
<td>0 to 9999</td>
<td>XXXX</td>
</tr>
<tr>
<td>RESET S1 CONN</td>
<td>Hours</td>
<td>Resets S1 CONN Counter</td>
<td>0 to 9999</td>
<td>XXXX</td>
</tr>
<tr>
<td>RESET S2 CONN</td>
<td>Hours</td>
<td>Resets S2 CONN Counter</td>
<td>0 to 9999</td>
<td>XXXX</td>
</tr>
<tr>
<td>RESET S1 AVAIL</td>
<td>Hours</td>
<td>Resets S1 AVAIL Counter</td>
<td>0 to 9999</td>
<td>XXXX</td>
</tr>
<tr>
<td>RESET S2 AVAIL</td>
<td>Hours</td>
<td>Resets S2 AVAIL Counter</td>
<td>0 to 9999</td>
<td>XXXX</td>
</tr>
<tr>
<td>RESET LOAD ENERG</td>
<td>Hours</td>
<td>Resets LOAD ENERG Counter</td>
<td>0 to 9999</td>
<td>XXXX</td>
</tr>
<tr>
<td>RESET TRANSFERS</td>
<td>Cycles (Counts)</td>
<td>Resets TRANSFERS Counter</td>
<td>0 to 9999</td>
<td>XXXX</td>
</tr>
<tr>
<td>SAVE SETPOINTS?</td>
<td></td>
<td>Save Changed Setpoints</td>
<td>Yes or No</td>
<td>Yes</td>
</tr>
</tbody>
</table>

See tables in the appendix for Voltage and Frequency Pickup and Dropout settings.
Step 7: To change or add a setpoint, select **Yes** when the “Change Setpoints” message appears on the screen. Use the **<Step/Enter>** pushbutton to step through the setpoints.

Use the **<Increase>** and **<Decrease>** pushbuttons to change the setpoint.

When finished scrolling through and changing the desired setpoints, answer **Yes** when the “Save Setpoints?” question appears on the screen. The display will return to the default screen.

WARNING

THE GENERATOR SHOULD BE MANUALLY STARTED AND THE OUTPUT CHECKED AND VERIFIED BEFORE PROCEEDING TO STEP 8. IF IMPROPER VOLTAGE/FREQUENCY IS APPLIED TO THE LOAD, THE ATS MAY BE DAMAGED.

Step 8: Manually start the engine generator at the generator controller. Check that the generator is running and the Source 2 Available amber LED is lit. Press the **<Step/Enter>** pushbutton, step through the phase voltages, frequency, and message display. If the source message indicates that the source is Good, shut down the generator and place the Genset controller in the Auto-operating position. If the message indicates a problem with the source, the setpoints should be reviewed and the generator checked for proper voltage and frequency output.

Step 9: Initiate a Load Test from the front panel of the ATC-300+ (Figure 29). This may be done by setting the engine test mode setpoint to:

1. Load Test

then saving the setpoints. Once the engine test setpoint has been changed and saved, press the **<Engine Test>** pushbutton twice. The generator should start, the ATS should transfer and run on the generator for the set test interval, then proceed to a TDEN countdown and return to Source 1. While the ATS is connected to Source 2, use a voltmeter to check for correct system voltage on the load terminals of the ATS. Check all phases on a 3-phase system. Voltage measurements should be taken phase to phase and phase to neutral. A load test will cause a momentary power outage during transfer.

NOTICE

WHILE PERFORMING TESTING, IF AN UNDESIRED OR UNDOCUMENTED RESULT OCCURS, FIRST CONTACT THE LOCAL GENSET DEALER. IF THE RESULT IS NOT CORRECTED, CONTACT THE EATON POWER QUALITY TECHNICAL SUPPORT CENTER AT 1-800-354-2070.
Appendix A: Pickup / Dropout Tables

<table>
<thead>
<tr>
<th>PERCENTAGE</th>
<th>VOLTAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>120</td>
</tr>
<tr>
<td>97</td>
<td>116</td>
</tr>
<tr>
<td>96</td>
<td>115</td>
</tr>
<tr>
<td>95</td>
<td>114</td>
</tr>
<tr>
<td>94</td>
<td>113</td>
</tr>
<tr>
<td>93</td>
<td>112</td>
</tr>
<tr>
<td>92</td>
<td>110</td>
</tr>
<tr>
<td>91</td>
<td>108</td>
</tr>
<tr>
<td>90</td>
<td>107</td>
</tr>
<tr>
<td>89</td>
<td>106</td>
</tr>
<tr>
<td>88</td>
<td>104</td>
</tr>
<tr>
<td>87</td>
<td>103</td>
</tr>
<tr>
<td>85</td>
<td>102</td>
</tr>
<tr>
<td>84</td>
<td>101</td>
</tr>
<tr>
<td>83</td>
<td>100</td>
</tr>
<tr>
<td>82</td>
<td>98</td>
</tr>
<tr>
<td>81</td>
<td>97</td>
</tr>
<tr>
<td>80</td>
<td>96</td>
</tr>
<tr>
<td>79</td>
<td>95</td>
</tr>
<tr>
<td>78</td>
<td>94</td>
</tr>
<tr>
<td>77</td>
<td>92</td>
</tr>
<tr>
<td>76</td>
<td>91</td>
</tr>
<tr>
<td>75</td>
<td>90</td>
</tr>
<tr>
<td>74</td>
<td>89</td>
</tr>
<tr>
<td>73</td>
<td>88</td>
</tr>
<tr>
<td>72</td>
<td>86</td>
</tr>
<tr>
<td>71</td>
<td>85</td>
</tr>
<tr>
<td>70</td>
<td>84</td>
</tr>
<tr>
<td>69</td>
<td>83</td>
</tr>
<tr>
<td>68</td>
<td>82</td>
</tr>
<tr>
<td>67</td>
<td>80</td>
</tr>
<tr>
<td>66</td>
<td>79</td>
</tr>
<tr>
<td>65</td>
<td>78</td>
</tr>
<tr>
<td>64</td>
<td>77</td>
</tr>
<tr>
<td>63</td>
<td>76</td>
</tr>
<tr>
<td>62</td>
<td>74</td>
</tr>
<tr>
<td>61</td>
<td>73</td>
</tr>
<tr>
<td>60</td>
<td>72</td>
</tr>
<tr>
<td>59</td>
<td>71</td>
</tr>
<tr>
<td>58</td>
<td>70</td>
</tr>
<tr>
<td>57</td>
<td>68</td>
</tr>
<tr>
<td>56</td>
<td>67</td>
</tr>
<tr>
<td>55</td>
<td>66</td>
</tr>
<tr>
<td>54</td>
<td>65</td>
</tr>
<tr>
<td>53</td>
<td>64</td>
</tr>
<tr>
<td>52</td>
<td>62</td>
</tr>
<tr>
<td>51</td>
<td>61</td>
</tr>
<tr>
<td>50</td>
<td>60</td>
</tr>
</tbody>
</table>
OVERVOLTAGE PICKUP / DROPOUT TABLE

<table>
<thead>
<tr>
<th>PERCENTAGE</th>
<th>120</th>
<th>208</th>
<th>220</th>
<th>240</th>
<th>380</th>
<th>415</th>
<th>480</th>
<th>600</th>
</tr>
</thead>
<tbody>
<tr>
<td>120</td>
<td>144</td>
<td>250</td>
<td>264</td>
<td>288</td>
<td>456</td>
<td>498</td>
<td>576</td>
<td>720</td>
</tr>
<tr>
<td>119</td>
<td>143</td>
<td>248</td>
<td>262</td>
<td>286</td>
<td>452</td>
<td>494</td>
<td>571</td>
<td>714</td>
</tr>
<tr>
<td>118</td>
<td>142</td>
<td>245</td>
<td>260</td>
<td>283</td>
<td>448</td>
<td>490</td>
<td>566</td>
<td>708</td>
</tr>
<tr>
<td>117</td>
<td>140</td>
<td>243</td>
<td>257</td>
<td>281</td>
<td>445</td>
<td>486</td>
<td>562</td>
<td>702</td>
</tr>
<tr>
<td>116</td>
<td>139</td>
<td>241</td>
<td>255</td>
<td>278</td>
<td>441</td>
<td>481</td>
<td>557</td>
<td>696</td>
</tr>
<tr>
<td>115</td>
<td>138</td>
<td>239</td>
<td>253</td>
<td>276</td>
<td>437</td>
<td>477</td>
<td>552</td>
<td>690</td>
</tr>
<tr>
<td>114</td>
<td>137</td>
<td>237</td>
<td>251</td>
<td>274</td>
<td>433</td>
<td>473</td>
<td>547</td>
<td>684</td>
</tr>
<tr>
<td>113</td>
<td>136</td>
<td>235</td>
<td>249</td>
<td>271</td>
<td>429</td>
<td>469</td>
<td>542</td>
<td>678</td>
</tr>
<tr>
<td>112</td>
<td>134</td>
<td>233</td>
<td>246</td>
<td>268</td>
<td>426</td>
<td>465</td>
<td>538</td>
<td>672</td>
</tr>
<tr>
<td>111</td>
<td>133</td>
<td>231</td>
<td>244</td>
<td>266</td>
<td>422</td>
<td>461</td>
<td>533</td>
<td>666</td>
</tr>
<tr>
<td>110</td>
<td>132</td>
<td>229</td>
<td>242</td>
<td>264</td>
<td>418</td>
<td>457</td>
<td>528</td>
<td>660</td>
</tr>
<tr>
<td>109</td>
<td>131</td>
<td>227</td>
<td>240</td>
<td>262</td>
<td>414</td>
<td>452</td>
<td>523</td>
<td>654</td>
</tr>
<tr>
<td>108</td>
<td>130</td>
<td>225</td>
<td>238</td>
<td>259</td>
<td>410</td>
<td>448</td>
<td>518</td>
<td>648</td>
</tr>
<tr>
<td>107</td>
<td>128</td>
<td>223</td>
<td>235</td>
<td>257</td>
<td>407</td>
<td>444</td>
<td>514</td>
<td>642</td>
</tr>
<tr>
<td>106</td>
<td>127</td>
<td>220</td>
<td>233</td>
<td>254</td>
<td>403</td>
<td>440</td>
<td>509</td>
<td>636</td>
</tr>
</tbody>
</table>

UNDERFREQUENCY PICKUP / DROPOUT TABLE

<table>
<thead>
<tr>
<th>PERCENTAGE</th>
<th>50</th>
<th>60</th>
</tr>
</thead>
<tbody>
<tr>
<td>97</td>
<td>49</td>
<td>58</td>
</tr>
<tr>
<td>96</td>
<td>48</td>
<td>58</td>
</tr>
<tr>
<td>95</td>
<td>48</td>
<td>57</td>
</tr>
<tr>
<td>94</td>
<td>47</td>
<td>56</td>
</tr>
<tr>
<td>93</td>
<td>47</td>
<td>56</td>
</tr>
<tr>
<td>92</td>
<td>46</td>
<td>55</td>
</tr>
<tr>
<td>91</td>
<td>46</td>
<td>55</td>
</tr>
<tr>
<td>90</td>
<td>45</td>
<td>54</td>
</tr>
</tbody>
</table>

OVERFREQUENCY PICKUP / DROPOUT TABLE

<table>
<thead>
<tr>
<th>PERCENTAGE</th>
<th>50</th>
<th>60</th>
</tr>
</thead>
<tbody>
<tr>
<td>110</td>
<td>55</td>
<td>66</td>
</tr>
<tr>
<td>109</td>
<td>55</td>
<td>65</td>
</tr>
<tr>
<td>108</td>
<td>54</td>
<td>65</td>
</tr>
<tr>
<td>107</td>
<td>54</td>
<td>64</td>
</tr>
<tr>
<td>106</td>
<td>53</td>
<td>64</td>
</tr>
<tr>
<td>105</td>
<td>53</td>
<td>63</td>
</tr>
<tr>
<td>104</td>
<td>52</td>
<td>62</td>
</tr>
<tr>
<td>103</td>
<td>52</td>
<td>62</td>
</tr>
<tr>
<td>102</td>
<td>51</td>
<td>61</td>
</tr>
</tbody>
</table>
This instruction booklet is published solely for information purposes and should not be considered all-inclusive. If further information is required, you should consult Eaton.

Sale of the product(s) shown in this literature is subject to terms and conditions outlined in appropriate Eaton selling policies or other contractual agreements between the parties. This literature is not intended to and does not enlarge or add to any such contract. The sole source governing the rights and remedies of any purchaser of this equipment is the contract between the purchaser and Eaton.

NO WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE OR MERCHANTABILITY, OR WARRANTIES ARISING FROM COURSE OF DEALING OR USAGE OF TRADE, ARE MADE REGARDING THE INFORMATION, RECOMMENDATIONS AND DESCRIPTIONS CONTAINED HEREIN. In no event will Eaton be responsible to the purchaser or user in contract, in tort (including negligence), strict liability or otherwise for any special, indirect, incidental or consequential damage or loss whatsoever, including but not limited to damage or loss of use of equipment, plant or power system, cost of capital, loss of power, additional expenses in the use of existing power facilities, or claims against the purchaser or user by its customers resulting from the use of the information, recommendations and description contained herein.

CSA is a registered trademark of the Canadian Standards Association. National Electrical Code and NEC are registered trademarks of the National Fire Protection Association, Quincy, Mass. NEMA is the registered trademark and service mark of the National Electrical Manufacturers Association. Uniform Building Code (UBC) is a trademark of the International Conference of Building Officials (ICBO). UL is a federally registered trademark of the Underwriters Laboratories Inc.

Eaton
Electrical Sector
1000 Eaton Boulevard
Cleveland OH 44122
United States.
788-ETN CARE (877-386-2273)
Eaton.com