Medium-voltage, single-phase capacitor installation and maintenance instructions
DISCLAIMER OF WARRANTIES AND LIMITATION OF LIABILITY

The information, recommendations, descriptions and safety notations in this document are based on Eaton Corporation’s (“Eaton”) experience and judgment and may not cover all contingencies. If further information is required, an Eaton sales office should be consulted. Sale of the product shown in this literature is subject to the terms and conditions outlined in appropriate Eaton selling policies or other contractual agreement between Eaton and the purchaser.

THERE ARE NO UNDERSTANDINGS, AGREEMENTS, WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE OR MERCHANTABILITY, OTHER THAN THOSE SPECIFICALLY SET OUT IN ANY EXISTING CONTRACT BETWEEN THE PARTIES. ANY SUCH CONTRACT STATES THE ENTIRE OBLIGATION OF EATON. THE CONTENTS OF THIS DOCUMENT SHALL NOT BECOME PART OF OR MODIFY ANY CONTRACT BETWEEN THE PARTIES.

In no event will Eaton be responsible to the purchaser or user in contract, in tort (including negligence), strict liability or otherwise for any special, indirect, incidental or consequential damage or loss whatsoever, including but not limited to damage or loss of use of equipment, plant or power system, cost of capital, loss of power, additional expenses in the use of existing power facilities, or claims against the purchaser or user by its customers resulting from the use of the information, recommendations and descriptions contained herein. The information contained in this manual is subject to change without notice.
Contents

DISCLAIMER OF WARRANTIES AND LIMITATION OF LIABILITY ... I

SAFETY FOR LIFE ... III

SAFETY INFORMATION ... III
 Safety instructions ... iii

PRODUCT INFORMATION .. 1
 Introduction ... 1
 Read this manual first ... 1
 Additional information ... 1
 Handling and storage ... 1
 Standards ... 1
 Initial inspection ... 1
 Pre-installation preparations .. 1

INSTALLATION ... 2

MAINTENANCE ... 2
 Handling a failed capacitor ... 2
 Handling a partially-failed capacitor unit ... 3
 Disposal of capacitors ... 3
Safety for life

Eaton’s Cooper Power series products meet or exceed all applicable industry standards relating to product safety. We actively promote safe practices in the use and maintenance of our products through our service literature, instructional training programs, and the continuous efforts of all Eaton employees involved in product design, manufacture, marketing and service.

We strongly urge that you always follow all locally approved safety procedures and safety instructions when working around high-voltage lines and equipment and support our “Safety For Life” mission.

Safety information

The instructions in this manual are not intended as a substitute for proper training or adequate experience in the safe operation of the equipment described. Only competent technicians, who are familiar with this equipment should install, operate and service it.

A competent technician has these qualifications:

• Is thoroughly familiar with these instructions.
• Is trained in industry-accepted high- and low-voltage safe operating practices and procedures.
• Is trained and authorized to energize, de-energize, clear, and ground power distribution equipment.
• Is trained in the care and use of protective equipment such as flash clothing, safety glasses, face shield, hard hat, rubber gloves, clampstick, hotstick, etc.

Following is important safety information. For safe installation and operation of this equipment, be sure to read and understand all cautions and warnings.

Hazard Statement Definitions

This manual may contain four types of hazard statements:

⚠️ DANGER
Indicates a hazardous situation which, if not avoided, will result in death or serious injury.

⚠️ WARNING
Indicates a hazardous situation which, if not avoided, could result in death or serious injury.

⚠️ CAUTION
Indicates a hazardous situation which, if not avoided, could result in minor or moderate injury.

⚠️ CAUTION
Indicates a hazardous situation which, if not avoided, could result in equipment damage only.

Safety instructions

Following are general caution and warning statements that apply to this equipment. Additional statements, related to specific tasks and procedures, are located throughout the manual.

⚠️ DANGER
Hazardous voltage. Contact with hazardous voltage will cause death or severe personal injury. Follow all locally approved safety procedures when working around high- and low-voltage lines and equipment. G103.3

⚠️ WARNING
Before installing, operating, maintaining, or testing this equipment, carefully read and understand the contents of this manual. Improper operation, handling or maintenance can result in death, severe personal injury, and equipment damage. G101.0

⚠️ WARNING
This equipment is not intended to protect human life. Follow all locally approved procedures and safety practices when installing or operating this equipment. Failure to comply can result in death, severe personal injury and equipment damage. G102.1

⚠️ WARNING
Power distribution and transmission equipment must be properly selected for the intended application. It must be installed and serviced by competent personnel who have been trained and understand proper safety procedures. These instructions are written for such personnel and are not a substitute for adequate training and experience in safety procedures. Failure to properly select, install or maintain power distribution and transmission equipment can result in death, severe personal injury, and equipment damage. G122.3
CAUTION
Operation at an ambient temperature higher than 55 °C (131 °F) will shorten the service life of a power capacitor.

Pre-installation preparations
1. Make sure that branch circuit conductors have a current-carrying capacity at least 135% of the operating current of the capacitor installation.
2. Make sure the ambient temperatures in which the capacitor installation is to operate is between –50 °C and 55 °C (–58 °F and 131 °F).
3. Make sure the capacitor installation is protected by a correctly rated fuse. (Contact your local Eaton's Cooper Power series product representative for fusing application guidelines.)
Installation

1. De-energize the circuit.
2. Install the rack or frame in which the capacitors are to be mounted.
3. Hoist each capacitor into position in the rack or frame using the capacitor’s hanger brackets.

CAUTION

Never use a bushing as a handle when lifting or moving a power capacitor; use only the hanger brackets.

Never use the hanger brackets of the capacitor when lifting a complete capacitor installation. Never walk on an installed capacitor unit or its bushing(s).

4. Install each capacitor in the rack or frame so that heat from other equipment is minimal and air can circulate freely around each capacitor in the installation.
 - The capacitor terminals accept single-conductor sizes from no. 12 to no. 1 solid or stranded or two-conductor sizes from no. 8 to no. 2 stranded.

CAUTION

It is important to use a properly sized conductor with the connector to assure good electrical contact without arcing.
 - The recommended torque on a terminal clamp nut is 16–19 ft-lb. (21.7 to 25.8 N-m)

5. If switches are to be installed, hoist them into position on the rack or frame.
6. Ground the mounting frame and ground each capacitor tank to the frame or to the ground.
7. If shorting wires were used for storage/transportation of the capacitor unit, verify that they are removed prior to energization.
8. Make all electrical connections.
9. Re-energize the circuit.

WARNING/DANGER

Do not re-energize a capacitor that has experienced a fuse operation without first making sure that the capacitor has not failed. All-film capacitors may fail without being severely bulged and may rupture on re-energization.

Checking the capacitance of a capacitor is the best way to determine if the capacitor is sound or has completely or partially failed.

5. If applicable, inspect all fuse cutouts, and if a fuse cutout has operated—or if the capacitors have been subjected to unusual operating conditions—use a low-voltage capacitance meter to check the condition of all capacitors.

Note: Shorting one internal series group in an unfused capacitor results in a predictable increase in the capacitance level. Shorting an internal element (with a corresponding fuse operation) in an internally-fused capacitor results in a reduction in the capacitance level. See Handling a Partially-failed Capacitor Unit section below for the formula to verify if internal elements within the capacitor have failed.

Note: Not applicable to internally fused capacitors.

Maintenance

Periodic inspections and maintenance are recommended to check capacitance, bushing contamination, or fuse operations.
1. De-energize the capacitors.
2. Clean all bushings.
3. Make sure all electrical connections are tight.
4. Inspect all capacitor tanks for leaks.

WARNING/DANGER

Proper skin, eye, and respiratory protection must be worn and the work area must be properly ventilated when handling a ruptured (failed) capacitor tank. Be extremely careful in removing a ruptured tank from a frame or rack and while transporting the tank to a disposal site.

If fluid dielectric spills or splashes onto the skin, immediately wipe the liquid from the skin, then wash the affected skin area thoroughly with soap and water.

If fluid dielectric splashes into the eyes, immediately flush the eyes with large amounts of clear water. Call a physician immediately.

If fluid dielectric is ingested, administer 2 to 4 oz. of vegetable or olive oil and 1 to 2 oz. of activated charcoal. DO NOT INDUCE VOMITING. Call a physician immediately.
Handling a failed capacitor
1. Ensure power is removed from the capacitor.
2. Allow the capacitor to discharge before shorting. For units containing discharge resistors designed to discharge the capacitor unit from peak rated voltage to less than 50 V in 5 minutes, allow five minutes before grounding. For units containing discharge resistors designed to discharge the capacitor unit from peak rated voltage to less than 75 V in 10 minutes, allow ten minutes before grounding. In the absence of design information, wait ten minutes before grounding.
3. Remove the capacitor from the frame or rack.

Handling a partially-failed capacitor unit
Use the following formula for detecting partially failed unfused capacitor unit:
1. Measure capacitance of the unit with a capacitance meter. This is the C_{measured} value.
2. If $C_{\text{measured}} > C_{\text{rated}} \left[\frac{S}{S-1} \right]$, then the capacitor is partially-failed and should be removed from the circuit, where S is the number of series groups inside a single capacitor.

Use the following formula for detecting partially failed internally-fused capacitor unit:
1. Measure capacitance of the unit with a capacitance meter. This is the C_{measured} value.
2. If $C_{\text{measured}} < C_{\text{rated}} \left[\frac{S \times (P-F)}{(S-1) \times (P-F) + F} \right]$, then the capacitor is partially failed and should be removed from the circuit, where S is the number of series groups inside a single capacitor, P is the number of parallel elements, and F is the number of operated internal fuses. (Internally-fused units can have one or more operated internal element fuses and not change the measured capacitance beyond the tolerance allowed for the rated capacitance by the standards.)

Disposal of capacitors
The impregnating fluid dielectric in Eaton’s Cooper Power series power capacitors is a non-PCB biodegradable, Class IIIB, combustible liquid. Disposal of these capacitors by incineration or other means must be in accordance with all applicable federal, state, and local regulations.