ATS Product Installation Instructions for
Breaker Aux Contacts, L & M-Frame
Instruction Leaflet

1. Introduction
The Auxiliary Switch Mechanism internal to each source breaker within the ATS (Automatic Transfer Switch) provide remote signaling to the ATS logic controller and provide customer position indication contacts. Each Auxiliary Assembly consists of three Single Pole Double Throw switch assemblies. These switches are integrated into a convenient module that can be inserted into the ATS Source Breaker. Both the L and M-frame series breaker use the Same Auxiliary Contact Module. The Breaker Aux Contact Kit is for repair or replacement of existing Aux Contact Module. Eaton does not endorse modifying an ATS assembly outside of its intended design.

2. Installation
Figure 1 illustrates the Front Switching Mechanism with the arc barrier removed, exposing the automatic switching mechanism. This mechanism is held in place by 4 bolts that attach, through the breaker, to the back panel. This mechanism must be removed in order to replace the Aux Contact Module. For L-Frame Transfer Switches, the top and bottom bolts contain a spacer as indicated in Figure 1. The M-Frame style Transfer Switch does not require these spacers. With the L-Frame Transfer switch, care should be taken to avoid losing these spacers as the Front Switching Mechanism is removed. Also, the motor operator is positively indexed and should only rotate in one direction. If for some reason the alignment of the armature becomes misaligned use the manual operating handle to index the switching mechanism to the correct position. The J1 connector should be unplugged to allow removal of the Front Switching Mechanism.

Note: K-Frame transfer switch shown in photo. The actual size and of the Front Switching Mechanism may vary.
Figure 2 shows the ATS with the Front Switching Mechanism removed. Notice the orientation of the bottom breaker is opposite that of the top breaker. Once the cover is removed, the breaker cavity holding the Aux Contact assembly is exposed. Figure 3 shows the internal breaker components.

![Figure 2. Switching Mech Removed M-Frame.](image1)

The instructions for changing the Aux Contacts for the Bottom breaker are exactly the same with the exception of the breaker orientation. Therefore the Aux contact module will be oriented 180 degrees opposite the Normal breaker. Once the Front Switching Mechanism is removed, the breaker must be opened using the breaker handle mechanism. Place the breaker in the off position and verify that the Handle Position Indicator is green. With the breaker open, the cover must be removed. The white cover is held in place by 8 (L-Frame) or 12 (M-Frame) screws, two for each lug cover and 4 surrounding the handle mechanism in the middle of the breaker. The MD has 4 additional screws, two in only the top corners and two above the bottom lug cover. The Factory Seal shown on the bottom breaker must be removed on the breaker affected by the Aux Contact replacement.

Note: Under no circumstances should you remove the breaker from the back pan. This will damage the mechanical interlock mounted behind the breakers not shown in this picture.

![Figure 3. Internal Breaker Components.](image2)

Removal of the bad Aux Contact Assembly is straight forward. With your thumb and forefinger, slide the Aux assembly out of the channeled grooves on top of the trip unit of the breaker. Notice the routing of the Aux Assembly Wiring and how it is installed within the wire way on the side of the breaker. This is important as the replacement Aux Contact Module wires will fit in the same wire way. Once the original Aux Contact Module is removed replace with the new Aux Contact module. The new Aux Contact module should slide in the grooved channels atop the trip unit until it clicks into place. Replace the breaker cover making sure the Aux Contact Wires don’t pinch between the breaker cover and the base. Each Aux Contact Module is made of 3 sets of Black, Blue and Red wires.

![Figure 4. Aux Diagram](image3)

It is important that each set of wires is grouped with a corresponding Aux Contact and routed through the wire way channel on the side of the breaker. The order of the wire sets, within the wire way, is not important but the grouping of the 3 wire set is as it corresponds to an individual set of Aux Contacts shown in Figure 4.
For additional information regarding the installation of the Aux contact refer to IL29C123A (Installation Instructions for Auxiliary Switch for LDB, LD, HLD, LW, HLW, LWC Circuit Breakers, Series C Molded Case Switches, and Motor Circuit Protectors). The wires external to the breaker should be pre-crimped with female connector pins that slide into the existing P plug of the transfer switch. Uncouple the P1/S1 connection of the respective breaker requiring the replacement Aux Contact Module. Please note this connection as it may be different for Service Entrance Transfer Switches.

Your ATS Aux Contact Replacement Kit should come with an AMP pin extraction tool used to remove the crimped pins from the P plug. Figure 5 shows the AMP Tool removing a crimped pin from the P plug. Pins 7-15 of the P plug connector represent the Aux Contacts for their respective breaker.

Using the AMP Tool, remove the Aux Contact Module wires of the old Aux Contact Module and replace with the Aux Contact Module wires recently installed in the breaker. Once this is complete, you are now ready to reassemble the Transfer Switch Plug connections making sure that each pin is properly seated within the plug and making a good connection to its corresponding socket. When replacing the Transfer Switch Breaker Cover, note that the cover screws should be secured to a torque value of 20 - 22 In/LB. Now that the Transfer Switch Circuit breaker has been reassembled, and all the P and S connectors reassembled, the final portion is to reattach the Front Switching Mechanism.

Refer to Figure 1 on where to mount the screws affixing the Front Switching Mechanism to the ATS. The handle mechanism of the affected breaker must be closed or returned to the position it was in before the Front Switching Mechanism is removed. The Torque requirements for this connection is 20 ft/lb. When aligning the Front Switching Mechanism, the Handle Mechanism of the breaker will provide a slight interference fit when attaching the Front Switching Mechanism. With the Front Switching Mechanism reattached, reconnect the J1 plug that was previously disconnected. Upon completion, the Transfer Switch should be tested and commissioned before returning the equipment to normal service.
This instruction leaflet is published solely for information purposes and should not be considered all-inclusive. If further information is required, you should consult Eaton.

Sale of the product(s) shown in this literature is subject to terms and conditions outlined in appropriate Eaton selling policies or other contractual agreements between the parties. This literature is not intended to and does not enlarge or add to any such contract. The sole source governing the rights and remedies of any purchaser of this equipment is the contract between the purchaser and Eaton.

NO WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE OR MERCHANTABILITY, OR WARRANTIES ARISING FROM COURSE OF DEALING OR USAGE OF TRADE, ARE MADE REGARDING THE INFORMATION, RECOMMENDATIONS AND DESCRIPTIONS CONTAINED HEREIN. In no event will Eaton be responsible to the purchaser or user in contract, in tort (including negligence), strict liability or otherwise for any special, indirect, incidental or consequential damage or loss whatsoever, including but not limited to damage or loss of use of equipment, plant or power system, cost of capital, loss of power, additional expenses in the use of existing power facilities, or claims against the purchaser or user by its customers resulting from the use of the information, recommendations and description contained herein.

CSA is a registered trademark of the Canadian Standards Association. National Electrical Code and NEC are registered trademarks of the National Fire Protection Association, Quincy, Mass. NEMA is the registered trademark and service mark of the National Electrical Manufacturers Association. Uniform Building Code (UBC) is a trademark of the International Conference of Building Officials (ICBO). UL is a federally registered trademark of the Underwriters Laboratories Inc.

Eaton
Electrical Group
1000 Eaton Boulevard
Cleveland, OH 44122
United States
877-ETN CARE (877-386-2273)
Eaton.com