Technical specifications for 5 kA, normal-duty distribution 4.5 kV and 5 kV VariSTAR MOV disks

AV5NG
- Glass insulating collar (translucent)
- Mov disk
- Metalized electrode (to edge of disk)
- Surface area volume = 8.64 cm² = 28.78 cm³

AV5NE
- Glass insulating collar
- Mov disk
- Proxy insulting collar (solid grey)
- Metalized electrode (to edge of disk)
Application
The VariSTAR™ MOV (Metal Oxide Varistor) disks described in this Technical Data sheet are for use as active elements in IEC 5 kA and ANSI Normal-Duty Distribution-Class Surge Arresters, when applied in an appropriately designed arrester.

Polymer-housed arrester designs:
Use the glass collared AV5NG series VariSTAR disks, when applying disks to a polymer-housed arrester, where the dielectric strength of the material in direct contact with the disks exceeds the dielectric strength of air.

Porcelain-housed arrester designs:
Option 1.
Use the glass collared AV5NG series VariSTAR disk together with an Epoxy Film Tape, as described in technical data sheet TD-241, when applying disks in a porcelain-housed arrester, where the material in direct contact with the VariSTAR disks is equal to the dielectric strength of air.

Option 2.
Use the epoxy collared AV5NE series VariSTAR disks, when applying disks in a porcelain-housed arrester, where the dielectric strength of the material in direct contact with the disks is equal to the dielectric strength of air.

Electrical properties for AV5NG and AV5NE series VariSTAR disks are otherwise identical.

Catalog number reference:
AV5 = Disk Size
N = Normal-Duty, 5 kA
G/E = Glass or Epoxy Collar
PA/PB = Rating Designation

Figure 1. Dimensions AV5NG VariSTAR Disk and AV5NE VariSTAR Disk in mm

Table 1. Suggested usage & class ratings

<table>
<thead>
<tr>
<th>Catalog number</th>
<th>Suggested $U_r$ (Rating)</th>
<th>Suggested $U_c$ (MCOV)</th>
<th>IEC LD Current withstand</th>
<th>ANSI LCLD class</th>
<th>IEC high current ANSI HCSD</th>
<th>$I_{ref}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>AV5NEPA</td>
<td>4.5 kV</td>
<td>3.94 kV</td>
<td>150 A 2000 μs</td>
<td>75 A 2000 μs</td>
<td>65 kA</td>
<td>3 mA</td>
</tr>
<tr>
<td>AV5NGPA</td>
<td>4.5 kV</td>
<td>3.94 kV</td>
<td>150 A 2000 μs</td>
<td>75 A 2000 μs</td>
<td>65 kA</td>
<td>3 mA</td>
</tr>
<tr>
<td>AV5NEPB</td>
<td>5.0 kV</td>
<td>4.26 kV</td>
<td>150 A 2000 μs</td>
<td>75 A 2000 μs</td>
<td>65 kA</td>
<td>3 mA</td>
</tr>
<tr>
<td>AV5NGPB</td>
<td>5.0 kV</td>
<td>4.26 kV</td>
<td>150 A 2000 μs</td>
<td>75 A 2000 μs</td>
<td>65 kA</td>
<td>3 mA</td>
</tr>
</tbody>
</table>
Table 2. Maximum residual voltages

<table>
<thead>
<tr>
<th>Catalog number</th>
<th>Catalog number</th>
<th>Catalog number</th>
<th>Rating (kV)</th>
<th>MCOV (kVrms)</th>
<th>0.5 μsec (ANSI) kV @ 5 kA</th>
<th>1.0 μsec (IEC) kV @ 5 kA</th>
<th>kV pk @ 1.5 kA</th>
<th>kV pk @ 3 kA</th>
<th>kV pk @ 5 kA</th>
<th>kV pk @ 10 kA</th>
<th>kV pk @ 20 kA</th>
<th>kV pk @ 40 kA</th>
</tr>
</thead>
<tbody>
<tr>
<td>AV5NEPA</td>
<td>AV5NGPA</td>
<td>AV5NEPB</td>
<td>4.5</td>
<td>3.94</td>
<td>16.0</td>
<td>15.9</td>
<td>13.1</td>
<td>14.1</td>
<td>15.1</td>
<td>16.5</td>
<td>18.9</td>
<td>21.9</td>
</tr>
<tr>
<td>AV5NGPB</td>
<td>AV5NEPB</td>
<td>AV5NGPB</td>
<td>5.0</td>
<td>4.26</td>
<td>17.3</td>
<td>17.1</td>
<td>14.1</td>
<td>15.2</td>
<td>16.3</td>
<td>17.8</td>
<td>20.4</td>
<td>23.6</td>
</tr>
</tbody>
</table>

Note: Values other than V5 kA are typical values.

Figure 2. Maximum residual voltage vs. impulse current

Figure 3. Temporary overvoltage capability, 60°C

Note: The TOV capability will depend on the design and thermal capability of the arrester. The above TOV curve represents a typical Eaton Cooper Power series design.

Table 3. Guaranteed characteristics based on 100% testing

<table>
<thead>
<tr>
<th>Catalog number</th>
<th>Min. V_{1mA/cm^2} (kV DC)</th>
<th>Max. V_{5kA} (kV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AV5NEPA</td>
<td>7.50</td>
<td>15.1</td>
</tr>
<tr>
<td>AV5NGPA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AV5NEPB</td>
<td>8.12</td>
<td>16.3</td>
</tr>
<tr>
<td>AV5NGPB</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figure 4. Aging curve AV5NG and AV5NE VariSTAR disks

Aging factors based on the IEC and ANSI 1000 hour power loss tests are guaranteed to be less than or equal to 1. The 1000 hour test is performed at 115°C, which is equivalent to 110 years with the operating temperature at 40°C and operating voltages less than or equal to COV. See Figure 4.

**Factory routine tests performed on each disk**

- Physical Inspection
- Residual Voltage Measurement (referenced to 5 kA, 8/20 μs)
- $V_{1mA/cm^2}$ (DC voltage at 8.6 mA)
- Power Loss @ 0.551 of $V_{1mA/cm^2}$ Voltage
Top Line:
Digit 1 ...................................... Factory No. (May be numeral or letter designation)
Digit 2 ...................................... Last Digit of Year of Manufacture
Digits 3, 4, 5, 6 ............................... Factory Lot Number
Digit 7 ...................................... Factory Use Only

Second Line:
Digit 1 ...................................... Rating Code (See Table 4 below)
Digit 2 ...................................... Factory Use Only

Figure 5. Disk identification system

**Table 4. Disk category**

<table>
<thead>
<tr>
<th>Rating Code</th>
<th>Catalog Number</th>
<th>Min. $V_{1mA/cm^2}$ (kV DC)</th>
<th>Max. $V_{5kA}$ (kV)</th>
<th>Power Loss Test</th>
<th>Min. $V_{ref \at I_{ref}}$ of 3 mA (kV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>AV5NEPA</td>
<td>7.50</td>
<td>15.1</td>
<td>4.14</td>
<td>0.245</td>
</tr>
<tr>
<td></td>
<td>AV5NGPA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>AV5NEPB</td>
<td>8.12</td>
<td>16.3</td>
<td>4.47</td>
<td>0.260</td>
</tr>
<tr>
<td></td>
<td>AV5NGPB</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Storage and handling**

The VariSTAR MOV disks are packaged on wooden pallets and secured for ocean container shipment. The pallet/boxes shall be stored indoors until the purchaser’s acceptance test. Once opened, the disks shall be stored in a dry and clean environment to avoid moisture or other contaminants to collect on the disk surface. The MOV disk should not be handled with bare hands. A latex or other nonfibrous glove should be used to prevent contaminants from compromising the collar of the disk.
Technical specifications for 5 kA, normal-duty distribution
4.5 kV and 5 kV VariSTAR MOV disks

This page intentionally left blank.
Technical Data TD235028EN
Effective August 2017

Technical specifications for 5 kA, normal-duty distribution
4.5 kV and 5 kV VariSTAR MOV disks

For Eaton’s Cooper Power series surge arrester product information
call 1-877-277-4636 or visit:
www.eaton.com/cooperpowerseries.