

Introduction

For over 60 years, Eaton has manufactured B-Line series cable tray systems. Today, our state-of-the-art facilities and Engineering Services team support small to large scale cable management applications for commercial, industrial, data and communication new and retrofit construction projects. For more information, visit <u>Eaton.com/cabletray</u>.

Manufacturing Locations

Important notice: No warranty, either expressed or implied, is made as to either its applicability to or its compatibility with specific requirements of this information, nor for damages consequential to its use. All design characteristics, specifications, tolerances and similar information are subject to change without notice.

NOTICE

Eaton reserves the right to change the specifications, materials, equipment, prices or the availability of products at any time without prior notice. While every effort has been made to assure the accuracy of information contained in this catalog at the time of publication, Eaton is not responsible for inaccuracies resulting from undetected errors or omissions.

Cable Tray Information Click here to go to Section A

About Us

Click here to go to Section B

The Company, Products and Extras B-1 – B-4

Cable Tray Selection

Click here to go to Section C

Selection Process	
Strength	
Width and Depth Cable Fill Per 2011 NEC 392	
Straight Section Length	C-23
Loading Possibilities	C-24
Bottom Type	C-25
Fitting Bend Radius	C-25

Flextray

Click here to go to Section D

Finishes	
Load & Fill Charts	D-4
Straight Sections	D-5 & D-6
Splicing Accessories	D-8 – D-16
Ceiling Support Methods	D-18 – D-24
Wall Support Methods	D-26 – D-30
Accessories	D-31 – D-40
Installation	D-41 – D-48

Cable Channel

Click here to go to Section E

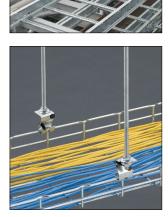
KwikSplice cable channel E1 -	– E-15
ACC & PCC cable channel E-16	- E-33

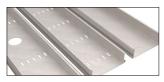
KwikRail Cable Tray

Click here to go to Section KR

KwikRail[™] Cable Tray (Aluminum) KR-1 – KR-23

Series 1 Steel


Click here to go to Section H


Straight Sections	H-3 – H-6
Accessories	H-7 – H-16
Specifications	H-17
Fittings	H-18 – H-26

Series 2, 3, 4, & 5 Aluminum

Click here to go to Section I

Series 2, 3, 4, & 5 Steel	Click here to go to Section J
Straight Sections Accessories Specifications	J-11 – J-23

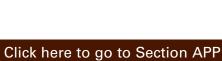
Series 2, 3, 4, & 5 Stainless Steel

Click here to go to Section K

Straight Sections	5
Accessories K-6 – K-17	7
Specifications	3

Series 2, 3, 4, & 5 Fittings

Click here to go to Section L


Fitting Numbering System	L-3
Horizontal Bends, Tees & Crosses, Reducers	L-4 – L-7
Horizontal Reducing Tees, Expanding Tees & Crosses	L-8 – L-10
Horizontal Wyes	L-11
Vertical Bends and Tees	L-12 – L-16
Cable Support Fittings	L-17

Fiberglass Cable Tray

Click here to go to Section M

Cable Cleats	Click here to go to Section N
Products	

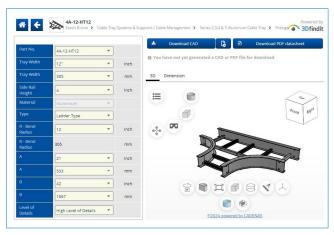
Firestop	Click here to go to Section O
Products	O-2 – O-6

Special Applications Side Rails (Aluminum & Steel) Cable Tray Weights	APP-6
Metric Conversion Charts	APP-9 & APP-10
Master Cable Tray Systems Specifications Cable Tray Sizing Requirements	
Installation Data	
Support Channels & Channel Nuts	
Concrete Inserts & Channel Fittings	AFF-10

Appendix	
Appendix - Botte	m Design Options
	These options are in addition to the Standard Ladder Rungs and Cable Trays.
Marine Bung	Available in Aluminum, HDGAF Steel and Stainless Steel
Giantus Shool	Compared for latent and lifest 30 systems: Second and systems and second a
	Solid Bottom
A	 Solid flat sheet welded into the Cable Tray above the range. Standard rung specing is 12 inches. The flat sheet may be installed over 854 range "slot down".
And	Examples: 24450-36-144 First sheet bottom over standard rung on 12" specing, 24458951-38-144 First sheet bottom over B54 smit rung slot dover on 12" specing.

Appendix

I


CoSPEC™, the Specifier Center, is designed to help you easily SELECT, VIEW and DOWNLOAD B-Line series product design content in any one of nearly one hundred non-proprietary and proprietary CAD, BIM, PDMS, and graphics formats, which helps speed the integration of the content into your design project.

Features

- Easy integration and configuration
- Comprehensive library of 2D drawings and 3D models for CAD, BIM, PDMS, SP3D, and graphics output
- The most up to date software versions and product data information are always available
- Submittals and specification sheets in PDF format
- Proprietary file format outputs are native to the chosen software

Nearly a Hundred Download Options

- Aveva PDMS and Intergraph SmartPlant SP3D (on select products) content
- Autodesk Revit output available
- Proprietary formats from AutoCAD to SolidWorks to Catia
- Non-proprietary formats like DXF and STEP, and more
- Graphics files in a number of formats including EPS

To get started planning your next project, visit Eaton.com/CoSPEC.

CoSPEC B-Line series Specifier Center - Available Outputs

2D Native	2D Neutral & Graphics	3D Native	3D Neutral
 Allplan 2008 AutoCAD >=V14 Cadkey CDL >=V19 Catia IUA - V4 HP ME 10 >=V9 Medusa >=2000i Microstation (DGN) >=V8 SolidEdge >=V17 VX (Varimetrix) >=V5.0 	 BMP (2D & 3D View) DWF-ASCII 5.5, Binary 5.5 and Compressed 5.5 DWG >=V14 DXF-V12\HPGL-V2 IGES >= V5.0 JPEG (2D & 3D Views) Metafile 2D-V1, & PS2-V2 MI >=V8 PDF Datasheet Postscript EPS SVG TIFF (2D & 3D View) 	 Autodesk 3D Studio MAX Allplan = 2008 AutoCAD >=V14 AVEVA PDMS/Marine (Equipment Spec) Caddy++ via SAT-V4.2 Catis >=V5 R8 and IUA-V4 EMS Google SketchUp Autodesk Inventor >=R5.3, R10, R11 Mechanical Desktop >=V5 Nupas/Cadmatic One Space Modeling >=2007 Pro/E Wildfire >=I 	 CIP DWG >=V14 DXF V14 IGES JT Metafile 3D (PS3)-V2 Parasolid-Binary V15 and Text V15 PDF 3D-7.01 SAT - V2.0 through V6.0 STEP-AP203, AP215a & AP214b STL U3D (Universal 3D) VRML >=V1.0
		 PRO-Desktop Autodesk Revit >= 2009* (coming soon) SolidEdge >=V17 SolidWorks >=2001+ Think3 >=2006.2 	• XGL

- Tribon M3
- Unigraphics >=NX3
- VX (Varimetrix) >=V5

To get started, visit Eaton.com/CoSPEC.

Trust your seismic engineering needs to the TOLCO[™] seismic experts

Codes and requirements differ by location and project. Our seismic experts understand the codes, and can help you reduce risk and meet your project requirements.

De-Risk your electrical, mechanical, fire protection, HVAC project today by following these easy steps:

Step 1: Request a quote

Simply contact us at <u>blineseismicsupport@eaton.com</u> and include your project drawings, specifications, and bid date.

• Don't have drawings? Arrange a site visit with your team

\$7
Ψ

- Services include: a detailed review of project requirements, professional engineer certification, OSHPD OPM approval, full submittal package... and more
- Products include: full breadth of TOLCO[™] seismic bracing and B-Line series cable tray, pipe hangers, vibration isolation and strut systems
- Products meet or exceed all building code requirements
- Products are designed to help deliver lowest total installed cost solution

Step 2: Review seismic layout drawings

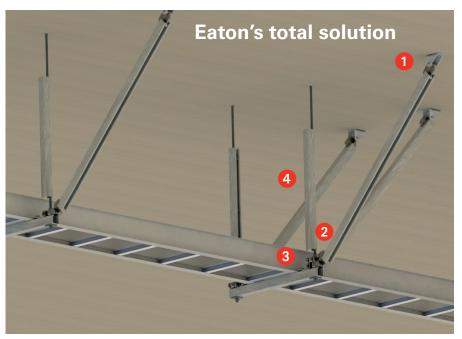
Once you are ready to proceed with your project, our engineering team develops detailed seismic layouts on the project drawings.

- We determine the minimum number of brace locations to meet local codes and specifications
- Drawings are stamped by a Professional structural engineer
- We allow for up to 15% of brace location changes and 1 layout revisions at no charge
- You can rely on our quoted number from estimation to execution

Step 3: Product delivered to jobsite for install

Upon approval of the layout drawings, our products are delivered to the job site through your preferred distributor.

• No need for kits and laying out the braces, each type of brace assembly is exactly the same


- Products ship as full upper and lower attachment assemblies
- Keep it simple and only use what you need
- Return unused material to your distributor, or keep for the next project and reduce your material cost
- We make inspection easier, all products feature visual verification break away bolts to help ensure correct torque

From Mechanical, Electrical, Plumbing, Fire Protection to HVAC Equipment, Eaton is your one-source solution for engineering services and product solutions.

Contact us at <u>blineseismicsupport@eaton.com</u>

For more information, visit Eaton.com/TOLCO.

One source for all of your seismic and cable management needs

Eaton's B-Line series cable tray with TOLCO seismic bracing is the recommended total solution for your project. Our cable tray, bolted framing, and seismic bracing are approved as one system through third party testing.

Our team of experts can help you select the best cable tray series for your application, as well as designing your seismic bracing layout to ensure it meets applicable building codes and standards.

Maximize your productivity by utilizing our engineering services:

- BOM assistance
- submittal packages
- engineered design layout
- PE Stamp in all 50 states and Canada

Rely on Eaton for one solution for your B-Line series cable tray and TOLCO seismic bracing installation.

Request a quote: Blineseismicsupport@eaton.com

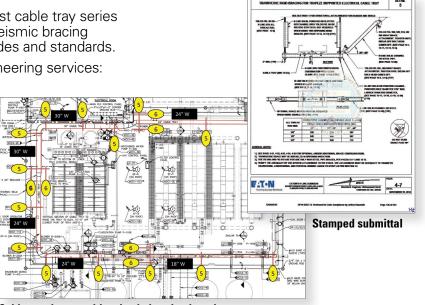

For additional information, visit Eaton.com/seismicbracing.

Fig. 98B

Benefits of Eaton's Turn-Key Seismic Solutions

- Pre-approved assembly drawing packages for B-Line series cable tray with TOLCO seismic bracing attachments
- Ideal for new construction and retrofit installations
- Install up to 50% faster
 No torque-wrench for break-off bolts
 - Braces fully assembled
 - Only 3 parts per brace
- Secure cable tray B-Line series cable tray with hold down clamps and guides approved for seismic applications

Cable tray layout with seismic bracing locations

Cable tray is a mechanical support system that can support cables and raceways. Cable tray is not a raceway. Cable tray systems are required to be electrically continuous but not mechanically continuous.

Advantages of Eaton's B-Line series Cable Tray Systems

- Safety
- Dependability
- Space Savings
- Cost Savings
- Design Cost Savings
- Material Savings
- Installation Cost & Time Savings
- Maintenance Savings

For more information refer to the Cable Tray Manual (Pages MAN-1 thru MAN-53) or call us at 1-800-851-7415

Quick List Selection Process

See pages C-20 & C-21 for expanded selection process.

1. Support Span Issues are: Strength and Length

It is very important to first consider the support span as it affects the strength of the system and the length of the straight sections required.

- Short Span, 6 to 8 foot support spacing use 12 foot sections.
- Intermediate Span, 8 to 12 foot support spacing use 12 foot sections.
- Long Span, 16 to 20 foot support spacing use 20 foot sections.
- Extra Long Span, over 20 foot to 30 foot support spacing use 24 or 30 foot sections.

2. Working Load Issues are: Size (Width, Loading Depth, and Strength) Cable Load

- Types and numbers of cables to support Total cable load in lbs. per linear foot (lbs/ft)
- Power is single layer issue width (refer to local electrical code)
- Low Voltage is stacked issue loading depth and width (refer to affecting code)
- See chart of listed cable load guidelines (refer to page C-24)

Additional Loads

- 200 lb. concentrated load Industrial installations
- Ice, Wind, Snow loads Outdoor installations

Select a Cable Tray system that meets the working load for the support span required and a straight section length that fits the installation. NEMA VE 2 - Straight sections equal to or larger than span. **Eaton.com/cabletray**

3. Installation Environment Issues are: Material and Finish

- Indoor Dry Institutional, Office, Commercial, Light Industrial Aluminum, Pre-Galvanized Steel
- Indoor Industrial Automotive, Pulp and Paper, Power Plants Aluminum, Pre-Galvanized Steel, Possibly Hot-Dipped Galvanized After Fabrication (HDGAF)
- Outdoor Industrial Petrochemical, Automotive, Power Plants Aluminum, Hot-Dipped Galvanized After Fabrication (HDGAF)
- Outdoor Marine Off Shore Platforms Aluminum, Stainless Steel, Fiberglass
- Special Petrochemical, Pulp and Paper, Environmental Air Contact B-Line (1-800-851-7415)

Cable Tray Information

Cable Tray Product Offering

1.Support Span Issues are: Strength and Length

It is very important to first consider the support span as it affects the strength of the system and the length

Two Side Rail Systems

- Aluminum, Pre-Galvanized Steel, Hot Dip Galvanized After Fabrication Steel, 304 and 316L Stainless Steel, Fiberglass in Polyester Resin, and Vinyl Ester
- Systems tested to 100+ lbs/ft on a 40 foot span
- Special bottom options and splices
- Highest quality fittings
- Unmatched accessories supplied with attachment hardware

Cable Channel (See Cable Channel Section - pages E-1 – E-33)

- 2, 3, 4, and 6 inch widths in Aluminum
- 3, 4, and 6 inch widths in Pre-Galvanized Steel, Hot Dip Galvanized after Fabrication Steel and 304 or 316L Stainless Steel
- 3, 4, 6, and 8 inch widths in Fiberglass in Polyester Resin, and Vinyl Ester
- Unmatched fitting and accessory offering
- Special bottom options and splices
- Highest quality fittings
- Unmatched accessories supplied with attachment hardware

FLEXTRAY[™] Wire Basket (See FLEXTRAY Section - pages D-1 – D-58)

- One of the best finishes in the industry, ASTM B633, SC2 (ZN)
- Strong straight top wire design maximizes strength and minimizes weight
- Unmatched accessory package

Advantage of Using Eaton's B-Line series Cable Tray? Selection!

What kind of B-Line series cable tray will work for your project? First, answer three questions.

- **1. Location:** Where will the project be located?
 - A. Is the installation inside or outside? (decision dealing with thermal and weather conditions)
 - **B.** Any contact of corrosive materials? (decision on cable tray material or finish)
 - **C.** Is the location for the cable tray confined or open? (decision on the size and type of cable tray)
- **2. Span:** What would be the longest and shortest spans between supporting locations for the installation of cables? (decision on type or combination of types of cable tray design needed to be the most efficient and economical)
- **3. Cables:** How many and what type of cables are involved in the support installation? (decision on the strength of the cable tray)

All these variables are important to the cost savings and safety of Eaton's B-Line series Cable Tray installation project.

Important notice: The information herein has been carefully checked for accuracy and is believed to be correct and current. No warranty, either expressed or implied, is made as to either its applicability to or its compatibility with specific requirements of this information, nor for damages consequential to its use. All design characteristics, specifications, tolerances and similar information are subject to change without notice.

Short Span 6 - 8 Foot (distance between the supports)

Recommended Short Span Cable Tray Selection Use 10 ft or 12 ft Sections

	Catalog Number	Rail Height	Load Depth	6′	8′	Available Widths	Material*	Straight Sections & Accessories Page	Fittings Pages
-	FT2X2X10	2.380"	2.000"	28	20	2"	S	Section D	—
-	FT2X4X10	2.380"	2.000"	43	27	4"	S	Section D	
	FT2X6X10	2.380"	2.000"	47	27	6"	S	Section D	_
	FT2X8X10	2.380"	2.000"	47	27	8"	S	Section D	_
	FT2X12X10	2.380"	2.000"	47	27	12"	S	Section D	—
	FT2X18X10	2.380"	2.000"	47	27	18"	S	Section D	—
	FT2X20X10	2.380"	2.000"	47	27	20"	S	Section D	_
RA	FT2X24X10	2.380"	2.000"	47	27	24"	S	Section D	_
FLEXTRAY TM	FT4X4X10	4.380"	4.000"	49	36	4"	S	Section D	_
Ë.	FT4X8X10	4.380"	4.000"	77	46	8"	S	Section D	_
-	FT4X12X10	4.380"	4.000"	83	47	12"	S	Section D	_
-	FT4X18X10	4.380"	4.000"	83	47	18"	S	Section D	_
-	FT4X20X10	4.380"	4.000"	83	47	20"	S	Section D	_
-	FT4X24X10	4.380"	4.000"	89	50	24"	S	Section D	_
-	FT6X12X10	6.380"	6.000"	86	48	12"	S	Section D	_
-	FT6X18X10	6.380"	6.000"	89	50	18"	S	Section D	_
-	FT6X20X10	6.380"	6.000"	98	55	20"	S	Section D	_
-	FT6X24X10	6.380"	6.000"	107	60	24"	S	Section D	_
	ACC-03	1.25	1.18	12		3"	А	E-18 - E-19 & E-20 - E-24	E-25 - E-32
Jel _	ACCN-03	1.25	1.18	16	_	3"	А	E-18 - E-19 & E-20 - E-24	E-25 - E-32
anı	ACC-04	1.75	1.68	32	_	4"	А	E-18 - E-19 & E-20 - E-24	E-25 - E-32
່ວ	ACC-06	1.75	1.68	42	_	6"	А	E-18 - E-19 & E-20 - E-24	E-25 - E-32
Cable Channel	†CC-03	1.25	1.176	17	11.5	3"	S, SS_	E-18 - E-19 & E-20 - E-24	E-25 - E-32
Ca	†CC-04	1.75	1.676	36	24.5	4"	S, SS_	E-18 - E-19 & E-20 - E-24	E-25 - E-32
-	†CC-06	1.75	1.676	41	28	6"	S, SS_	E-18 - E-19 & E-20 - E-24	E-25 - E-32
SS	FCC-03	1	0.81	8	_	3"	F	M-29 & M-30 - M-31	M-29 - M-30
gla:	FCC-04	1.38	1.19	12	_	4"	F	M-29 & M-30 - M-31	M-29 - M-30
Fiberglass	FCC-06	1.63	1.44	58	_	6"	F	M-29 & M-30 - M-31	M-29 - M-30
Ē	FCC-08	2.19	1.94	87	_	8"	F	M-29 & M-30 - M-31	M-29 - M-30
E	KRA4A	3.86"	2.97"	221	124	6 - 36"	А	KR-3 - KR-4 & KR-5 - KR-14	KR-16 – KR-20
	KRB4A	3.88"	2.95"	_	198	6 - 36"	А	KR-3 - KR-4 & KR-5 - KR-14	KR-16 – KR-20
Alu	KRB6A	5.88"	4.95"	_	170	6 - 36"	А	KR-3 - KR-4 & KR-5 - KR-14	KR-16 – KR-20
Cable Tray el Aluminur	148	3.625"	3.077"	204	115	6" - 36"	S	Section H	H-18 – H-26
ab	156	4.188"	3.628"	304	171	6" - 36"	S	Section H	H-18 – H-26
Steel	166	5.188"	4.628"	308	173	6" - 36"	S	Section H	H-18 – H-26
	176	6.188"	5.628"	-	194	6" - 36"	S	Section H	H-18 – H-26

*Material: A = Aluminum • S = Steel • SS_ = Stainless Steel Type 304 or 316 • F = Fiberglass

t = G for HDGAF • P for Pre-Galvanized • SS4 for 304 or SS6 for 316 Stainless Steel

(1) Insert 2, 3, 4, 5 or 6 for number of tiers • (2) Insert 2, 3 or 4 for number of tiers

Cable Channel

Eaton.com/cabletray

Intermediate Span 10 - 12 Foot

(distance between the supports)

Cable Tray Information

Span Cable Tray Selection Use 12 ft Sections

Recommended Intermediate

				Span Loa	ad Ibs./ft.					
	Catalog Number	Rail Height	Load Depth	10'	12′	Available Widths	Material*	Straight Sections & Accessories Page	Fittings Page	
	24A	4.120"	3.050"	181	126	6" - 36"	А	-3 – -4 & -13 – -25	L-3 – L-17	
	25A	5.000"	3.930"	200	139	6" - 36"	Α	-5 – -6 & -13 – -25	L-3 – L-17	
	26A	6.120"	5.040"	204	142	6" - 36"	А	-7 – -8 & -13 – -25	L-3 – L-17	
	27A	7.140"	6.000"	177	123	6" - 36"	А	I-9 – I-10 & I-13 – I-25	L-3 – L-17	
	37A	7.140"	6.050"	_	222	6" - 36"	А	I-9 – I-10 & I-13 – I-25	L-3 – L-17	
	KSCC*A-02	2"	1.906"	13	6	2"	А	E-3 - E-4 & E-5 - E-9	E-10 - E-14	
· _ آ	KSCC*A-04	2"	1.906"	27	12	4"	А	E-3 - E-4 & E-5 - E-9	E-10 - E-1	
	KSCC*A-06	2"	1.906"	40	18	6"	А	E-3 - E-4 & E-5 - E-9	E-10 - E-14	
Aluminum	KRA4A	3.86"	2.97"	79	55	6" - 36"	Α	KR-3 - KR-4 & KR-5 - KR-14	KR-16 - KR-	
	KRB4A	3.88"	2.95"	127	88	6" - 36"	Α	KR-3 - KR-4 & KR-5 - KR-14	KR-16 - KR-	
	KRB6A	5.88"	4.95"	114	79	6" - 36"	Α	KR-3 - KR-4 & KR-5 - KR-14	KR-16 - KR-	
	ACC-03	1.25	1.18	4	3	3"	Α	E-18 - E-19 & E-20 - E-24	E-25 - E-3	
	ACCN-03	1.25	1.18	6	4	3"	Α	E-18 - E-19 & E-20 - E-24	E-25 - E-3	
	ACC-04	1.75	1.68	12	8	4"	Α	E-18 - E-19 & E-20 - E-24	E-25 - E-3	
	ACC-06	1.75	1.68	15	10	6"	Α	E-18 - E-19 & E-20 - E-24	E-25 - E-3	
	148	3.625"	3.077"	73	51	6" - 36"	S	H-3 & H-7 – H-16	H-18 – H-26	
	156	4.188"	3.628"	109	76	6" - 36"	S	H-4 & H-7 – H-16	H-18 – H-2	
	166	5.188"	4.628"	111	77	6 "- 36"	S	H-5 & H-7 – H-16	H-18 – H-2	
•	176	6.188"	5.628"	124	86	6" - 36"	S	H-6 & H-7 – H-16	H-18 – H-2	
Steel	248	4.188"	3.140"	148	103	6" - 36"	S	J-3 – J-4 & J-11 – J-23	L-3 – L-17	
S.	258	5.188"	4.140"	157	109	6" - 36"	S	J-5 – J-6 & J-11 – J-23	L-3 – L-17	
	268	6.188"	5.140"	158	110	6" - 36"	S	J-7 – J-8 & J-11 – J-23	L-3 – L-17	
	378	7.188"	6.140"	204	142	6" - 36"	S	J-9 – J-10 & J-11 – J-23	L-3 – L-17	
	† CC-03	1.25	1.176	17	11.5	3"	S, SS_	E-18 - E-19 & E-20 - E-24	E-25 - E-3	
	† CC-04	1.75	1.676	36	24.5	4"	S, SS_	E-18 - E-19 & E-20 - E-24	E-25 - E-3	
`	†CC-06	1.75	1.676	41	28	6"	S, SS_	E-18 - E-19 & E-20 - E-24	E-25 - E-3	
Cable Iray Stainless Steel	348	4.188"	3.130"	180	125	6" - 36"	SS_	K-3 & K-6 – K-17	L-3 – L-17	
Stainle	358	5.188"	4.130"	248	172	6" - 36"	 SS_	K-4 & K-6 – K-17	L-3 – L-17	
	368	6.188"	5.130"	236	164	6" - 36"	 SS_	K-5 & K-6 – K-17	L-3 – L-17	
Fiberglass	24F	4.000"	3.000"	226	157	6" - 36"	F	M-22 & M-45 – M-48	M-27 – M-4	

t = G for HDGAF • P for Pre-Galvanized • SS4 for 304 or SS6 for 316 Stainless Steel

(1) Insert 2, 3, 4, 5 or 6 for number of tiers • (2) Insert 2, 3 or 4 for number of tiers

Cable Tray Selection Charts

Long 16 - 20 Foot (distance between the supports)

Recommended Intermediate Span Cable Tray Selection Use 20 ft Sections

				Spai	n Load II	bs./ft.				
	Catalog Number	Rail Height	Load Depth	16'	18'	20'	Available Widths	Material*	Straight Sections & Accessories Page	Fittings Pages
	H24A	4.190"	2.980"	88	70	56	6" - 36"	А	-3 – -4 & -13 – -25	L-3 – L-17
	25A	5.000"	3.930"	78	62	50	6" - 36"	А	I-5 – I-6 & I-13 – I-25	L-3 – L-17
	34A	4.200"	3.080"	125	99	80	6" - 36"	А	-3 – -4 & -13 – -25	L-3 – L-17
	35A	5.060"	3.960"	121	96	77	6" - 36"	А	I-5 – I-6 & I-13 – I-25	L-3 – L-17
	26A	6.120"	5.040"	80	63	51	6" - 36"	А	-7 – -8 & -13 – -25	L-3 – L-17
~	36A	6.170"	5.060"	131	104	84	6" - 36" A I-7 – I-8 & I-13 – I-25		L-3 – L-17	
	37A	7.140"	6.050"	125	99	80	6" - 36"	А	I-9 – I-10 & I-13 – I-25	L-3 – L-17
Aluminum	46A	6.190"	5.080"	161	127	103	6" - 36"	А	-7 – -8 & -13 – -25	L-3 – L-17
5	47A	7.240"	6.130"	156	123	100	6" - 36"	А	I-9 – I-10 & I-13 – I-25	L-3 – L-17
	H46A	6.240"	5.090"	261	206	167	6" - 36"	А	-7 – -8 & -13 – -25	L-3 – L-17
	H47A	7.240"	6.090"	233	184	149	6" - 36"	А	I-9 – I-10 & I-13 – I-25	L-3 – L-17
	KSCC*A-02	2"	1.906"	_	_	3	2"	А	E-3 - E-4 & E-5 - E-9	E-10 - E-14
	KSCC*A-04	2"	1.906"	_	_	7	4"	А	E-3 - E-4 & E-5 - E-9	E-10 - E-14
	KSCC*A-06	2"	1.906"	_	_	10	6"	А	E-3 - E-4 & E-5 - E-9	E-10 - E-14
	346	4.188"	3.130"	98	78	63	6" - 36"	S	J-3 – J-4 & HDS-11 – HDS-21	L-3 – L-17
	356	5.188"	4.130"	108	85	69	6" - 36"	S	J-5 – J-6 & HDS-11 – HDS-21	L-3 – L-17
	366	6.188"	5.140"	117	93	75	6" - 36"	S	J-7 – J-8 & HDS-11 – HDS-21	L-3 – L-17
Ab	378	7.188"	6.140"	80	63	51	6" - 36"	S	J-9 – J-10 & HDS-11 – HDS-21	L-3 – L-17
Steel	444	4.188"	3.110"	142	112	91	6" - 36"	S	J-3 – J-4 & HDS-11 – HDS-21	L-3 – L-17
Cau	454	5.188"	4.110"	166	131	106	6" - 36"	S	J-5 – J-6 & HDS-11 – HDS-21	L-3 – L-17
	464	6.188"	5.110"	192	152	51	6" - 36"	S	J-7 – J-8 & HDS-11 – HDS-21	L-3 – L-17
	476	7.188"	6.130"	120	95	77	6" - 36"	S	J-9 – J-10 & HDS-11 – HDS-21	L-3 – L-17
	574	7.188"	6.110"	203	160	130	6" - 36"	S	J-9 – J-10 & HDS-11 – HDS-21	L-3 – L-17
<u> </u>	348	4.188"	3.130"	70	56	45	6" - 36"	SS_	K-3 & K-6 – K-17	L-3 – L-17
ss Stee	358	5.188"	4.130"	97	77	62	6" - 36"	SS_	K-4 & K-6 – K-17	L-3 – L-17
Stainless Steel	368	6.188"	5.130"	92	73	59	6" - 36"	SS_	K-5 & K-6 – K-17	L-3 – L-17
	464	6.188"	5.110"	192	152	123	6" - 36"	SS_	K-5 & K-6 – K-17	L-3 – L-17
Fiberglass	36F	6.000"	5.000"	139	109	89	6" - 36"	F	M-23 & M-45 – M-48	M-27 – M-4
Fiberglass	46F	6.000"	5.000"	221	174	141	6" - 36"	F	M-24 & M-45 – M-48	M-27 – M-4

*Material

A = Aluminum S = Steel

 $SS_{-} = Stainless Steel Type 304 or 316$

F = Fiberglass

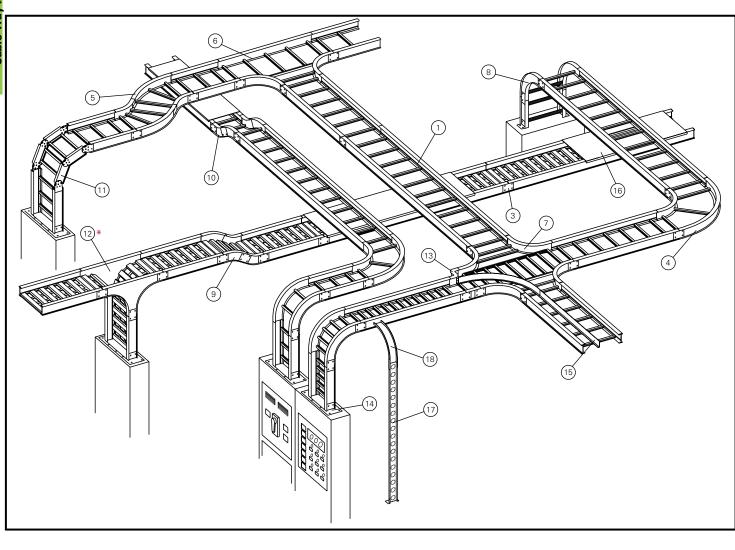
Extra Long Span 24 - 30 Foot (distance between the supports)

Recommended Extra Long Span Cable Tray Selection Use 24 ft or 30 ft Sections (40 ft with S8A)

	Catalog Number	Rail Height			Span Load Ibs/ft 24' 30'		Material*	Straight Sections & Accessories Pages	Fittings Pages	
	46A	6.190"	5.080"	72	-	6" - 36"	А	-7 – -8 & -13 – -25	L-3 – L-17	
	47A	7.240"	6.130"	69	-	6" - 36"	А	-9 – -10 & -13 – -25	L-3 – L-17	
Tra)	56A	6.430"	5.263"	117	75	6" - 36"	A	-7 – -8 & -13 – -25	L-3 – L-17	
Cable Tray Aluminum	57A	7.400"	6.230"	161	102	12" - 36"	Α	-9 – -10 & -13 – -25	L-3 – L-17	
ů	H46A	6.240"	5.090"	116	-	6" - 36"	А	-7 – -8 & -13 – -25	L-3 – L-17	
	H47A	7.240"	6.090"	103	-	6" - 36"	А	-9 – -10 & -13 – -25	L-3 – L-17	
	S8A	8.000"	6.200"	252	161	12" - 36"	A	I-11 & I-12	I-12	
1	444	4.188"	2.110"	63	-	6" - 36"	S	J-3 – J-4 & HDS-11 – HDS-21	L-3 – L-17	
ray	454	5.188"	4.110"	74	-	6" - 36"	S	J-5 – J-6 & HDS-11 – HDS-21	L-3 – L-17	
Cable Tray ^{Steel}	464	6.188"	5.110"	85	-	6" - 36"	S	J-7 – J-8 & HDS-11 – HDS-21	L-3 – L-17	
Cab	476	7.188"	6.130"	53	-	6" - 36"	S	J-9 – J-10 & HDS-11 – HDS-21	L-3 – L-17	
	574	7.188"	6.110"	90	-	6" - 36"	S	J-9 – J-10 & HDS-11 – HDS-21	L-3 – L-17	
Iray Steel	464	6.188"	5.110"	85	-	6" - 36"	SS_	K-5 & K-6 – K-17	L-3 – L-17	

Cable 7 Stainless (

*Material

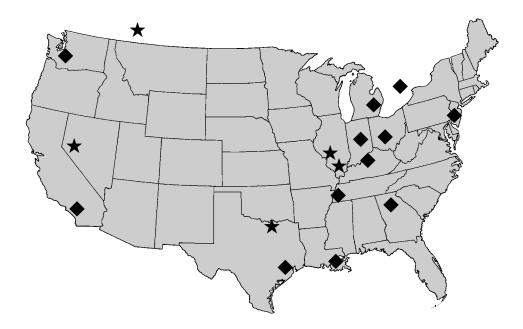

A = Aluminum S = Steel

SS_ = Stainless Steel Type 304 or 316

Cable Tray Systems

Eaton's B-Line series cable trays -

Designed for Your Cable Support Requirements

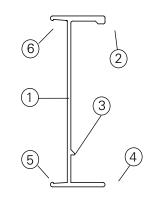


Nomenclature

- 1) Ladder Type Cable Tray
- ③ Straight Splice Plate
- (4) 90° Horizontal Bend, Ladder Type Cable Tray
- (5) 45° Horizontal Bend, Ladder Type Cable Tray
- (6) Horizontal Tee, Ladder Type Cable Tray
- ⑦ Horizontal Cross, Ladder Type Cable Tray
- (8) 90° Vertical Outside Bend, Ladder Type Cable Tray
- 9 45° Vertical Outside Bend, Ventilated Type Cable Tray

- 1 30° Vertical Inside Bend, Ladder Type Cable Tray
- (1) Vertical Bend Segment (VBS)
- (12) Vertical Tee Down
- (3) Left Hand Reducer, Ladder Type Cable Tray
- (A) Frame Type Box Connector
- (15) Barrier Strip Straight Section
- (6) Solid Flanged Tray Cover
- Wentilated Channel Straight Section
- (18) Channel Cable Tray, 90° Vertical Outside Bend

- A proven industry leader with over fifty years experience.
- Committed to the success of its customers through manufacturing, engineering and service.


- Four United States cable tray fabrication sites: (★) Troy, IL Sherman, TX Pinckneyville, IL Reno, NV Calgary, AB
- Twelve inventory locations (�) and numerous distribution locations.
- Industry involvement:
 - NEMA 5VE Member Metallic Cable Tray Section
 - NEMA 5FG Member Nonmetallic Cable Tray Section
 - Cable Tray Institute (CTI) A Founding Member
 - Conforms to the requirements of IEC Standard 61537, 2006 Ed.
- Unmatched cable support systems:
 - Cable Tray Two Side Rail (Metallic)
 - Cable Tray KwikRail Cable Tray System
 - Cable Tray Two Side Rail (Nonmetallic)
 - Cable Tray FLEXTRAY[™] Cable Support Systems
 - Cable Trays
 - Cable Runways Data Centers
 - <u>NEMA Wireways</u>

Aluminum Cable Tray, Series 2, 3, 4 & 5

• Side Rails

Our I-Beam - the most efficient structural shape

Using "Copper-free" 6063-T6 Aluminum Alloy

- I-beam side rail design

 maximize strength-to-weight ratio
- Maximize strength-to-weight ratio
 Added material to top flange to
- Added material to top marge increase cable tray stiffness
 Welding bead
 - positive rung lock
- added material disperses heat 4. **Bottom flange inside**
- positive rung support
- 5. Bottom flange outside
- strong lower flange for hold down clamps and expansion guides
- 6. Top flange outside
 - strong upper flange for securing the tray cover or the conduit-totray adapter

• Rungs - provide system integrity

The rungs can represent 40% of your cable tray system.

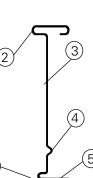
- Rung A Standard for widths through 24"
- Rung B Standard for widths greater than 24"
- For industrial applications 200 lb. concentrated loads
- New P-Rung design allows P-Clamp cable fastening at any location.
- **Splices** provide system integrity

With the unique Wedge Lock splice system:

- Channel-shaped for extra strengthSnaps into the side rail
- Positions and holds for bolting, a labor-saving feature
- Four bolt patterns, a labor-saving feature
- 316 Stainless Steel hardware is available as an option
- Fittings provide system integrity

Surpasses NEMA VE 1 requirements 3" straight tangents for splice integrity

• A 200 lb. Concentrated Load - providing system integrity


Side rails engineered to support a 200 lb. concentrated load + cable load Rungs engineered to support a 200 lb. concentrated load + cable load

• Reliable time-tested products.

Steel Cable Tray, Series 2, 3, 4 & 5

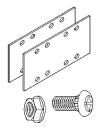
• Side Rails

Our I-Beam - the most efficient structural shape

- 1. Roll formed for extra strength
- 2. Enlarged top flange for stiffness
- 3. Structural grade traceable steel
- 4. Rung top lock
- 5. Rung bottom rest

Side rails and rungs are stamped every 18" with:

- Company Name
- Part Number
- Material
- Heat Trace Number


• Rungs - provide system integrity

The rungs can represent 40% of your cable tray system.

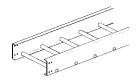
Rung - Standard for all widths

- For industrial applications 200 lb. concentrated loads.
- Rungs are roll formed from traceable structural grade steel
- Splices provide system integrity

- The Splices the engineered connection:
 - Special high strength eleven gauge steel
 - Eight bolt connection for required strength
 - Finish and hardware options
- Hot Dip Galvanized After Fabrication (HDGAF) providing system integrity
 - ASTM A123/CSA Type I
 - In plant post-dip inspection and deburr
 - ASTM F-1136-88 Grade 3 Splice hardware exceeds NEMA requirements.
 - ASTM A123 Covers available system compatibility
- Pre-Galvanized- Hot Dip Mill Galvanized providing system integrity
 - ASTM A653SS Gr.33 G90/ CSA Type II
 - Anti-corrosive silicon bronze welds eliminate cosmetic painting
- Reliable time-tested products
 - 200 lb. Concentrated Load- side rail and rungs
 - Splice integrity 3" fitting tangents

• Special Packaging

- For less than truckload (LTL) shipments
- Helps reduce freight claims over 50%
- A positive package for all
- Mid Span Aluminum Splice
 - The standard splice for H46A, H47A and 57A systems
 - Optional availability for other systems
 - See appendix page APP-2 for details


• Special Aluminum Long Span Systems

- 57A12-36-360 Tested to 102 lbs./ft. on 30' span safety factor 1.5 (Page I-9 & I-10)
- S8A12-36-480 Tested to 101 lbs./ft. on 40' span safety factor 1.5 (Page I-11 & I-12)
- Wire Basket Cable Support Systems (See FLEXTRAY[™] Section D)

- Field adaptable no fittings to order
- Low profile in 2", 4" and 6" loading depths
- Rugged welded steel, wire mesh construction
- Non-Metallic Cable Tray (See Fiberglass Section M)

- For corrosive environmentsFor voltage isolation
- A complete line offering
- Request latest catalog

B-Line series cable trays conform to the requirements of IEC Standard 61537, 2001 Ed.

The following factors should be considered when determining the appropriate cable tray system.

1. Material & Finish

- Standards Available (Pages C-2 C-4)
- Corrosion (Pages C-5 C-7)
- Thermal Contraction and Expansion (Page C-8)
- Installation Considerations and Electrical Grounding Capacity (Page C-9)

2. Strength

- Environmental Loads (Pages C-10 & C-11)
- Concentrated Loads (Page C-11)
- Support Span (Page C-11)
- Deflection (Page C-12)
- Rung (Page C-13)
- Load Capacity (NEMA & CSA Classes) (Pages C-14 & C-15)
- Cable Data (Page C-16)

3. Width & Available Loading Depth

- Cable Diameter (Page C-16)
- Allowable Cable Fill (Pages C-17 C-21)
- Barrier Requirements (Page C-22)
- Future Expansion Requirements (Page C-22)
- Space Limitations (Page C-22)

4. Length

- Lengths Available (Page C-23)
- Support Spans (Not to exceed the length of straight sections) (Page C-23)
- Space Limitations (Page C-23)
- Installation (Page C-23)

5. Loading Possibilities

- Power Application (Page C-24)
- Data/Communication Cabling (Page C-24)
- Other Factors to Consider (Page C-24)

6. Bottom Type

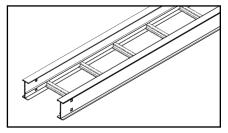
- Type of Cable (Page C-25)
- Cost vs. Strength (Page C-25)
- Cable Exposure (Page C-25)
- Cable Attachment (Page C-25)

7. Fitting Radius

- Cable Flexibility (Page C-25)
- Space Limitations (Page C-25)

Standards Available

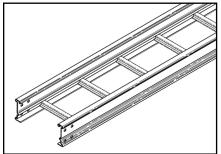
Material	Material Specification	Advantages			
Aluminum	6063-T6 (Side rails, Rungs and Splice Plates) 5052-H32 (Solid Bottoms, Covers and Accessories)	 Corrosion Resistance Easy Field Fabrication & Installation Excellent Strength to Weight Ratio Excellent Grounding Conductor 			
Steel	ASTM A1011 SS Gr. 33 (14 Gauge Plain Steel) ASTM A1008 Gr. 33 Type 2 (16 & 18 Gauge Plain) ASTM A653SS Gr. 33 G90 (Pre-Galvanized) ASTM A510 Gr. 1008 (FLEXTRAY) (plain wire)	 Electric Shielding Finish Options Low Thermal Expansion Limited Deflection 			
Stainless Steel	AISI Type 304 or AISI Type 316/316L ASTM A240	 Superior Corrosion Resistance Withstands High Temperatures 			


Note: Fiberglass available - see page M-5

Aluminum

Aluminum cable trays are fabricated from structural grade "copper free" (marine grade) aluminum extrusions. Aluminum's excellent corrosion resistance is due to its ability to form an aluminum oxide film that when scratched or cut reforms the original protective film. Aluminum has excellent resistance to "weathering" in most outdoor applications. Aluminum cable tray has excellent corrosion resistance in many chemical environments and has been used for over thirty years in petro-chemical plants and paper mills along the gulf coast from Texas to Florida. Typically, aluminum cable trays can perform indefinitely, with little or no degradation over time, making it ideal for many chemical and marine environments. The resistance to chemicals, indoor and outdoor, can best be determined by tests conducted by the user with exposure to the specific conditions for which it is intended. For further information, contact us or the Aluminum Association.

Some common chemicals which aluminum resists are shown on pages C-6 & C-7.


Aluminum Cable Tray

Steel

Steel cable trays are fabricated from continuous roll-formed structural quality steel. By roll-forming steel, the mechanical properties are increased allowing the use of a lighter gauge steel to carry the required load. This reduces the dead weight that must be carried by the supports and the installers. Using structural quality steel, we assure that the material will meet the minimum yield and tensile strengths of applicable ASTM standards. All cable tray side rails, rungs and splice plates are numbered for material traceability. The corrosion resistance of steel varies widely with coating and alloy.

Steel and Stainless Steel Cable Tray

Note:

For help choosing proper cable tray material, see our Technical Paper Series.

Eaton.com/cabletray

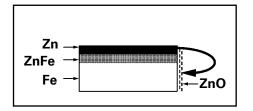
Stainless Steel

Stainless Steel cable trays are fabricated from continuous roll-formed AISI Type 304 or AISI Type 316/316L stainless steel. Both are non-magnetic and belong to the group called austenitic stainless steels. Like carbon steel, they exhibit increased strength when cold worked by roll-forming or bending.

Several important conditions could make the use of stainless steel imperative. These include long term maintenance costs, corrosion resistance, appearance and locations where product contamination is undesirable. Stainless steel exhibits stable structural properties such as yield strength and high creep strength at elevated temperatures.

Our stainless steel cable trays are welded using stainless steel welding wire to ensure each weldment exhibits the same corrosion resistant characteristic as the base metal. Localized staining in the weld area or heat affected zone may occur in severe environments. Specialized shielding gases and low carbon materials are used to minimize carbon contamination during welding and reduce staining and stress corrosion. Specify passivation after fabrication per ASTM A380 to minimize staining, improve aesthetics and further improve corrosion resistance.

A detailed study of the corrosive environment is recommended when considering a stainless steel design (see pages C-6 & C-7).


Standards Available

Finish	Specification	Recommended Use
Electrogalvanized Zinc	ASTM B633 (For Cable Tray Hardware and Accessories, Alum. and Pre-Galv.) (For Flextray Standard is B633 SC2)	Indoor
Chromium Zinc	ASTM F-1136-88 (Hardware for Hot Dip Galvanized Cable Tray)	Indoor/Outdoor
Pre-Galvanized Zinc	ASTM A653SS Gr.33 G90 (CSA Type 2) (Steel Cable Tray and Fittings)	Indoor
Hot Dip Galvanized Zinc After Fabrication	ASTM A123 (CSA Type 1) (Steel Cable Tray and Fittings)	Indoor/Outdoor
Special Paint	Per Customer Specification (Aluminum or Steel Cable Tray & Fittings)	Indoor

Zinc Coatings

Zinc protects steel in two ways. First it protects the steel as a coating and second as a sacrificial anode to repair bare areas such as cut edges, scratches, and gouges. The corrosion protection of zinc is directly related to its thickness and the environment. This means a .2 mil coating will last twice as long as a .1 mil coating in the same environment.

Galvanizing also protects cut and drilled edges.

Electrogalvanized Zinc

Electrogalvanized Zinc (also known as zinc plated or electroplated) is the process by which a coating of zinc is deposited on the steel by electrolysis from a bath of zinc salts. This finish is standard for cable tray hardware and some accessories for aluminum and pre-galvanized systems.

A rating of SC3, our standard, provides a minimum zinc coating thickness of .5 mils (excluding threaded rod, which is SC1 = .2 mils)

When exposed to air and moisture, zinc forms a tough, adherent, protective film consisting of a mixture of zinc oxides, hydroxides, and carbonates. This film is in itself a barrier coating which slows subsequent corrosive attack on the zinc. This coating is usually recommended for indoor use in relatively dry areas, as it provides ninety-six hours protection in salt spray testing per ASTM B117.

Chromium/Zinc

Chromium/Zinc is a corrosion resistant composition, which was developed to protect fasteners and small bulk items for automotive use. The coating applications have since been extended to larger parts and other markets.

Chromium/Zinc composition is an aqueous coating dispersion containing chromium, proprietary organics, and zinc flake.

This finish provides 720 hours protection in salt spray testing per ASTM B117, exceeding NEMA VE-1 (NEMA BI 50015) requirements by 300%.

Pre-Galvanized Zinc

(Mill galvanized, hot dip mill galvanized or continuous hot dip galvanized)

Pre-Galvanized steel is produced by coating coils of sheet steel with zinc by continuously rolling the material through molten zinc at the mills. This is also known as mill galvanized or hot dip mill galvanized. These coils are then slit to size and fabricated by roll forming, shearing, punching, or forming to produce our pregalvanized cable tray products.

The G90 specification calls for a coating of .90 ounces of zinc per square foot of steel. This results in a coating of .45 ounces per square foot on each side of the sheet. This is important when comparing this finish to hot dip galvanized after fabrication.

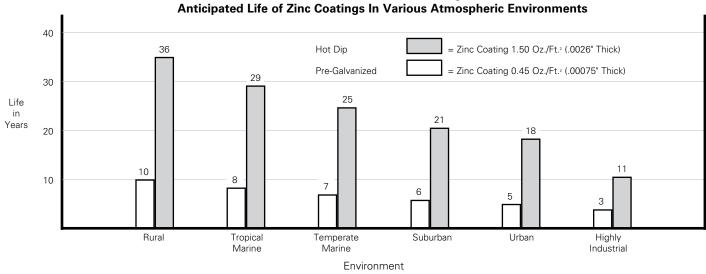
During fabrication, cut edges and welded areas are not normally zinc coated; however, the zinc near the uncoated metal becomes a sacrificial anode to protect the bare areas after a short period of time.

To further insure a quality product, our welds all pre-galvanized cable trays with a silicon bronze welding wire allowing only a small heat affected zone to be exposed. This small area quickly repairs itself by the same process as cut edges.

Hot Dip Galvanized After Fabrication

(Hot dip galvanized or batch hot dip galvanized)

Hot Dip Galvanized After Fabrication cable tray products are fabricated from steel and then completely immersed in a bath of molten zinc. A metallic bond occurs resulting in a zinc coating that completely coats all surfaces, including edges and welds.


Another advantage of this method is coating thickness. Cable, trays hot dip galvanized after fabrication, have a minimum thickness of 1.50 ounces per square foot on each side, or a total 3.0 ounces per square foot of steel, according to ASTM A123.

The zinc thickness is controlled by the amount of time each part is immersed in the molten zinc bath as well as the speed at which it is removed. The term "double dipping" refers to parts too large to fit into the galvanizing kettle and, therefore, must be dipped one end at a time. It does not refer to extra coating thickness.

The layer of zinc which bonds to steel provides a dual protection against corrosion. It protects first as an overall barrier coating. If this coating happens to be scratched or gouged, zinc's secondary defense is called upon to protect the steel by galvanic action.

Hot dip galvanized after fabrication is recommended for prolonged outdoor exposure and will protect steel for many years in most outdoor environments and in many aggressive industrial environments (see charts on page C-4).

Standards Available

Service Life is defined as the time to 5% rusting of the steel surface.

PVC Coating

PVC coating aluminum or steel cable tray is not recommended and has been removed from our cable tray line.

The application of a 15 mil PVC coating to aluminum or steel cable tray was a somewhat popular finish option 15 or more years ago. The soft PVC coating must be completely intact for the finish to be effective. In a caustic atmosphere, a pinhole in the coating can render it useless and corrode the cable tray. The shipment of the cable tray consistently damages the coating, as does installation. The splice hardware, splice plates and ground straps require field removal of the coating to ensure connections. PVC coated cable tray drastically increases the product's cost and delivery time.

We recommend using fiberglass -See Fiberglass section, or stainless steel cable tray systems in highly corrosive areas.

Painting Cable Tray

We offer painted cable tray to any color specified by the customer. It is important to note that there are key advantages and disadvantages to ordering factory painted cable tray. We typically do not recommend factory painted cable tray for most applications.

Painted cable tray is often used in "open ceiling" applications, where all the overhead equipment and structure is painted the same color. In this type of application, additional painting is often necessary in the field, after installation, to ensure all of the supporting components, such as hanger rods, clamps and attaching hardware have been painted uniformly. Pre-painted cable trav interferes with common grounding practices, requiring the paint to be removed at splice locations, and/ or the addition of bonding jumpers that were otherwise unnecessary. This additional field modification not only increases the installation cost, but causes potential damage to the special painted finish.

It is typically more cost effective to use an Aluminum or Pre-Galvanized Steel cable tray and paint it after installation, along with the other un-painted building components. Consult painting contractor for proper surface preparation.

Special Paint

Our cable tray and supports can be painted or primed to meet the customers requirements. We have several colors available, consult the factory.

If a non-standard color is required the following information needs to be specified:

- 1. Type of material preparation (primer, etc.)
- 2. Type of paint, manufacturer and paint number or type of paint with chip.
- 3. Dry film thickness.

Material/Finish Prefix Designation Chart

Catalog Number Prefix	Material to be Furnished
А	Aluminum
Р	Pre-Galvanized
G	Hot Dip Galvanized
ZN	Zinc Plated
S	Plain Steel
SS4	Type 304 Stainless Steel
SS6	Type 316 Stainless Steel

Corrosion

All metal surfaces are affected by corrosion. Depending on the physical properties of the metal and the environment to which it is exposed, chemical or electromechanical corrosion may occur.

Atmospheric Corrosion

Atmospheric corrosion occurs when metal is exposed to airborne liquids, solids or gases. Some sources of atmospheric corrosion are moisture, salt, dirt and sulphuric acid. This form of corrosion is typically worse outdoors, especially near marine environments.

Chemical Corrosion

Chemical corrosion takes place when metal comes in direct contact with a corrosive solution. Some factors which affect the severity of chemical corrosion include: chemical concentration level, duration of contact, frequency of washing, and operating temperature.

Storage Corrosion

Wet storage stain (White rust) is caused by the entrapment of moisture between surfaces of closely packed and poorly ventilated material for an extended period. Wet storage stain is usually superficial, having no affect on the properties of the metal.

Light staining normally disappears with weathering. Medium to heavy buildup should be removed, in order to allow the formation of normal protective film.

Proper handling and storage will help to assure stain-free material. If product arrives wet, it should be unpacked and dried before storage. Dry material should be stored in a well ventilated "low moisture" environment to avoid condensation formation. Outdoor storage is undesirable, and should be avoided whenever possible.

Galvanic Corrosion

Galvanic corrosion occurs when two or more dissimilar metals are in contacts in the presence of an electrolyte (ie. moisture). An electrolytic cell is created and the metals form an anode or a cathode depending on their relative position on the Galvanic Series Table. The anodic material will be the one to corrode. Whether a material is anodic depends on the relative position of the other material. For example: If zinc and steel are in contact, the zinc acts as the anode and will corrode; the steel acts as the cathode, and will be protected. If steel and copper are in contact, the steel is now the anode and will corrode.

The rate at which galvanic corrosion occurs depends on several factors:

- 1. The amount and concentration of electrolyte present An indoor, dry environment will have little or no galvanic corrosion compared to a wet atmosphere.
- The relative size of the materials- A small amount of anodic material in contact with a large cathodic material will result in greater corrosion. Likewise, a large anode in contact with a small cathode will decrease the rate of attack.

3. The relative position on the Galvanic Series Table - The further apart in the Galvanic Series Table, the greater the potential for corrosion of the anodic material.

Galvanic Series In Sea Water

Anodic End

Cathodic End

Corrosion Guide

	Cable Tray Material									
Chemical		Aluminur	n	Stair	less Type	304	Stainless Type 316			
	Cold	Warm	Hot	Cold	Warm	Hot	Cold	Warm	Hot	
Acteone	R	R	R	R	R	R	R	R	R	
Aluminum Chloride Solution	NR	NR	NR	NR	_		F		_	
Anhydrous Aluminum Chloride	R	R	R	NR	—		F		_	
Aluminum Sulfate	R	R	R	R	R	R	R	R	R	
Ammonium Chloride 10%	F	F	NR	R	R	R	R	R	R	
Ammonium Hydroxide	F	F	F	R	R	R	R	R	R	
Ammonium Phosphate	F	F	NR	R	—	—	R	_	—	
Ammonium Sulfate	F	—	—	R	R	R	R	R	R	
Ammonium Thiocyanate	R	R	R	R	—	—	R	R	R	
Amyl Acetate	R	R	R	R	R	R	R	R	R	
Amyl Alcohol	R	R	R	R	—	—	R	R	R	
Arsenic Acid	F	F	F	R	R	—	R	R	R	
Barium Chloride	F	F	NR	R	R	R	R	R	R	
Barium Sulfate	R	R	R	R	R	—	R	R	—	
Barium Sulfide	NR	NR	NR	R	R	—	R	R	—	
Benzene	R	R	R	R	R	R	R	R	R	
Benzoic Acid	F	F	NR	R	R	R	R	R	R	
Boric Acid	R	R	F	R	R	R	R	R	R	
Bromine Liquid or Vapor	NR	NR	NR	NR	NR	NR	NR	NR	NR	
Butyl Acetate	R	R	R	R	—	_	R	R	R	
Butyl Alcohol	R	R	R	R	R	R	R	R	R	
Butyric Acid	F	F	F	R	R	R	R	R	R	
Calcium Chloride 20%	F	F	NR	R	—	—	R			
Calcium Hydroxide	N	—	_	R	R	F	R	R	R	
Calcium Hypochlorite 2 - 3%	F	—		R	—	—	R			
Calcium Sulfate	R	R	_	R	R	—	R	R	—	
Carbon Monoxide Gas	R	R	R	R	R	R	R	R	R	
Carbon Tetrachloride	F	F	NR	F	F	F	R	R	R	
Chloroform Dry	R	NR	NR	R	R	—	R	R		
Chloroform Solution	R	NR	NR	-	—	—	-	—	—	
Chromic Acid 10% CP	R	R		R	R	F	R	R	R	
Citric Acid	F	F	F	R	R	NR	R	R	R	
Copper Cyanide	NR	NR	NR	R	R	R	R	R	R	
Copper Sulfate 5%	NR	NR	NR	R	R	R	R	R	R	
Ethyl Alcohol	R	R	R	R	R	R	R	R	R	
Ethylene Glycol	R	R	F	R	R	—	R	R	R	
Ferric Chloride	NR	NR	NR	NR	NR	NR	NR	NR	NR	
Ferrous Sulfate 10%	R	NR	NR	R	R	-	R	R	—	
Formaldehyde 37%	R	R	R	R	R	R	R	R	R	
Formic Acid 10%	R	R	—	R	R	NR	R	R	R	
Gallic Acid 5%	R	R	NR	R	R	R	R	R	R	
Hydrochloride Acid 25%	NR	NR	NR	NR	NR	NR	NR	NR	NR	
Hydrofluoric Acid 10%	NR	NR	NR	NR	NR	NR	NR	NR	NR	
Hydrogen Peroxide 30%	R	R	R	R	R	R	R	R	R	
Hydrogen Sulfide Wet	R	_	_	NR	NR	NR	R	R	R	

R = Recommended

F = May be used under some conditions

NR = Not Recommended

--- = Information not available

The corrosion data given in this table is for general comparison only. (Reference Corrosion Resistance Tables, Second Edition)

The presence of contaminates in chemical environments can greatly affect the corrosion rate of any material.

We strongly suggest that field service tests or simulated laboratory tests using actual environmental conditions be conducted in order to determine the proper materials and finishes to be selected.

For questionable environments see Fiberglass Cable Tray Corrosion Guide (Pages M-3 & M-4).

Cold = 50 - 80°F Warm = 130 - 170°F Hot = 200 - 212°F

Corrosion Guide

						Cable Tra	y Materia		
Chemical		Aluminum		Stai	nless Type	e 304	Stainless Type 316		
	Cold	Warm	Hot	Cold	Warm	Hot	Cold	Warm	Hot
Lactic Acid 10%	R	F	NR	R	R	F	R	R	R
Lead Acetate 5%	NR	NR	NR	R	R	R	R	R	R
Magnesium Chloride 1%	NR	NR	NR	R	_	F	R		R
Magnesium Hydroxide	R	R	R	R	R	_	R	R	_
Magnesium Nitrate 5%	R	_	_	R	R	R	R	R	R
Nickel Chloride	NR	NR	NR	R			R		
Nitric Acid 15%	NR	NR	NR	R	R	R	R	R	R
Oleic Acid	R	R	F	R	R	F	R	R	R
Oxalic Acid 10%	R	F	NR	NR	NR	NR	R	R	R
Phenol CP	R	R	R	R	R	R	R	R	R
Phosphoric Acid 50%	NR	NR	NR	R	R	R	R	F	NF
Potassium Bromide 100%	R	F	NR	R	R	_	R	R	R
Potassium Carbonate 100%	F	F	_	R	R	R	R	R	R
Potassium Chloride 5%	R	R	R	R	R	R	R	R	R
Potassium Dichromate	R	R	R	R	R	R	R	R	R
Potassium Hydroxide 50%	NR	NR	NR	R	R	R	R	R	R
Potassium Nitrate 50%	R	R	R	R	R	R	R	R	R
Potassium Sulfate 5%	R	R	R	R	R	R	R	R	R
Propyl Alcohol	R	R	R	R	R	R	R	R	R
Sodium Acetate 20%	R	F	F	R	R	R	R	R	R
Sodium Bisulfate 10%	R	F	F	R	R	R	R	R	R
Sodium Borate	R	F	F	R	R	R	R	R	R
Sodium Carbonate 18%	R	F	F	R	R	R	R	R	R
Sodium Chloride 5%	R	NR	NR	R	R	R	R	R	R
Sodium Hydroxide 50%	NR	NR	NR	R	R	R	R	R	R
Sodium Hypochlorite 5%	R	F	F	F	11	11	R	11	11
Sodium Nitrate 100%	R	R	R	R	R	R	R	R	R
Sodium Nitrite 100%	R	R	R	R	R	R	R	R	R
Sodium Sulfate 100%	R	R	F	R	R	R	R	R	R
Sodium Thiosulfate	R	R	R	R	R	R	R	R	R
Sulfur Dioxide (Dry)	R	R	R	R	R	R	R	R	R
Sulfuric Acid 5%	NR	NR	n	F	NR	NR	R	n	n
	NR	NR	 NR	г NR	NR	NR	NR	NR	NF
Sulfuric Acid 10%	NR			NR		NR			
Sulfuric Acid 50% Sulfuric Acid 75 - 98%	NR	NR	NR NR	NR	NR	NR	NR NR	NR NR	NF NF
		NR	INIT		NR				
Sulfuric Acid 98 - 100%	NR	NR		R			R	R	F
Tannic Acid 10 & 50%	NR	NR	NR	R	R	R	R	R	R
Tartaric Acid 10 & 50%	F	NR	NR	R	R	R	R	R	R
Vinegar	F	F	F	R	R	R	R	R	R
Zinc Chloride 5 & 20%	F	NR	NR	R	F	NR	R	R	R
Zinc Nitrate	F	NR	NR	R	R	R	R	R	R
Zinc Sulfate	F	NR	NR	R	R	R	R	R	R

R = Recommended

F = May be used under some conditions

NR = Not Recommended

--- = Information not available

The corrosion data given in this table is for general comparison only. (Reference Corrosion Resistance Tables, Second Edition)

The presence of contaminates in chemical environments can greatly affect the corrosion rate of any material.

We strongly suggest that field service tests or simulated laboratory tests using actual environmental conditions be conducted in order to determine the proper materials and finishes to be selected.

For questionable environments see Fiberglass Cable Tray Corrosion Guide (Pages M-3 & M-4).

Cold = 50 - 80°F Warm = 130 - 170°F Hot = 200 - 212°F

Cable Tray Selection

Thermal Contraction and Expansion

It is important that thermal contraction and expansion be considered when installing cable tray systems. The length of the straight cable tray runs and the temperature differential govern the number of expansion splice plates required (see Table 1 below).

The cable tray should be anchored at the support nearest to its midpoint between the expansion splice plates and secured by expansion guides at all other support locations (see Figure 1). The cable tray should be permitted longitudinal movement in both directions from that fixed point. When used, covers should be overlapped at expansion splices.

Accurate gap settings at the time of installation are necessary for the proper operation of the expansion splice plates. The following procedure should assist the installer in determining the correct gap: (see Figure 2)

- 1)Plot the highest expected metal temperature on the maximum temperature line.
- 2)Plot the lowest expected metal temperature on the minimum temperature line.
- 3)Draw a line between the maximum and minimum points.
- Plot the metal temperature at the time of installation to determine the gap setting

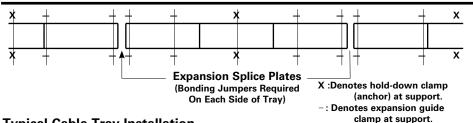
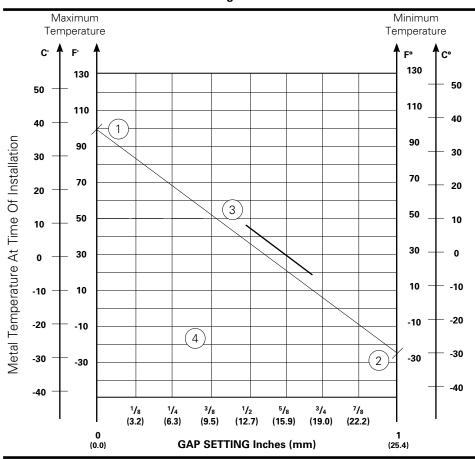



Figure 1

Typical Cable Tray Installation

	Maximum Spacing Between Expansion Joints For 1" Movement										
•	erature						Stainle	ss Steel			
Diffe °F	rential (°C)	Feet	teel (m)	Alun Feet	ninum (m)	Feet	304 (m)	3 Feet	816 (m)		
25	(13.9)	512	(156.0)	260	(m) (79.2)	347	(105.7)	379	(m) (115.5)		
50	(13.3)	256	(78.0)	130	(39.6)	174	(53.0)	189	(57.6)		
75	(41.7)	171	(52.1)	87	(26.5)	116	(35.4)	126	(38.4)		
100	(55.6)	128	(39.0)	65	(19.8)	87	(26.5)	95	(29.0)		
125	(69.4)	102	(31.1)	52	(15.8)	69	(21.0)	76	(23.2)		
150	(83.3)	85	(25.9)	43	(13.1)	58	(17.7)	63	(19.2)		
175	(97.2)	73	(22.2)	37	(11.3)	50	(15.2)	54	(16.4)		

Notes: Every pair of expansion splice plates requires two bonding jumpers for grounding continuity. For gap set and hold down/guide location, see installation instruction above. 1" (25.4mm) slotted holes in each expansion connector allow 5/8" (15.9mm) total expansion or contraction.

Installation Considerations

Weight

The weight of an aluminum cable tray is approximately half that of a comparable steel tray. Some factors to consider include: shipping costs, material, handling, project weight restrictions and the strength of support members.

Field Modifications

Aluminum cable tray is easier to cut and drill than steel cable tray since it is a "softer" material. Similarly, galvanized steel cable tray is easier to cut and drill than stainless steel cable tray. Our aluminum cable tray uses a four bolt splice, resulting in half as much drilling and hardware installation as most steel cable tray, which uses an eight bolt splice. Hot dip galvanized and painted steel cable tray finishes must be repaired when field cutting or drilling. Failure to repair coatings will impair the cable tray's corrosion resistance.

Availability

Aluminum, pre-galvanized, stainless steel and fiberglass cable tray can normally be shipped from the factory in a short period of time. Hot dip galvanized and painted cable tray requires an additional coating process, adding several days of preparation before final shipment. Typically,

a coated cable tray will be sent to an outside source for coating, requiring additional packing and shipping.

Electrical Grounding Capacity

The National Electrical Code, Article 392.6 allows cable tray to be used as an equipment grounding conductor. All standard steel and aluminum cable trays are classified by Underwriter's Laboratories per NEC Table 392.6 based on their cross-sectional area.

The corresponding cross-sectional area for each side rail design (2 side rails) is listed on a fade resistant UV stabilized label (see Figure 3). This cable tray label is attached to each straight section and fitting that is U.L. classified. U.L. assigned cross-sectional area is also stated in the loading charts in this catalog for each system.

NEMA Installation Guide

The new NEMA VE 2 is a cable tray installation guideline and is available from NEMA, CTI or us. For free download see www.cabletrays.com.

Table 392.6(B)(2)Metal Area Requirements for Cable TraysUsed as Equipment Grounding Conductors

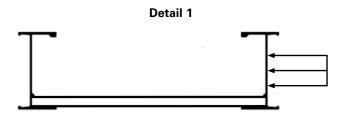
Maximum Fuse Ampere Rating, Circuit Breaker Ampere Trip Setting, or Circuit Breaker Protective Relay Ampere Trip Setting for Ground Fault	Minimum Cross-Sectional Area of Metal* In Square Inches					
Protection of any Cable Circuit in the Cable Tray System	Steel Cable Trays	Aluminum Cable Trays				
60	0.20	0.20				
100	0.40	0.20				
200	0.70	0.20				
400	1.00	0.40				
600	1.50**	0.40				
1000	-	0.60				
1200	_	1.00				
1600	-	1.50				
2000	_	2.00**				

For SI units: one square inch = 645 square millimeters.

* Total cross-sectional area of both side rails for ladder cable trays; or the minimum cross-sectional area of metal in channel-type cable trays or cable trays of one-piece construction.

** Steel cable trays shall not be used as equipment grounding conductors for circuits with ground-fault protection above 600 amperes. Aluminum cable trays shall not be used as equipment grounding conductors for circuits with ground-fault protection above 2000 amperes.

For larger ampere ratings an additional grounding conductor must be used.


Figure 3

Environmental Loads

Wind Loads

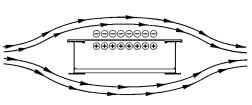
Wind loads need to be determined for all outdoor cable tray installations. Most outdoor cable trays are ladder type trays, therefore the most severe loading to be considered is impact pressure normal to the cable tray side rails (see detail 1).

The impact pressure corresponding to several wind velocities are given below in Table 2.

Table 2

Impact Pre	essures		
V(mph)	P(lbs/ft²)	V(mph)	P(lbs/ft2)
15	0.58	85	18.5
20	1.02	90	20.7
25	1.60	95	23.1
30	2.30	100	25.6
35	3.13	105	28.2
40	4.09	110	30.9
45	5.18	115	33.8
50	6.39	120	36.8
55	7.73	125	40.0
60	9.21	130	43.3
65	10.80	135	46.6
70	12.50	140	50.1
75	14.40	145	53.8
80	16.40	150	57.6
V = V	Vind Velocity	P = Impact I	Pressure

Note: These values are for an air density of 0.07651 lbs/ ft³ corresponding to a temperature of 60° F and barometric pressure of 14.7 lbs/in².


Example Calculation:

Side load for 6" side rail with 100 mph wind

$$\frac{25.6 \times 6}{12} = 12.8 \text{ lbs/ft}$$

When covers are installed on outdoor cable trays, another factor to be considered is the aerodynamic effect which can produce a lift strong enough to separate a cover from a tray. Wind moving across a covered tray (see Detail 2) creates a positive pressure inside the tray and a negative pressure above the cover. This pressure difference can lift the cover off the tray. We recommend the use of heavy duty wrap-around cover clamps when covered trays are installed in an area where strong winds occur.

Detail 2

Special Notice:

Covers on wide cable tray and/or cable tray installed at elevations high off the ground may require additional heavy duty clamps or thicker cover material.

Ice Loads

Glaze ice is the most commonly seen form of ice build-up. It is the result of rain or drizzle freezing on impact with an exposed object. Generally, only the top surface (or the cover) and the windward side of a cable tray system is significantly coated with ice. The maximum design load to be added due to ice should be calculated as follows:

$$LI = \left(\frac{W \times TI}{144}\right) \times DI$$
 where;

LI= Ice Load (lbs/linear foot) W= Cable Tray Width (inches) TI= Maximum Ice Thickness (inches) DI= Ice Density = 57 lbs/ft³

the maximum ice thickness will vary depending on location. A thickness of $1/2^{"}$ can be used as a conservative standard.

Example Calculation:

Ice Loads for 24" wide tray with 1/2" thick ice;

$$\frac{24 \times .5}{144} \times 57 = 4.75 \text{ lbs/ft}$$

Environmental Loads

Snow Loads

Snow is measured by density and thickness. The density of snow varies almost as much as its thickness. The additional design load from snowfall should be determined using the building codes which apply for each installation.

Seismic Loads

A great deal of seismic testing and evaluation of cable tray systems, and their supports, has been performed. The conclusions reached from these evaluations is that cable tray is stronger laterally than vertically, since it acts as a truss in the lateral direction. Other factors that contribute to the stability of cable tray are the energy dissipating motion of the cables within the tray, and the high degree of ductility of the cable tray and the support material. These factors, working in conjunction with a properly designed cable tray system, should afford reasonable assurance to withstand even strong motion earthquakes.

When seismic bracing is required for a cable tray system, it should be applied to the supports and not the cable tray itself. Our "Seismic Restraints" brochure provides OSHPD approved methods of bracing cable tray supports using standard Eaton's B-Line series products. Contact us to receive a copy of this brochure.

Concentrated Loads

A concentrated static load represents a static weight applied at a single point between the side rails. Tap boxes, conduit attachments and long cable drops are just some of the many types of concentrated loads. When so specified, these concentrated static loads may be converted to an equivalent, uniform load (We) by using the following formula:

We = $\frac{2 \times (\text{concentrated Static Load})}{2 \times 2 \times 2}$

span length

Our cable tray side rails, rungs and bottoms will withstand a 200 lb. static load without collapse (series 14 excluded)*. However, it should be noted that per NEMA Standard Publication VE1 cable tray is designed as a support for power or control cables, or both, and is not intended or designed to be a walkway for personnel. Each section of the Cable Tray has a label stating the following message:

WARNING indicates a hazardous situation which, if not avoided, could result in death or serious injury.

Warning! Not to be used as a walkway, ladder or support for personnel.

To be used only as a mechanical support for cables and raceway.

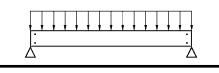
Failure to adhere to these warnings may result in serious injury or property damage.

Support Span

The strength of a cable tray is largely determined by the strength of its side rails. The strength of a cable tray side rail is proportionate to the distance between the supports on which it is installed, commonly referred to as the "support span". Therefore, the strength of a cable tray system can be altered by changing the support span. However, there is a limit to how much the strength of a cable tray system can be increased by reducing the support span, because the strength of the cable tray bottom members could become the determining factor of strength.

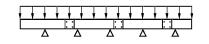
Once the load requirement of a cable tray system has been established, the following factors should be considered:

- 1. Sometimes the location of existing structural beams will dictate the cable tray support span. This is typical with outdoor installations where adding intermediate supports could be financially prohibitive. For this situation the appropriate cable tray must be selected to accommodate the existing span.
- 2. When cable tray supports are randomly located, the added cost of a higher strength cable tray system should be compared to the cost of additional supports. Typically, adding supports is more costly than installing a stronger series of cable tray. The stronger cable tray series (e.g. from 75 lbs./ft. on 20' span to 100 lbs./ft. on 20' span) will increase the price of the cable tray system minimally, possibly less than \$1/ft., with little or no additional labor cost for installation. Alternately, one extra support may cost \$100.00 (material and labor) for a simple trapeze. Future cable additions or the capability of supporting equipment, raceways for example, also favor stronger cable tray systems. *In summary, upgrading to a stronger cable tray series is typically more cost-effective than using the recommended additional supports for a lighter duty cable tray series.*
- 3. The support span lengths should be equal to or less than unspliced straight section lengths, to ensure that no more than one splice is placed between supports as stated in the NEMA VE 2 Cable Tray Installation Guideline.


Deflection

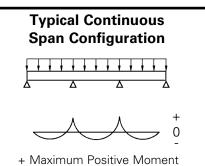
Deflection in a cable tray system is primarily an aesthetic consideration. When a cable tray system is installed in a prominent location, a maximum simple beam deflection of 1/200 of support span can be used as a guideline to minimize visual deflection.

It is important at this point to mention that there are two typical beam configurations, simple beam and continuous beam, and to clarify the difference.

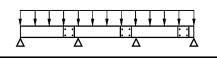

A good example of a simple beam is a single straight section of cable tray supported, but not fastened at either end. When the tray is loaded the cable tray is allowed to flex. Simple beam analysis is used almost universally for beam comparisons even though it is seldom practical in the field installations. The three most prominent reasons for using a simple beam analysis are: ① calculations are simplified; ② it represents the worst case loading; and ③ testing is simple and reliable. The published load data in our cable tray catalog is based on the simple beam analysis per NEMA & CSA Standards.

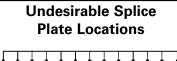
Simple Beam

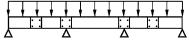
Continuous beam is the beam configuration most commonly used in cable tray installations. An example of this configuration is where cable trays are installed across several supports to form a number of spans. The continuous beam possesses traits of both the simple and fixed beams. When equal loads are applied to all spans simultaneously, the counterbalancing effect of the loads on both sides of a support restricts the movement of the cable tray at the support. The effect is similar to that of a fixed beam. The end spans behave substantially like simple beams. When cable trays of identical design are compared, the continuous beam installation will typically have approximately half the deflection of a simple beam of the same span. Therefore, simple beam data should be used only as a general comparison. The following factors should be considered when addressing cable tray deflection:


Continuous Beam

- 1. Economic consideration must be considered when addressing cable deflection criteria.
- 2. Deflection in a cable tray system can be reduced by decreasing the support span, or by using a taller or stronger cable tray.
- 3. When comparing cable trays of equivalent strength, a steel cable tray will typically exhibit less deflection than an aluminum cable tray since the modulus of elasticity of steel is nearly three times that of aluminum.
- 4. The location of splices in a continuous span will affect the deflection of the cable tray system. The splices should be located at points of minimum stress whenever practical. NEMA Standards VE 1 limits the use of splice plates as follows:


Unspliced straight sections should be used on all simple spans and on end spans of continuous span runs. Straight section lengths should be equal to or greater than the span length to ensure not more than one splice between supports.


See the figures below for splicing configuration samples.



- Maximum Negative Moment

Preferred Splice Plate Locations

Cable Tray Selectior

Load Capacity

Calculate each anticipated load factor, then add them to obtain a total load. (Example: Working Load = Cable + Concentrated + Wind + Snow + Ice Loads).

The Working Load should be used, along with the maximum support spacing, to select a span/load class designation from Table 3. Table 4 (page C-15) contains the most common load/span class designations per the US and Canadian metallic cable tray standard, CSA, C22.2 No. 126.1-98 First Addition, NEMA VE 1-1998.

	oad Class Designations for lengths of						
lb/ft	(kg/m)	ft m 8 (2.4)	ft m 10 (3.0)	ft m 12 (3.7)	ft m 16 (4.9)	ft m 20 (6.0)	
25	(37)		А	—	—	_	
45	(67)	—	—	—	—	D	
50	(74)	8A	—	12A	16A	20A	
65	(97)	—	С	—	—	_	
75	(112)	8B	—	12B	16B	E or 20B	
100	(149)	8C	—	12C	16C	20C	
120	(179)		D	—	—	—	
200	(299)		E	—	—		

 Table 3

 These Loading Classes Are Historical and Supplied For Reference Only

Note: 8A/B/C, 12A/B/C, 16A/B/C, and 20A/B/C were the traditional NEMA designations. A, C, D, and E were the conventional CSA designations. Actual tested loadings per span will be stated on the product labels.

	Aluminum Copper free						Steel HDGAF/Pre-Galvanized						
Series	Load	Load	Span		Wt./C	Series	Load	Load	Span		Wt./C		
	Depth	lb/ft (kg/m)	ft (m)	NEMA		140*	Depth	lb/ft (kg/m)	ft (m)	NEMA	CSA		
KRA4A	2.97"	55 (82)	12 (3.7)	12A	C (3m)	148*	3.077"	51 (76)	12 (3.7)	12A	C1 (3m)		
KRB4A	2.95"	89 (133)	12 (3.7)	12B	D (3m)	248*	3.140"	103 (153)	12 (3.7)	12C	D1 (3m)		
KRB6A	4.95"	79 (118)	12 (3.7)	12B	D (3m)	346*	3.130"	63 (943)	20 (6.1)	20A	D1 (6m)		
24A	3.05"	126 (187)	12 (3.7)	12C	D (3m)	444*	3.110"	91 (135)	20 (6.1)	20B	E (3m)		
H24A	2.98"	56 (83)	20 (6.1)	20A	D (6m)	156*	3.628"	76 (113)	12 (3.7)	12B	C1 (3m)		
34A	3.08"	80 (119)	20 (6.1)	20B	E (6m)	258*	4.140"	109 (162)	12 (3.7)	12C	D1 (3m)		
25A	3.93"	50 (74)	20 (6.1)	20A	D (6m)	356*	4.130"	69 (103)	20 (6.1)	20A	D1 (6m)		
35A	3.96"	77 (115)	20 (6.1)	20B	E (6m)	454*	4.110"	106 (158)	20 (6.1)	20C	E (6m)		
26A	5.04"	51 (76)	20 (6.1)	20A	D (6m)	166*	4.628"	77 (115)	12 (3.7)	12B	C1 (3m)		
36A	5.06"	84 (125)	20 (6.1)	20B	E (6m)	268*	5.140"	110 (164)	12 (3.7)	12C	D1 (3m)		
46A	5.08"	103 (153)	20 (6.1)	20C	E (6m)	368†	5.130"	59 (88)	20 (6.1)	20A	D1 (3m)		
H46A	5.09"	167 (248)	20 (6.1)	88# @ 25'	131 kg/m (7.6m)	366*	5.140"	75 (112)	20 (6.1)	20B	E (6m)		
56A	5.26″	75 (112)	30 (9.1)	75# @ 30'	112 kg/m (9.1m)	464* <mark>†</mark>	5.110"	123 (183)	20 (6.1)	123# @ 20'	E (6m)		
27A	6.00"	123 (183)	12 (3.7)	12C	D (6m)	176*	5.628"	86 (128)	12 (3.7)	12B	137 kg/m (3.7m		
37A	6.05"	80 (119)	20 (6.1)	20B	D (6m)	378*	6.140"	51 (76)	20 (6.1)	20A	D1 (3m)		
47A	6.13"	100 (149)	20 (6.1)	20C	E (6m)	476*	6.130"	77 (115)	20 (6.1)	20B	D1 (6m)		
H47A	6.09"	95 (141)	25 (7.6)	95# @ 25'	141 kg/m (7.6m)	574*	6.110"	130 (193)	20 (6.1)	130# @ 20'	E (6m)		
57A	6.23"	102 (152)	30 (9.1)	102#@30'	152 kg/m (9.1m)	348†	3.130″	125 (186)	12 (3.7)	12C	C1 (3m)		
S8A	6.175"	101 (150)	40 (12.2)	101#@40'	240 kg/m (9.1m)	358†	4.130"	62 (92)	20 (6.1)	20A	89 kg/m (6.1m		
						FT2X2	2	20 (30)	8 (2.4)		0		
		Fi	iberglass			FT2X4	2	27 (40)	8 (2.4)				
0		11	0		N/ /0	FT2X6	2	27 (40)	8 (2.4)				
Series	Load Depth	Load lb/ft (kg/m)	Span ft (m)	NEMA	Wt./C CSA	FT2X8	2	27 (40)	8 (2.4)				
24F	3	157 (234)	12 (3.7)	12C	E (3m)	FT2X12	2	27 (40)	8 (2.4)				
36F	5	89 (133)	20 (6.1)	20B	E (6m)	FT2X16	2	27 (40)	8 (2.4)				
46F	5	141 (210)	20 (6.1)	141#@20'	210 kg/m (6m)	FT2X18	2	27 (40)	8 (2.4)				
	-	(,	(, (2,	FT2X20	2	27 (40)	8 (2.4)				
						FT2X24	2	27 (40)	8 (2.4)				
						FT2X30	2	27 (40)	8 (2.4)				
						FT2X32	2	30 (40)	8 (2.4)				
						FT4X4	4	36 (53)	8 (2.4)				
						FT4X6	4	46 (53)	8 (2.4)				
						FT4X8	4	47 (70)	8 (2.4)				
						FT4X12	4	47 (70)	8 (2.4)				
						FT4X12		47 (70)	8 (2.4)				
						FT4X18	4	47 (70)					
									8 (2.4)				
						FT4X20	4	47 (70)	8 (2.4)	0.4			
						FT4X24	4	50 (74)	8 (2.4)	8A			
						FT4X30	4	50 (74)	8 (2.4)	8A			
						FT6X8	6	43 (64)	8 (2.4)				
									0 /- /				
						FT6X12	6	48 (71)	8 (2.4)				
						FT6X12 FT6X16	6	50 (74)	8 (2.4)	8A			
						FT6X12 FT6X16 FT6X18	6 6	50 (74) 50 (74)	8 (2.4) 8 (2.4)	8A			
						FT6X12 FT6X16	6	50 (74)	8 (2.4)				

 Table 4

 B-Line series Cable Tray Load Classes

* G denotes CSA Type 1 (HDGAF) or P denotes CSA Type 2 (Mill-Galvanized)

† SS4 (Type 304 Stainless) or SS6 (Type 316 Stainless)

Cable Data

Multiconductor Cable Type TC, 600V with XHHW Conductors, Copper

The cable load is simply the total weight of all the cables to be placed in the tray. This load should be expressed in lbs/ft.

The data on this page provides average weights for common cable sizes.

	3 conduct	ors with	ground	4 conductors with ground				
Size	Diameter in.	Area in.²	Weight lbs/ft	Diameter in.	Area in. ²	Weight Ibs/ft		
8	0.66	0.34	0.33	0.72	0.41	0.42		
6	0.74	0.43	0.45	0.81	0.52	0.58		
4	0.88	0.61	0.66	0.96	0.72	0.84		
2	1.00	0.79	0.96	1.10	0.95	1.20		
1	1.13	1.00	1.17	1.25	1.23	1.55		
1/0	1.22	1.17	1.43	1.35	1.43	1.84		
2/0	1.31	1.35	1.72	1.45	1.65	2.20		
3/0	1.42	1.58	2.14	1.58	1.96	2.80		
4/0	1.55	_	2.64	1.77	—	3.46		
250	1.76		3.18	1.93		4.04		
350	1.98	_	4.29	2.18	_	5.48		
500	2.26	_	5.94	2.50		7.64		
750	2.71	—	9.01	3.12	—	11.40		
1000	3.10		11.70					

Multiconductor Cable Type MC, 600V with XHHW Conductors, Copper

	3 conductors with ground							4 conductors with ground					
	Diamet	t er in.	Area in. ²		Weigl	Weight Ibs/ft Diam		eter in. Area in. ²		in.²	Weight Ibs/ft		
Size	Without Jacket	With Jacket	Without Jacket	With Jacket	Alum. Armor	Steel Armor	Without Jacket	With Jacket	Without Jacket	With Jacket	Alum. Armor	Steel Armor	
8	0.70	0.80	0.38	0.50	0.41	0.57	0.76	0.86	0.45	0.58	0.51	0.68	
6	0.78	0.88	0.48	0.61	0.55	0.74	0.85	0.95	0.57	0.71	0.69	0.87	
4	0.89	0.99	0.62	0.77	0.74	0.95	0.97	1.07	0.74	0.90	0.93	1.15	
2	1.01	1.12	0.80	0.99	1.08	1.32	1.10	1.22	0.95	1.17	1.29	1.56	
1	1.16	1.27	1.06	1.27	1.38	1.63	1.25	1.36	1.23	1.45	1.61	1.91	
1/0	1.23	1.34	1.19	1.41	1.56	1.86	1.35	1.46	1.43	1.67	1.94	2.27	
2/0	1.32	1.43	1.37	1.61	1.85	2.20	1.46	1.56	1.67	1.91	2.36	2.72	
3/0	1.46	1.57	1.67	1.94	2.35	2.67	1.58	1.71	1.96	2.30	2.94	3.33	
4/0	1.56	1.68	—	—	2.82	3.21	1.75	1.88	—	—	3.64	3.97	
250	1.74	1.86	_	_	3.31	3.94	1.92	2.04	—		4.21	4.64	
350	1.96	2.10	—	—	4.48	4.97	2.16	2.30	—	—	5.71	6.12	
500	2.24	2.37	_	—	6.08	6.58	2.47	2.63			7.91	8.39	
750	2.68	2.84	—	—	8.96	9.70	3.03	3.22	—	—	11.48	12.17	

Single Conductor Cable 600V

	ХННЖ			THHN, THWN			TW, THW			USE, RHH, RHW		
Size	Diameter in.	Area in.²	Weight Ibs/ft									
1/0	0.48	_	0.37	0.50		0.37	0.53		0.39	0.53	_	0.39
2/0	0.52		0.46	0.54		0.46	0.57		0.48	0.57		0.49
3/0	0.58		0.57	0.60		0.57	0.62	—	0.60	0.63		0.60
4/0	0.63		0.71	0.66	_	0.71	0.68	_	0.74	0.68		0.75
250	0.70	0.38	0.85	0.72	0.41	0.85	0.75	0.44	0.88	0.76	0.45	0.89
300	0.75	0.44	1.02	0.77	0.47	1.02	0.81	0.52	1.04	0.81	0.52	1.05
350	0.80	0.50	1.17	0.83	0.54	1.17	0.86	0.58	1.21	0.86	0.58	1.22
400	0.85	0.57	1.33	0.87	0.59	1.33	0.90	0.64	1.37	0.91	0.65	1.38
500	0.93	0.68	1.64	0.96	0.72	1.64	0.98	0.75	1.69	0.99	0.77	1.70
600	1.04	0.85	2.03	1.06	0.88	2.01	1.09	0.93	2.03	1.10	0.95	2.07
750	1.14	1.02	2.24	1.17	1.08	2.48	1.19	1.11	2.51	1.20	1.13	2.55
1000	1.29	_	2.52	1.32	_	3.30	1.34		3.31	1.35	_	3.33

Allowable Cable Fill

For allowable cable types see the Appendix page APP-5. The following guidelines are based on the 2011 National Electrical Code, Article 392.

I) Number of Multiconductor Cables rated 2000 volts or less in the Cable Tray

(1) 4/0 or Larger Cables

The ladder cable tray must have an inside available width equal to or greater than the sum of the diameters (Sd) of the cables, which must be installed in a single layer. When using solid bottom cable tray, the sum of the cable diameters is not to exceed 90% of the available cable tray width.

Example: Cable Tray width is obtained as follows:

List Cable Sizes	(D) List Cable Outside Diameter	(N) List Number of Cables	Multiply (D) x (N) = Subtotal of the Sum of the Cable Diameters
3/C - #500 kcmil	2.26 inches	1	2.26 inches
3/C - #250 kcmil	1.76 inches	2	3.52 inches
3/C - #4/0 AWG	1.55 inches	4	6.20 inches

The sum of the diameters (Sd) of all cables = 2.26 + 3.52 + 6.20 = 11.98 inches; therefore a cable tray with an available width of at least 12 inches is required.

	Table 5				
(2) Cables Smaller Than 4/0 The total sum of the cross-sectional areas of all the cables to be installed in the cable tray must be	Inside Width of Cable Tray inches	Allowable Cable Area square inches			
equal to or less than the allowable cable area for	6	7.0			
the tray width, as indicated in Table 5.	9	10.5			
	12	14.0			
When using solid bottom cable tray, the allowable	18	21.0			
cable area is reduced by 22%.	24	28.0			

Example: The cable tray width is obtained as follows:

List Cable Sizes	(A) List Cable Cross Sectional Areas	(N) List Number of Cables	Multiply (A) x (N) + Total of the Cross-Sectional Area for each Size
3/C - #12 AWG	0.167 sq. in.	10	1.67 sq. in.
4/C - #12 AWG	0.190 sq. in.	8	1.52 sq. in.
3/C - # 6 AWG	0.430 sq. in.	6	2.58 sq. in.
3/C - # 2 AWG	0.800 sq. in.	9	7.20 sq. in.

The sum of the total areas is 1.67 + 1.52 + 2.58 + 7.20 = 12.97 inches. Using Table 5, a 12-inch wide tray with an allowable cable area of 14 sq. inches should be used.

Note: Increasing the cable tray loading depth does not permit an increase in allowable cable area for power and lighting cables. The maximum allowable cable area for all cable tray with a 3 inch or greater loading depth is limited to the allowable cable area for a 3 inch loading depth.

(3) 4/0 or Larger Cables Installed with Cables Smaller than 4/0

The ladder cable tray needs to be divided into two zones (a barrier or divider is not required but one can be used if desired) so that the No. 4/0 and larger cables have a dedicated zone, as they are to be placed in a single layer.

Tray Selection

Allowable Cable Fill

A direct method to determine the correct cable tray width is to figure the cable tray widths required for each of the cable combinations per steps (2) & (3).

Then add the widths in order to select the proper cable tray width.

Example: The cable tray width is obtained as follows:

Part A- Width required for #4/0 AWG and larger multiconductor cables

List Cable Size	(D) List Cable Outside Diameter	(N) List Number of Cables	Multiply (D) x (N) = Subtotal of the Sum of the Cable Diameters (Sd)
3/C - #500 kcmil	2.26 inches	1	2.26 inches
3/C - #4/0 AWG	1.55 inches	2	3.10 inches

Cable tray width (inches) required for large cables = 2.26 + 3.10 = 5.36 inches.

Part B- Width required for multiconductor cables smaller than #4/0 AWG

List Cable Sizes	(A) List Cable Cross Sectional Areas	(N) List Number of Cables	Multiply (A) x (N) = Total of the Cross-Sectional Area for each Size
3/C - #12 AWG	0.167 sq. in.	10	1.67 sq. in.
3/C - #6 AWG	0.430 sq. in.	8	3.44 sq. in.
3/C - #2 AWG	0.800 sq. in.	2	1.60 sq. in.

The sum of the total areas (inches) = 1.67 + 3.44 + 1.60 = 6.71 sq. inches. From Table 5 (page 33), the cable tray width required for small cables is 6 inches.

The total cable tray width (inches) = 5.36 + 6.00 = 11.36 inches. A 12-inch wide

cable tray is required.

(4) Multiconductor Control and/or Signal Cables Only

A ladder cable tray containing only control and/or signal cables, may have 50% of its total available cable area filled with cable. When using solid bottom cable tray pans, the allowable cable area is reduced from 50% to 40%.

Example: Cable tray width is obtained as follows:

2/C- #16 AWG instrumentation cable cross sectional area = 0.04 sq. in. Total cross sectional area for 300 Cables = 12.00 sq. in. Minimum available cable area needed = $12.00 \times 2 = 24.00$ sq. in.; therefore the cable tray width required for 4 inch available loading depth tray = 24.00/4 = 6 inches.

II) Number of Single Conductor Cables Rated 2000 Volts or Less in the Cable Tray

All single conductor cables to be installed in the cable tray must be 1/0 or larger, and are not to be installed with continuous bottom pans.

(1) 1000 KCMIL or Larger Cables

The sum of the diameters (Sd) for all single conductor cables to be installed shall not exceed the cable tray width. See Table 6.

Inside Width of Cable Tray inches	Allowable Cable Area square inches	
6	6.50	
9	9.50	
12	13.00	
18	19.50	
24	26.00	
30	32.50	
36	39.00	

Table 6

continued on C-19

Inside Width

of Cable Trav

inches

6

9

12

18 24

30

36

Allowable Cable Fill

Allowable

Cable Area

square inches

6.50 - (1.1 Sd)

9.50 - (1.1 Sd)

13.00 - (1.1 Sd)

19.50 - (1.1 Sd)

26.00 - (1.1 Sd)

32.50 - (1.1 Sd)

39.00 - (1.1 Sd)

Table 7

(2) 250 KCMIL to 1000 KCMIL Cables

The total sum of the cross-sectional areas of all the single conductor cables to be installed in the cable tray must be equal to or less than the allowable cable area for the tray width, as indicated in Table 6 (page C-18). (Reference Table 8)

(3) 1000 KCMIL or Larger Cables Installed with **Cables Smaller Than 1000 KCMIL**

The total sum of the cross-sectional areas of all the single conductor cables to be installed in the cable tray must be equal to or less than the allowable cable area for the tray width, as indicated in Table 7.

(4) Single Conductor Cables 1/0 through 4/0

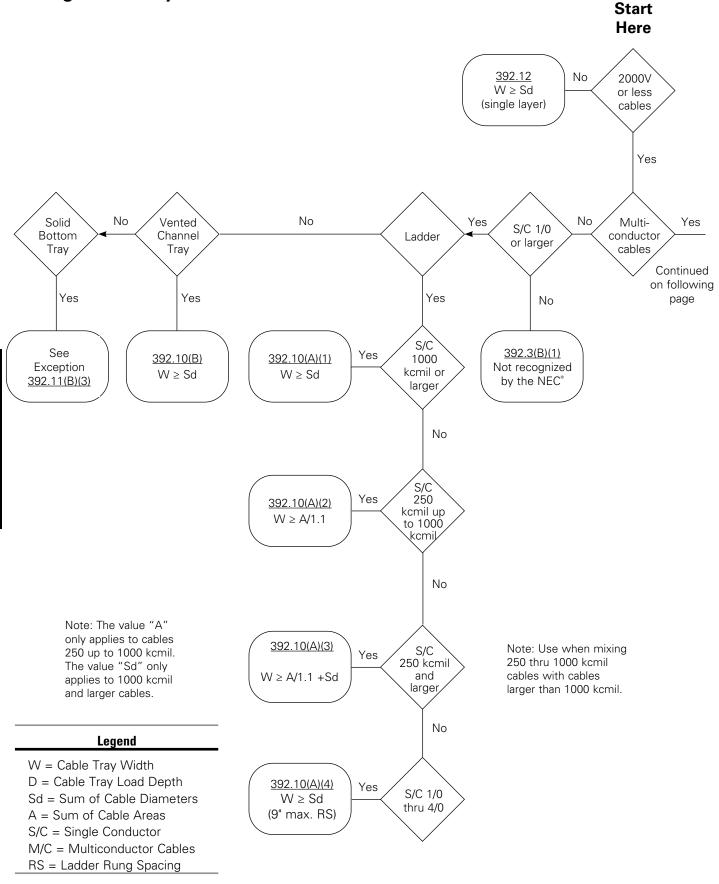
These single conductors must be installed in a single layer. See Table 8.

Note: It is the opinion of some that this practice may cause problems with unbalanced voltages. To avoid

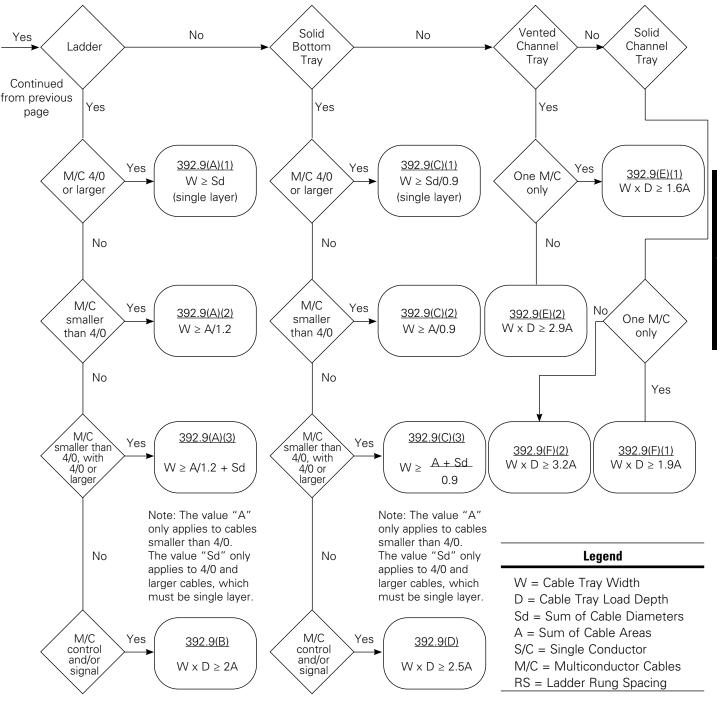
these potential problems, the individual conductors for this type of cable tray wiring system should be bundled with ties. The bundle should contain all of the three-phase conductors for the circuit, plus the neutral if used. The single conductor cables bundle should be firmly tied to the cable tray assembly at least every 6 feet.

Single	Outside	Area	Cable Tray Width					
Conductor	Diameter		6	9	12	18	24	
Size	in.	sq. in.	in.	in.	in.	in.	in.	
1/0	0.58	—	10	15	20	31	41	
2/0	0.62		9	14	19	29	38	
3/0	0.68	—	8	13	17	26	35	
4/0	0.73	_	8	12	16	24	32	
250 Kcmil	0.84	.55	11	18	24	35	47	
350 Kcmil	0.94	.69	9	14	19	28	38	
500 Kcmil	1.07	.90	7	11	14	22	29	
750 Kcmil	1.28	1.29	5	8	10	15	20	
1000 Kcmil	1.45		4	6	8	12	16	

.

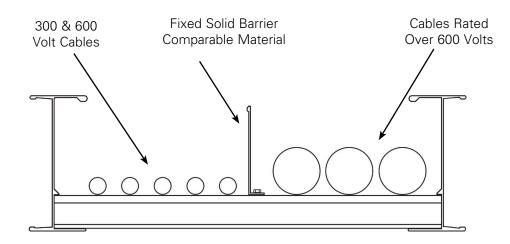

Table 8

Cable diameters used are those for Oknite-Okolon 600 volt single conductor power cables.


III) Number of Type MV and MC Cables Rated 2001 Volts or Over in the Cable Tray

The sum of the diameters (Sd) of all cables, rated 2001 volts or over, is not to exceed the cable tray width.

Sizing Cable Tray Per 2014 NEC 392



Note: See appendix on page APP-15 for additional information regarding cable ampacity and hazardous (classified) location requirements which might affect the cable tray sizing flow chart.

Barrier Requirements

Barrier strips are used to separate cable systems, such as when cables above and below 600 volts per NEC 392.6(F) are installed in the same cable tray. However, when MC type cables rated over 600 volts are installed in the same cable tray with cables rated 600 volts or less, no barriers are required. The barriers should be made of the same material type as the cable tray. When ordering the barrier, the height must match the *loading depth* of the cable tray into which it is being installed.

Future Expansion Requirements

One of the many features of cable tray is the ease of adding cables to an existing system. Future expansion should always be considered when selecting a cable tray, and allowance should be made for additional *fill area* and *load capacity*. A minimum of 50% expansion allowance is recommended.

Space Limitations

Any obstacles which could interfere with a cable tray installation should be considered when selecting a cable tray width and height. Adequate clearances should be allowed for installation of supports and for cable accessibility.

Note: The overall cable tray dimensions typically exceed the nominal tray width and loading depth.

Lengths Available

The current Cable Tray Standard, NEMA VE 1 and C22.2 No. 126.1, lists typical lengths as 3000 mm (10 ft), 3660 mm (12 ft), 6000 mm (20 ft), and 7320 mm (24 ft). It is impractical to manufacture either lighter systems in the longer lengths or heavier systems in the shorter lengths. For that reason, we have introduced a primary and secondary length for each system.

These straight section lengths were selected to direct the user to lengths that best suit support span demands and practical loading requirements. The primary length is the one that is the most appropriate for the strength of the system and that will provide the fastest service levels. The secondary lengths will be made available to service additional requirements. Special lengths are available with extended lead times.

Support Span

Per the NEMA VE 2, the support span on which a cable tray is installed should not exceed the length of the unspliced straight section. Thus installations with support spans greater than 12 feet should use 240" (20 feet) or 288" (24 feet) cable tray lengths.

Space Limitations

Consideration should be given to the space available for moving the cable tray from delivery to it's final installation location. Obviously, shorter cable tray allows for more maneuverability in tight spaces.

Installation

Shorter cable tray lengths are typically easier to maneuver on the job site during installation. Two people may be needed to manipulate longer cable tray sections, while shorter sections might be handled by one person. Although longer cable tray lengths are more difficult to maneuver, they can reduce installation time due to the fact that there are fewer splice connections. This trade-off should be evaluated for each set of job site restrictions.

Power Application:

Power application can create the heaviest loading. The heaviest cable combination found was for large diameter cables (i.e. steel armor, 600V, 4 conductor 750 kcmil). The cables weigh less than 3.8 lbs. per inch width of cable tray. As power cables are installed in a single layer, the width of the cable affects the possible loading.

36" Wide	30" Wide	24" Wide	18" Wide	12" Wide	9" Wide	6" Wide
140 lbs/ft	115 lbs/ft	90 lbs/ft	70 lbs/ft	45 lbs/ft	35 lbs/ft	23 lbs/ft

Data/Communication Cabling:

Low voltage cables can be stacked as there is no heat generation problems. The NEC employs a calculation of the total cross sectional area of the cables not exceeding 50% of the fill area of the cable tray. As the cable fill area of the cable tray system affects the possible loading, both the loading depth and width of the systems must be considered. For this example, 4UTP category 5 cable (O.D. = .21, .026 lbs./ft.) were used.

		eare					
	36" Wide	30" Wide	24" Wide	18" Wide	12" Wide	9" Wide	6" Wide
6" Fill	81	64	52	41	27	20	14
5" Fill	68	53	43	34	23	17	12
4" Fill	54	43	35	27	18	13	9
3" Fill	41	32	26	21	14	10	7

Calculated Cable Weight in Lbs/Ft

The picture shows a 12" cable tray with a 3" load depth. The tray contains 520 4 UTP Category 5 cables with a .21" diameter.

The National Electrical Code allows for 50% fill of ventilated and ladder cable tray for control or signal wiring (Article 392.22(A)(2)). ANSI/EIA/TIA 569-A Section 4.5^* also requires that the fill ratio of cable tray is not to exceed 50%.

CalculationTray Area = 12 in. x 3 in. = 36 sq. in.Example:50% Fill = 36 sq. in. x .5 = 18 sq. in.
Cable Area = $(.21 \text{ in.})^2 \times 3.14/4 = .0346$ sq. in.
Number of Cables = 18 sq. in. / .0346 sq. in. = 520 cables

*Section 4.5 is currently under review.

Other Factors To Consider

• Support Span - The distance between the supports	$W_1 L_1^2 = W_2 L_2^2$
affects the loading capabilities exponentially.	W1 - tested loading
To calculate loading values not cataloged use:	L ₁ - span in feet, a tested span
	W ₂ - loading in question
	L ₂ - known span for new loading

• Other Loads - Ice, wind, snow for outdoor systems see pages C-10 and C-11 for information. A 200 lb. concentrated load for industrial systems. The affect of a concentrated load can be calculated as follows

2 x (concentrated static load) span in feet

When considering concentrated loads the rung strength should be considered.

• Length Of The Straight Sections:

The VE 2, Cable Tray Installation Guide, states that the support span shall not be greater than the straight section length. If a 20C system is manufactured in 12 foot sections the greatest span for supports would be 12 feet. This dramatically affects the loading of the system.

 $\begin{array}{rcl} W_1 \ L_1^2 & = & W_2 \ L^2_2 \\ 100 \ (20^2) & = & W_2 \ (12^2) \\ 40,000 & = & 144 \ W_2 \\ W_2 & = & 277 \ \text{lbs. per foot} \end{array}$

Type of Cable

According to NEC Article 392, multiconductor tray cable may be installed in any standard cable tray bottom type. According to the 2014 NEC Article 392.11(8)(3), single conductor tray cable may be installed in any standard cable tray bottom type. Solid bottom cable trays are not allowed to be installed in Class II, Division 2 locations (2014 NEC Section 502.4(B)). In general, small, highly flexible cables should be installed in solid bottom, vented bottom or 6" rung spacing ladder type cable trays. Sensitive cables (e.g. fiber optic) are typically installed in flat, solid bottom cable trays. Larger, less flexible cables are typically installed in ladder type cable trays having 9" or 12" rung spacing. Ladder type cable trays having 18" rung spacing should be used for large, stiff cables to reduce cost and facilitate cable drop-outs.

Cost Versus Strength

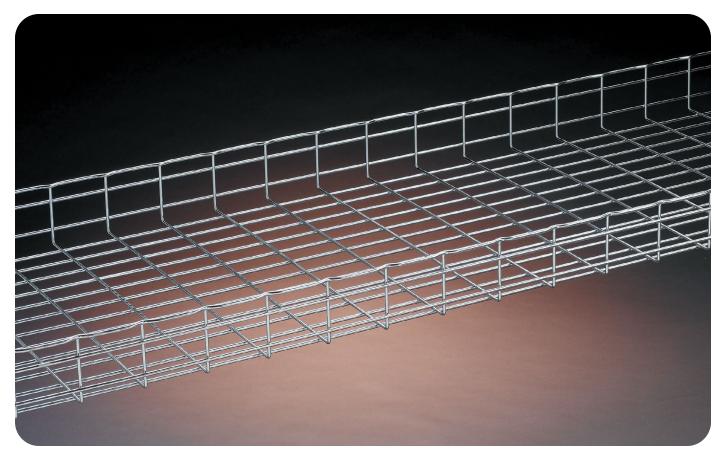
Often, more than one bottom type is acceptable. In this case, the economic difference should be considered. Ladder cable trays have a lower cost than either non-ventilated or ventilated bottom configurations. Typically, the cost of ladder type cable tray decreases as rung spacing increases. However, the effect of rung spacing on load capacity for ladder type cable trays with 18" rung spacing should be evaluated, since NEMA published load capacities are based on 12" rung spacing. Rung spacing can affect individual rung and side rail loading as well as system load capacity. Rung loads applied during cable installation should also be considered.

Cable Exposure

Tray cables are manufactured to withstand the environment without additional protection, favoring the use of the ladder type cable tray. Some areas may benefit from the limited exposure of solid or vented bottom cable tray. Solid bottom metal cable tray with solid metal covers can be utilized in other spaces used for environmental air to support non plenum rated tray cables (2014 NEC[®] 300.22(C)(1)).

Cable Attachment

The major advantage of ladder type cable tray is the freedom of entry and exit of the cables. Another advantage of ladder type cable tray is the ability to secure cables in the cable tray. With standard rungs, the cables may be attached with either cable ties or cable clamps. The ladder type cable tray is also available with special purpose, slotted marine or strut rungs to facilitate banding or clamping cables. Cable attachment is particularly important on vertical runs or when the tray is installed on its side. Ladder rung spacing should be chosen to provide adequate cable attachment points while allowing the cables to exit the system.


Cable Tray Selection - Fitting Radius

Cable Flexibility

The proper bend radius for cable tray fittings is usually determined by the bend radius and stiffness of the tray cables to be installed. Typically, the tray cable manufacturer will recommend a minimum bend allowance for each cable. The fitting radius should be equal to or larger than the minimum bend radius of the largest cable which may ever be installed in the system. When several cables are to be installed in the same cable tray, a larger bend radius may be desirable to ease cable installation.

Space Limitations

The overall dimensions for a cable tray fitting will increase as the bend radius increases. Size and cost make the smallest acceptable fitting radius most desirable. When large radius fittings are required, the system layout must be designed to allow adequate space.

The Flextray[™] system is a flexible, field-adaptable way to manage cables throughout your project. The tray can be cut and bent to the needs of the installer on the jobsite, allowing cable runs to be adjusted as needed. The wide range of sizes offered makes Flextray a great choice for everything from a small cable drop to a large trunk of cables. Our tray has the market-preferred "T" weld safety edge, protecting both the cable and the installer during cable installation. Flextray is also UL Classified as an equipment grounding conductor.

Finish Information

Flextray cable tray and accessories are available in a wide variety of finishes to meet the environmental or aesthetic requirements of customer installations. Use the list below to find the finish and suffix that will meet your needs.

Available product finishes will be listed on individual pages throughout the catalog.

Finish codes shown in **bold** type are the standard for that product.

Plain wire: ASTM A510, Grade 1008

- **EG** Electroplated zinc galvanized finish applied after fabrication
- (ELG) Recommended applications: Controlled interior UL/CSA Classified as an equipment ground conductor when spliced as recommended ASTM B633 - Average thickness of 0.3 mils (8 microns)
- **GS** Pre-galvanized zinc finish applied before fabrication
- (GLV) Recommended applications: Limited industrial & interior UL/CSA Classified as an equipment ground conductor when spliced as recommended ASTM A641
- **BLE** Black powder coat finish applied after fabrication Recommended applications: Controlled interior UL/CSA Classified as an equipment ground conductor when coating has been removed at splice contact points Average paint thickness of 1.2 mils (30 microns) to 3.0 mils (75 microns)
- **HD** Hot dip galvanized finish applied after fabrication
- (HDG) Recommended applications: Exterior, corrosive. Not intended for clean room applications. UL/CSA Classified as an equipment ground conductor when spliced as recommended ASTM A123 - Average thickness of 2.4 mils (60 microns) to 3.2 mils (80 microns)
- 316S 316L Stainless steel

(SS6) Recommended applications: Highly corrosive applications, marine environments, food preparation and wash-down areas ASTM A580

Custom powder coat finish applied after fabrication Recommended applications: Controlled interior UL/CSA Classified as an equipment ground conductor when coating has been removed at splice contact points No Specification

Grounding Information

Statement for all UL Classified products:

This product is classified by Underwriters Laboratories, Inc. as to its suitability as an equipment grounding conductor only. 556E

Most sizes of the Flextray system are UL Classified to serve as an Equipment Ground Conductor. The ground path can be achieved in one of two ways listed on page D-4:

Grounding Information (cont.)

- 1. Use the recommended quantity of UL Classified splices to connect sections and at places where the tray is cut.
- 2. Run an appropriately sized ground wire alongside the tray and attach it to each tray section and on both sides of a cut in the tray. (This method is recommended by NEMA VE-2 (NEMA BI 50016) Installation Manual.)

Load & Fill Chart

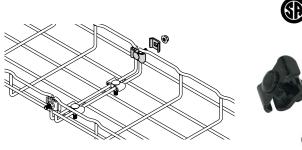
	extray	Suppor	t Span / Lo	oading Ca	pacity*			Fill (50% fill)**	
So Part Number	eries Size height x width	5'-0"	Lbs/Ft 6'-0"	(max) 7'-0"	8'-0"	Actual Area Inside Tray (in²)	Number of CAT 5e Cables***	Number of CAT CAT 6 Cables***	Number of CAT CAT 6A Cables***
FT2X2	2" x 2"	34	28	24	20	4.3	61	43	33
FT2X4	2" x 4"	52	43	35	27	8.2	118	83	64
FT2X6	2" x 6"	66	47	35	27	12.1	175	123	95
FT2X8	2" x 8"	66	47	35	27	16.1	231	163	125
FT2X12	2" x 12"	68	47	35	27	23.9	345	243	187
FT2X16	2" x 16"	68	47	35	27	31.8	459	324	249
FT2X18	2" x 18"	68	47	35	27	35.8	516	364	280
FT2X20	2" x 20"	68	47	35	27	39.7	573	404	311
FT2X24	2" x 24"	68	47	35	27	47.5	686	484	372
FT2X30	2" x 30"	68	47	35	27	59.8	862	608	468
FT2X32	2" x 32"	77	53	39	30	63.3	914	645	496
FT4X4	4" x 4"	58	49	42	36	15.8	227	160	123
FT4X6	4" x 6"	93	77	60	46	23.6	341	240	185
FT4X8	4" x 8"	94	78	61	47	31.5	454	321	247
FT4X12	4" x 12"	119	83	61	47	47.5	686	484	372
FT4X16	4" x 16"	119	83	61	47	63.5	917	647	498
FT4X18	4" x 18"	119	83	61	47	71.5	1032	728	560
FT4X20	4" x 20"	119	83	61	47	79.5	1148	810	623
FT4X24	4" x 24"	128	89	65	50	95.5	1379	973	749
FT4X30	4" x 30"	128	89	65	50	119.5	1725	1217	936
FT6X8	6" x 8"	111	77	57	43	47.3	682	481	370
FT6X12	6" x 12"	124	86	63	48	71.6	1034	729	561
FT6X16	6" x 16"	128	89	65	50	95.3	1375	970	746
FT6X18	6" x 18"	128	89	65	50	107.3	1549	1092	840
FT6X20	6" x 20"	141	98	72	55	118.9	1716	1211	932
FT6X24	6" x 24"	154	107	78	60	143.3	2068	1459	1123

- * Published load chart has not been tested with Flexmate[™] splice. Please consult the factory for load information when using the Flexmate option.
- ** Flextray fill capacity is based on NEC allowable fill of 50%. The NEC rule requires that the cable cross-sectional areas together may not exceed 50% of the tray area (width x depth = fill). Cables will nearly completely fill the cable tray when reaching the 50% cable fill, due to empty space between the surface of the cables. TIA recommends 40% fill ratio. Flextray loads shown in the loading chart will not be exceeded at 50% fill.
- *** CAT 5e 4-pr non-plenum approximated at .21 in. diameter, CAT 6 4-pr non-plenum approximated at .25 in. diameter, CAT 6A approximated at .285 diameter. Actual diameters vary by cable manufacturer.

Flextray	2.38" (60 mm)				
		Part Number	Width in. (mm)	Wt. Per Piece Ibs. (kg)	UL Marking
	الْبُلْ	FT2X2X10	2 (50)	6.6 (2.99)	None
	ĬŢŢĮ.	FT2X4X10	4 (100)	8.2 (3.72)	None
		FT2X6X10	6 (150)	9.7 (4.40)	.201N ²
ight: 2.38" (60 mm)	Ĩ, , , , , , ,	FT2X8X10	8 (200)	11.2 (5.08)	.201N ²
ngth: 118.312" (3 meter) re Dia. Minimum: .196" (5.0 mm)	l,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	FT2X12X10	12 (300)	14.3 (6.48)	.201N ²
ishes: , BLE (GS, HD and 316S available	,	FT2X16X10	16 (400)	17.4 (7.89)	.201N ²
on request).	,	FT2X18X10	18 (450)	18.9 (8.57)	.201N ²
l,	, , , , , , , , , , , , , , , , , , ,	FT2X20X10	20 (500)	20.4 (9.25)	.401N ²
l		FT2X24X10	24 (600)	23.5 (10.66)	.401N ²
l	· · · · · · · · · · ·	FT2X30X10	30 (750)	28.1 (12.74)	.401N ²
Vid	,	FT2X32X10	32 (800)	29.7 (13.47)	.401N ²

2" Deep Flextrav

FT2X6 (6" wide) through FT2X32 (32" wide) are UL Classified


Part Number	Width in. (mm)	Wt. Per Piece Ibs. (kg)	UL Marking	4.38" (111 mm)
T4X4X10	4 (100)	11.25 (5.10)	.201N ²	
FT4X6X10	6 (150)	12.79 (5.80)	.201N ²	
FT4X8X10	8 (200)	14.32 (6.49)	.201N ²	
FT4X12X10	12 (300)	17.39 (7.89)	.201N ²	
FT4X16X10	16 (400)	20.45 (9.27)	.401N ²	Height: 4.38" (111 m
FT4X18X10	18 (450)	21.99 (9.97)	.401N ²	Length: 118.312" (3 r Wire Diameter Minin
FT4X20X10	20 (500)	23.52 (10.67)	.401N ²	.196" (5.0 mm) Finishes: EG , BLE (GS, HD and
FT4X24X10	24 (600)	26.59 (12.06)	.401N ²	available upon reques
FT4X30X10	30 (750)	31.19 (14.15)	.401N ²	[

				6.38"	6" I Flex
Part Number	Width in. (mm)	Wt. Per Piece Ibs. (kg)	UL Marking] [] [] [] [] [] [] [] [] [] [] [] [] []	n)
FT6X8X10	8 (200)	17.39 (7.89)	.201N ²		
FT6X12X10	12 (300)	20.45 (9.27)	.401N ²		
FT6X16X10	16 (400)	23.52 (10.67)	.401N ²		
FT6X18X10	18 (450)	25.06 (11.37)	.401N ²		
FT6X20X10	20 (500)	26.59 (12.06)	.401N ²		Height: 6.38" (162 mr Length: 118.312" (3 n
FT6X24X10	24 (600)	29.66 (13.45)	.401N ²		Wire Diameter Minir .196" (5.0 mm)
All 6" deep Flext				Width	Finishes: EG, BLE (GS, HD and available upon reques

- Washer is staked to bolt, holding part stationary during installation.
- Fewer parts to handle.
- For use with all tray widths and sizes.
- Finishes __: EG, BLE.

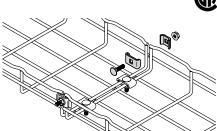
Part Number	Description	Qty./Box	Wt./Box lbs. (kg)
WASHER SPL KIT	Assembly of Staked Washer Stud/Washer & Finned Nut	100	4.5 (2.04)

• **BLE** suffix indicates black zinc finish for this part only

Washer Splice Kit

Splicing Chart (number of splices required for UL Classification)

Tray Height		Tray Width - number of splices										
	2 " (50mm)	4 " (100mm)	6" (150mm)	8" (200mm)	12" (300mm)	16"	18"	20'' (500mm)	24 " (600mm)	>24" (>600mm)		
2"	NC	NC	3	3	3	4	4	4	4	5		
4"	NM	3	3	3	3	4	4	4	4	5		
6"	NM	NM	3	3	3	4	4	4	4	5		


NC = Not UL Classified in this size NM = Flextray is not manufactured in this size

- Works with all splicing needs.
- For use with all tray widths and sizes.
- Components are sold separately.
- Finishes __: EG, BLE (316S available upon request). FTHDWE ¹/₄ not available in BLE.

Splice Hardware Components

Part Number	Description	Qty./Box	Wt./Box lbs. (kg)
FTHDWE 1/4	¹ /4" x 1" Carriage Bolt & Finned nut	50	2.4 (1.08)
TOP WASHER	1" Square Splice Washer	100	2.8 (1.26)
BTM WASHER	¹³ / ₁₆ " Square Splice Washer	100	4.0 (1.82)

TOP WASHER

Splicing Chart (number of splices required for UL Classification)

Tray Height		Tray Width - number of splices										
	2 " (50mm)	4'' (100mm)	6 " (150mm)	8" (200mm)	12" (300mm)	16" (400mm)	18" (450mm)	20 " (500mm)	24" (600mm)	>24" (>600mm)		
2"	NC	NC	3	3	3	4	4	4	4	5		
4"	NM	3	3	3	3	4	4	4	4	5		
6"	NM	NM	3	3	3	4	4	4	4	5		

NC = Not UL Classified in this size NM = Flextray is not manufactured in this size

See page D-3 for finish and grounding information

Part Number	Description	Qty./Box	Wt./Box lbs. (kg)	bar (FTS36SB). • Finishes <u></u> : EG (BLE, BLC upon request).
FTSCH	Connecting Hardware	50	2.0 (0.91)	apon roquoot,.

Connecting Hardware

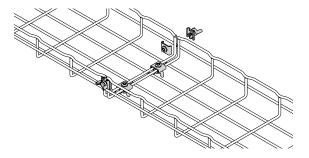
Splicing Chart

Tray Height		Tray Width - number of splices										
	2 " (50mm)	4" (100mm)	6'' (150mm)	8 " (200mm)	12 " (300mm)	16 " (400mm)	18 " (450mm)	20 " (500mm)	24" (600mm)	>24" (>600mm)		
2"	NC	NC	3	3	3	4	4	4	4	5		
4"	NM	3	3	3	3	4	4	4	4	5		
6"	NM	NM	3	3	3	4	4	4	4	5		

NC = Not UL Classified in this size NM = Flextray is not manufactured in this size

Wing Splice

Part Number	Description	Qty./Box	Wt./Box lbs. (kg)	
FTSWN_	Wing Splice™	50	3.0 (1.38)	


- Two piece design for easy handling.
- Tool-less installation.
- Reduces installation time, especially when used on fittings and bends.

 Adaptable and designed for use with splice plate (FTS3SP), SPLICE BAR, and long splice

and 316S available

• Finish__: **ZN**.

Splicing Chart (number of splices required for UL Classification)

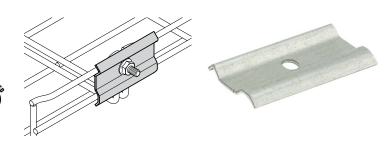
Tray Height		Tray Width - number of splices										
	2" (50mm)	4'' (100mm)	6'' (150mm)	8" (200mm)	12" (300mm)	16" (400mm)	18 " (450mm)	20'' (500mm)	24" (600mm)	>24" (>600mm)		
2"	NC	NC	3	3	3	4	4	4	4	5		
4"	NM	3	3	3	3	4	4	4	4	5		
6"	NM	NM	3	3	3	4	4	4	4	5		

NC = Not UL Classified in this size NM = Flextray is not manufactured in this size

See page D-3 for finish and grounding information

Splice Plate (only)

Part Number	Description	Length in. (mm)	Height in. (mm)	Hole Diameter in. (mm)	Qty./ Box	Wt./Box Ibs. (kg)
FTS3SP	Splice Plate	2.7" (68.5)	1.6" (40.6)	0.27" (6.8)	50	6.1 (2.76)
FTS3SPKIT	Splice Plate Kit includes FTSCH					


Part

Number

FLEXMATE TOOL

FLEXMATE2

- Splice plate is designed for use with connecting hardware (FTSCH) to provide added stability of splice connections.
- Hardware sold separately.
- Finish__: **ZN** (SS6 available upon request).
- Note: FT2x2x10 and FT2x4x10 are not UL Classified.

Description

Flexmate

Splice Clips

Flexmate

Splice Tool

FLEXMATE Splice System

Qty./Box

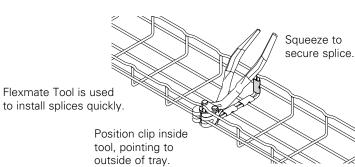
100

1

Wt./Box

lbs. (kg)

1.0 (0.45)


0.7 (0.32)

• One of the fastest splice connection methods available in the industry.

ŰŲL

- For use with 2" (100mm) to 12" (300mm) wide tray.
- FLEXMATE[™] clips and tool sold separately.
- Finishes _: GS (BLE available upon request).

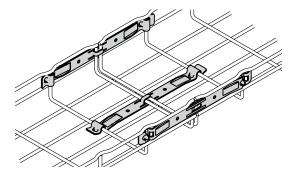
Note: Tray widths larger than 12" (300mm) are not UL Classified. We recommend that splice/supports comply with NEMA VE-2 (NEMA BI 50016) installation requirements

FLEXMATE2

Splicing Chart (number of splices required for UL Classification)

Tray Height	Tray Width - number of splices									
	2" (50mm)		6" (150mm)	8" [·] (200mm)	12" (300mm)					
2"	2 (NC)	2 (NC)	4	4	4					
4"	NM	4	5	6	6					
6"	NM	NM	NM	6	6					

 $\ensuremath{\mathsf{NM}}$ = Flextray is not manufactured in this size $\ensuremath{\mathsf{NC}}$ = Not UL Classified in this size


See page D-3 for finish and grounding information

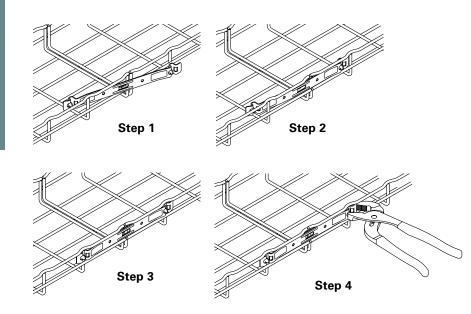
Tab-Loc Connector

Part Number	Description	Length in. (mm)	Qty./Box	Wt./Box lbs. (kg)
FTSTLC	Tab-Loc Connectors	9.29" (235.9)	50	7.2 (3.26)

- Fast splice for straight runs of tray.
- For use with 2" (50mm) to 32" (800mm) wide tray to connect straight sections only.
- Finishes __: ZN (SS6 available upon request).

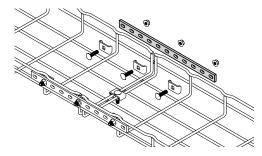
Application Requirements

The recommendations listed are equal for all depths (except as noted).


Splicing Chart

Tray Height		Tray Width - number of splices									
	2'' (50mm)	4'' (100mm)	6'' (150mm)	8'' (200mm)	12" (300mm)	16'' (400mm)	18'' (450mm)	20'' (500mm)	24'' (600mm)		
2"	2	2	4	4	4	4	4	5	5		
4"	NM	4	5	6	6	7	7	7	8		
6"	NM	NM	NM	6	6	7	7	7	8		

NM = Flextray is not manufactured in this size


Tab-Loc security without special tools.

Screwdriver can also be used to bend tab-locs (hold connector ends while bending).

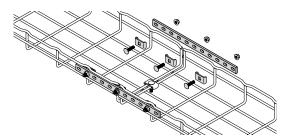
See page D-3 for finish and grounding information

- Adds rigidity to washer splice methods.
- Used on side rails only (not for use in tray bottom).
- For use on trays when using splice hardware FTSCH.
- Hardware sold separately.
- Each splice bar requires three (3) each of Hardware Splice Components TOP WASHER, and FTHDWE ¹/₄ to complete connection. These items must be ordered separately.
- Washer Splice Kits (WASHER SPL KIT) are required for connections on bottom of tray.
- Finishes __: **EG**, (BLE, HD and 316S available upon request).

Splicing Chart (number of splices required for UL Classification)

Tray Height		Tray Width - number of splices									
	2" (50mm)	4" (100mm)	6"	8" (200mm)	12" (300mm)	_ [`] 16"	18" (450mm)	20" (500mm)	24" (600mm)		
2"	NC	NC	2	2	2	2	2	2	2		
4"	NM	2	2	2	2	2	2	2	2		
6"	NM	NM	2	2	2	2	2	2	2		

NC = Not UL Classified in this size NM = Flextray is not manufactured in this size


Splice Bar Kit

lbs.

Wt./Box

(kg)

- Adds rigidity.
- Includes two (2) SPLICE BAR and hardware.
- Finishes __: ZN (FB and SS6 available upon request).

Part

Number

FTSBK

Bar Length

(mm)

in.

12"

Qty./Box

Splicing Chart (number of splices required for UL Classification)

Tray Height		Tray Width - number of splices							
	2" (50mm)	4" (100mm)	6" (150mm)	8" (200mm)	12" (300mm)	16" (400mm)	18" (450mm)	20" (500mm)	24" (600mm)
2"	NC	NC	2	2	2	2	2	2	2
4"	NM	2	2	2	2	2	2	2	2
6"	NM	NM	2	2	2	2	2	2	2

NC = Not UL Classified in this size NM = Flextray is not manufactured in this size

See page D-3 for finish and grounding information

 Part Number
 Bar Length in.
 Oty./Box (mm)
 Wt./Box Ibs.

 SPLICE BAR_
 10¹³/16ⁱⁱ
 (274.6)
 50
 14.0
 (6.35)

Part Number	Bar Length in. (mm)	Qty./Box	Wt./Box lbs. (kg)
FTS12ESK	12" (304.8)	1 Kit	0.45 (0.20)
NO 10	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		

Expansion Splice Kit

- Allows 1³/₄" (44mm) of expansion between two pieces of Flextray at expansion joints.
- To install, tighten nylon loc-nut until nut comes into contact with splice bar, then loosen approximately ¹/₄ turn.
- Includes two (2) splice bars and eight (8) sets of hardware.
- Finishes _: ZN.

Requires supports within 24" on both sides, per NEMA VE 2.

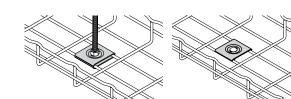
Long Splice Bar (only)

Part Number	Bar Length in. (mm)	Qty./Box	Wt./Box lbs. (kg)
FTS12SB	12" (304.8)	1	0.13 (0.06)
FTS36SB	36" (914.4)	1	0.40 (0.18)

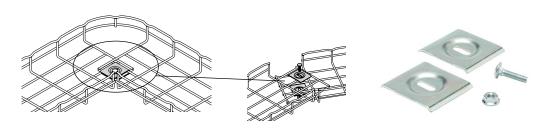
- FTS36SB long splice bar is used for assembly of large radius horizontal bends or field cut into short splice bars.
- Splice Bars are designed for use with connecting hardware (FTSCH).
- Hardware sold separately.
- Finishes __: **ZN** (FB and SS6 available upon request).

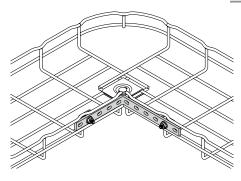
Hold Down Plate

Part Number	Description	Box/ Qty.	Wt. Ibs.	/Box kg
SUPT WASHER	.28" x .70" (7.1mm x 17.8mm)	100	9.4	(4.26)
FTA6HD	.40" x .70" (10.1mm x 17.8mm)	100	7.0	(3.17)


- Easy way to mount 4" (100mm) wide tray for raceway run.
- Use ¹/₄" screws to attach SUPT WASHER to your specific wall/stud application (hardware sold separately).
- FTA6HD can be used in pairs to create a center-hung support using 3/8" rod.
- To protect cables use threaded rod protector (page D-21).
- To complete ³/₈" center hanger assembly use: 2 - FTA6HD
 - 2 HN ³/₈"-16 hex nuts
- Finish: ZN (SS6 available upon request).

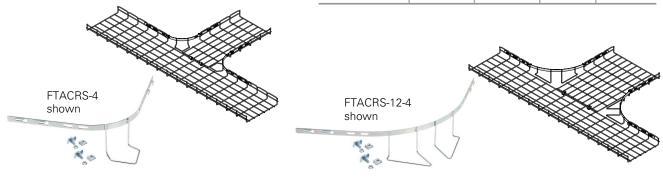
SUPT WASHER


FTA6HD


- Horizontal adjustable kit can be used to create horizontal angles from prepared Flextray straight sections.
- Conveniently poly-bagged.
- Finishes __: EG (BLE and 316S available upon request).

Horizontal Adjustable Kit

Part Number	Description	Qty./Box	Wt./Box lbs. (kg)	
FTSHAK	Horizontal Adjustable Kit	10	2.4 (1.09)	



- For fast assembly of 90° turns and tee fittings.
- For use with all tray widths and sizes.
- One kit will make two 90° turns or one tee fitting.
- 90 DEGREE KIT includes: two (2) 90° splice bars and eight (8) FTSCH.
- Finishes __: EG (BLE and 316S available upon request).

- · Helps eliminate need for field fabrication and is quick to install.
- Built in tab features for positioning onto side rails at transition locations.
- For fast assembly of a 90° bend, tee, and cross fittings.
- One kit will make one 90° bend, two kits will make one tee, and four kits will make one cross fitting.
- Kit includes: one (1) corner radius and two (2) WASHER SPL KIT.
- Finishes __: EG (BLE and 316S available upon request).

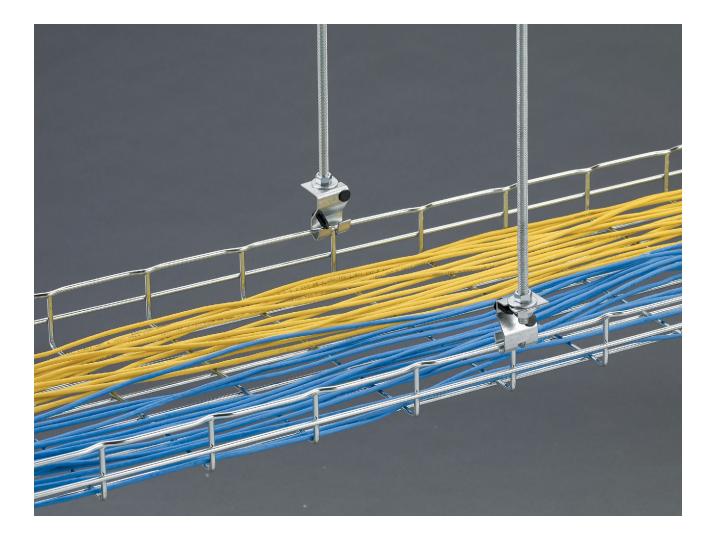
Part Number	Height in. (mm)	Radius in. (mm)	Qty. per Box	Wt./Box Ibs. (kg)
FTACRS-2	2" (50.8)	6" (152.4)	1	1.3 (0.59)
FTACRS-4	4" (101.6)	6" (152.4)	1	1.3 (0.59)
FTACRS-6	6" (152.4)	6" (152.4)	1	1.3 (0.59)
FTACRS-12-2	2" (50.8)	12" (304.8)	1	1.3 (0.59)
FTACRS-12-4	4" (101.6)	12" (304.8)	1	1.3 (0.59)
FTACRS-12-6	6" (152.4)	12" (304.8)	1	1.3 (0.59)

90 Degree Kit

Part Number	Description	Qty./Box	Wt./Box lbs. (kg)
90 DEGREE KIT	90 degree splice bar & hardware	1	1.3 (0.59)

Corner Radius Kit

Components Required to Connect Two Sections of Flextray

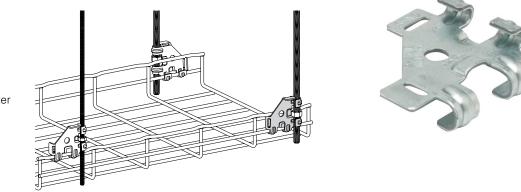

System Part Number	Sys W in.	stem idth (mm)	Connector Assembly WASHER SPL KIT	Connecting Hardware FTSCH	Splice Plate FTS3SP	Splice Bar SPLICE BAR	
						ELECTIC CELES	(*) 4 for 4" Deep Flextray 6 for 6" Deep Flextray
FT2X2 [†]	2"	(50)	2	_		_	Washer Splice Kits
FT2X4 [†]	4"	(100)	2	_	—	_	
FT2X6	6" 8"	(150) (200)	3 ¹ 3 ¹		_	_	
FT2X8 FT2X12	8 12"	(300)	31 31			_	
FT2X12	16"	(400)	4 ¹	_	_	_	
FT2X18	18"	(450)	4 ¹		_		
FT2X20	20"	(500)	4 ¹	_	_		
FT2X24	24"	(600)	4 ¹		_		
FT2X30	30"	(750)	5 ¹		_		
FT2X32	32"	(800)	5 ¹		—		
FT4X4	4"	100	3 ¹	_	_		
-T4X6	6"	150	3 ¹	_			
-T4X8	8"	200	3 ¹	_	_	_	
T(*)X12	12"	300	3 ¹	_	_	_	
T(*)X16	16"	400	4 ¹	_	_	_	¹ Install one kit on each side and remaining kit(s)
=T(*)X18 =T(*)X20	18"	(450) 500	4 ¹ 4 ¹	_	_		on bottom.
	20" 24"	600	41 41	_	_	_	
=T(*)X24 =T(*)X30	24 30"	(750)	4 5 ¹		_		
			5				
T2X2 †	2"	(50)		2	2		Splice Plates
=T2X4 †	4"	(100)	1	2	2	—	
T2X6 T2X8	6" 8"	(150)	1	2	2	_	
-12X8 -T2X12	o 12"	(200) (300)	1	2 2	2		
T2X12	16"	(400)	2	2	2	_	
-T2X18	18"	(450)	2	2	2	_	
T2X20	20"	(500)	2	2	2	_	
-T2X24	24"	(600)	2	2	2		
-T2X30	30"	(750)	3	2	2		
-T2X32	32"	(800)	3	2	2		
FT4X4	4"	(100)	1	2	2	_	
-T4X6	6"	(150)	1	2	2		
T4X8	8"	(200)	1	2	2		
FT(*)X12	12"	(300)	1	2	2		
FT(*)X16	16"	(400)	2	2	2	—	Install splice plates on sides and
T(*)X18	18" 20"	(450)	2	2	2	_	WASHER SPL KIT on bottom.
FT(*)X20 FT(*)X24	20 24"	(600)	2	2 2	2	_	
FT(*)X30	24 30"	(750)	3	2	2	_	
FT2X2 †	2"	(50)	~		-		A H -
-12X2 + -T2X4 †	2 4"	(100)	_	6 6	_	2 2	Splice Bars
T2X4	6"	(150)	1	6		2	
T2X8	8"	(200)	1	6	_	2	• • • • • • • • • • • • • • • • • • •
T2X12	12"	(300)	1	6	_	2	
T2X16	16"	(400)	2	6		2	
FT2X18	18"	(450)	2	6	—	2	
-T2X20	20"	(500)	2	6	_	2	
T2X24	24"	(600)	2	6	—	2	
FT2X30	30"	(750)	3	6	—	2	
FT2X32	32"	800	3	6	—	2	
FT4X4	4"	(100)	1	6	—	2	
FT4X6	6"	(150)	1	6	_	2	
=T4X8 =T(*)X12	8" 12"	(200) (300)	1	6 6		2 2	Install splice bars on sides and
FT(*)X12 FT(*)X16	12 16"	(300)	2	6	_	2	WASHER SPL KIT on bottom.
-T(*)X18 -T(*)X18	18"	(400)	2	6	_	2	
FT(*)X20	20"	(500)	2	6		2	
FT(*)X24	24"	(600)	2	6	_	2	
FT(*)X30	30"	(750)	3	6		2	† Sizes not UL Classified

Splice Plate Kits for 2" Deep Flextray

Part Number	-	stem idth (mm)		ight 100 _(kg)	Box Quantity	Conveniently poly-bagged for use with 2" Deep Flextray
FTS20SK	2" 4"	(50) (100)	2.91	(1.32)	10	
FTS21SK	6" 8" 12"	(150) (200) (300)	3.63	(1.64)	10	and
FTS22SK	16" 18" 20" 24"	(300) (450) (500) (600)	4.35	(1.97)	10	· Bo For · Bo For Bo
FTS23SK	30" 32"	(750) (800)	5.07	(2.30)	10	
						Pado Pado Pado

Splice Plate Kits for 4" & 6" Deep Flextray

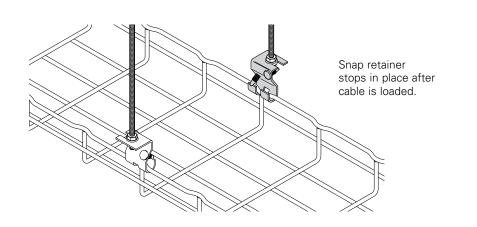
Part Number	Syste Widt in. (ight 100 (kg)	Box Quantity	Conveniently poly-bagged for use with 4" & 6" Deep Flextray
FTS21SK	6" (8" (2	100) 150) 200) 300)	3.63	(1.64)	10	· Bo Fil · Bo Bo
FTS22SK	18" (4 20" (400) 450) 500) 600)	4.35	(1.97)	10	alo fi alo fi pado pado
FTS23SK	30" (750)	5.07	(2.30)	10	ABO FIL ABO FILO



Flip Clip[™]

- \bullet Accommodates $^{1}\!/_{4}"$ and $^{3}\!/_{8}"$ rod sizes.
- Installs quickly with a screwdriver or pliers thus reducing installation time.
- Requires only one hex nut (not included) to hang and level the Flextray.
- Retainer tabs can be bent over to lock-in the threaded rod and wire basket.
- Finishes __: ZN (FB and SS6 available upon request).

Part Number	Description	Qty./Box	Wt./Box Ibs. (kg)
WB46H	Flip Clip™	50	5.2 (2.36)

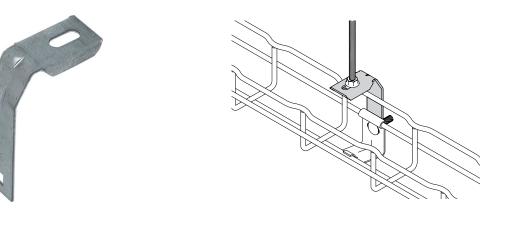

Trapeze Support

stops in place after cable is loaded.

Snap retainer

- Trapeze Clip installs fast.
- For use with trays up to 4" (100mm) deep, 12" (300mm) wide, and spans up to 8'-0" (2.44m).
- Tray can be released from support to allow side cable loading.
- Accepts 1/4" and 3/8" threaded rod sizes.
- Finishes __: GS (BLE available upon request).

Part Number	Description	Qty./Box	Wt. Ibs.	/Box (kg)
TRAPEZE SUPT2	Trapeze Support Clip	50 trapeze clips 100 retainer stops	7.0	(3.17)



Flextray

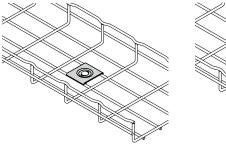
2" Center	Hanger
-----------	--------

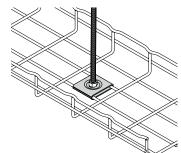
Part Number	Description	Qty./Box	Wt./Box lbs. (kg)
2 IN CTR SUPT	Center Support Hanger for FT2x2	50	5.0 (2.27)

- For use with 2" (50mm) tray widths only.
- Accepts 1/4" threaded rod.
- Hardware sold separately.
- Assemble with ATTACHMENT CLP & FTHDWE 1/4 hardware.
- Finishes _: GS (BLE available upon request).

Hold Down Plate

Part Number	Description	Qty./Box	Wt./Box lbs. (kg)
SUPT WASHER_	.28" x .70" (7.1mm x 17.8mm)	100	9.4 (4.26)
FTA6HD	.40" x .70" (10.1mm x 17.8mm)	100	7.0 (3.18)


- Easy way to mount 4" (100mm) wide tray for raceway run.
- Use 1/4" screws to attach SUPT WASHER to your specific wall/stud application (hardware sold separately).
- FTA6HD can be used in pairs to create a center-hung support using 3/8" rod.
- To protect cables use threaded rod protector (page D-20).
- To complete ³/₈" center hanger assembly use:
 2 FTA6HD
 2 HN ³/₈" 12 km as the
 - 2 HN 3/8"-16 hex nuts
- Finish: **ZN** (SS6 available upon request).



SUPT WASHER

FTA6HD

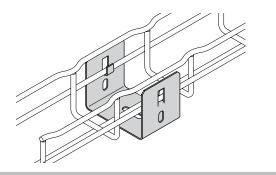
Description

Light Duty

Wall/Rack Bracket

• Designed to support FT2X2X10 Flextray.

Use for light duty cabling applications.


4" (100mm) and 6" (150mm) widths.

Threaded rod and nuts sold separately.
Finishes __: GS (BLE available upon request).

must be run parallel with the tray.

Built-in hold down tab.
Accepts ¹/₄" threaded rod.

- Click tabs for Flextray attachment.
- Use 1/4" hardware and washer (not included) to mount bracket.
- Finishes _: SS6.

• For use with 11/2" (38mm) & 2" (51mm) deep tray with

• When hanging 4" (100mm) wide tray, center hung clip

1" typ. (25mm)	J	5
)26" typ. (6.6mm)	

Part

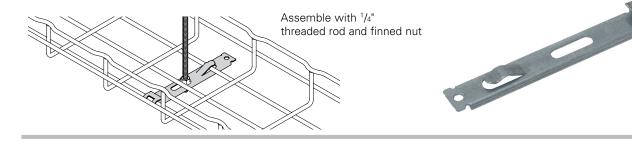
Number

FTB2UB

Center Hung Clip

Mounting Bracket

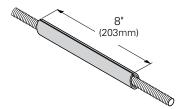
Qty./Box


10

Wt./Box

lbs. (kg)

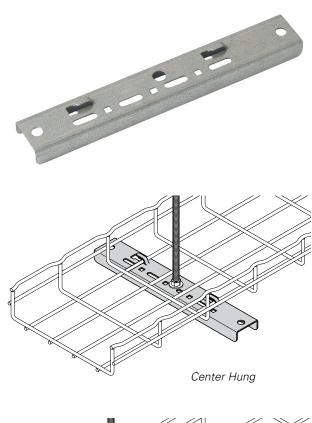
2.1 (0.95)

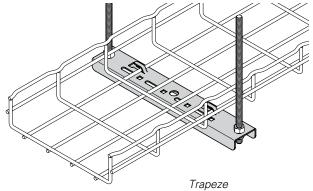

Part Number	Description	Qty./Box	Wt./Box lbs. (kg)
CTR HUNG CLP_	Light Duty Center Hanger	50	4.0 (1.81)

- Use to protect cables from $^{1}\!/_{4}$ to $^{1}\!/_{2}$ threaded rod.
- PVC UL94V-O material.
- Color: Gray.
- Not plenum rated.

Threaded Rod Protector

Part Number	Description	Qty./Box	Wt./Box lbs. (kg)
SB301-1/2x8	Rod Protector	1	0.03 (0.013)


See page D-3 for finish information


Wire basket - ceiling Support methods

Center Trapeze Hanger

- Can be installed as center-hung or traditional trapeze hanger.
- Multiple options to secure Flextray to hanger.
 - Built in hold down tabs (use screwdriver to bend down tab).
 - Compatible with TOOLLESS CLIP with snap-inlocking pin.
 - Compatible with WBUHD hold down clip whentray crosswire is aligned over top of hanger.
 - Slots and holes for optional hardware attachment.
- Corrosion resistant pre-galvanized zinc finish (other finishes available upon request).
- Center hole for up to 1/2" rod.
- Hole on each end for up to 3/8" rod.
- Threaded rod protector available (SB301-1/2 x 8) see page D-20.
- When 1/2" trapeze rods are required, add -1/2 to end of part number when ordering.

Part Number	Maximum in.	Tray Width (mm)	Actual in.	Length (mm)	Wt. Ibs.	/Pc. (kg)
FTB06CT	6"	(150)	9.78"	(248)	0.61	(0.27)
FTB08CT	8"	(200)	11.75"	(298)	0.74	(0.33)
FTB12CT	12"	(300)	15.69"	(398)	0.98	(0.44)
FTB16CT	16"	(400)	19.63"	(498)	1.61	(0.73)
FTB18CT	18"	(450)	21.59"	(548)	1.77	(0.80)
FTB20CT	20"	(500)	23.56"	(598)	1.93	(0.87)
FTB24CT	24"	(600)	27.50"	(698)	2.25	(1.02)

KwikWire Clamps & Wire Rope

- KwikWire[™] system replaces jack chain or ATR to support lighting, ductwork, and Flextray.
- Can be guickly installed around beams No drilling required.
- Ideal for sloped ceilings can hang objects at up to 60° angles.
- Simple height adjustments are made by releasing locking tab, no tools required.
- Spools of wire can be cut to length in field, reducing waste and up front planning.

Part No.	Clamps - For Use With Wire Rope Diameters		
BKC100	¹ /16" (1.6mm) & ³ /32 ["] (2.3mm)	100	
BKC200-1	³ / ₃₂ " (2.4 mm), ¹ /8" (3.2mm), & ³ /16" (4.7mm)	50	

Part No.	Rop	e Dia.	Workin	ig Load	Spool
	in.	(mm)	Lbs.	(kg)	
BKW063 "	¹ /16"	(1.6)	96	(43.5)	500 ft.
BKW094 "	³ / ₃₂ "	(2.3)	184	(83.4)	500 ft.
BKW125 "	¹ /8"	(3.2)	340	(154.2)	500 ft.
BKW188 ⁽²⁾	³ /16"	(4.8)	840	(381.0)	250 ft.

KwikWire Clamp Working Loads*

Clamp Part No.	Wire Rope Dia.	Lbs. Safety Factor 4
BKC100	¹ /16"	0-75
BKC100	³ /32"	25-150
BKC200-1	³ /32"	25-150
BKC200-1	¹ /8"	25-250
BKC200-1	³ / ₁₆ "	50-500

Working loads shown are for hanging vertically. For suspending at 15°, 30°, 45° or 60° angles from vertical, use the following percentage of the working loads from the chart:

re Rope	Construction
200 200 200 200 200 200 200 200 200 200	

	-689				
(2) 7	х	19		

15°	=	96%
30°	=	86%
45°	=	70%
60°	=	50%

Cutter Part No.	Box Qty.	
BKCC	1	The second

- KwikPak[™] includes a supply of kwik-clamps and a spool of wire rope.
- KwikPak are shipped in a specially designed dispenser box to ease field cutting of wire.

Part No.	For Use With Wire Rope Diameters	Box Qty.
BKP10063	BKC100 (100 pcs.) 1⁄16″Ø Wire Rope (500 ft.)	1
BKP10094	BKC100 (100 pcs.) 3/32"Ø Wire Rope (500 ft.)	1
BKP20125	BKC200-1 (50 pcs.) %″Ø Wire Rope (500 ft.)	1
BKP20188	BKC200-1 (50 pcs.) ¾6″Ø Wire Rope (500 ft.)	1

KwikPak Wire Rope & Clamps

KwikWire Accessory Features

- Helps reduce on the job installation time.
- Can be installed quickly without drilling into existing structure.
- Increases versatility in the field.
- KwikWire accessory system helps reduce inventory and shipping costs.
- No more sawing, filing, or fixing nuts.
- Designed for use with cable tray, lighting, and HVAC.
- Eliminates the need for all threaded rod.
- Cost effective solution for jack chain.
- "Y" style accessories require 50% less drilling.

KwikWire Accessory Numbering System

Product Line	Assembly Configuration	Leg Termination	Leg Length	Wire Rope Diameter	Straight Length	Assembly or Kit
BK = KwikWire	B: E E	A = Angle Bracket w/Pin H = Hook L = Loop T = Toggle W = Fuse Cut 25 = Bolt w/ $^{1}/_{4}$ "-20 Thread 38 = Bolt w/ $^{3}/_{8}$ "-16 Thread 3M6 = Bolt w/ M6 Thread 3M8 = Bolt w/ M8 Thread M10 = Bolt w/ M10 Thread		063 = ¹ / ₁₆ " 094 = ³ / ₃₂ "	Blank = Loop w/ Plastic Tube 18 = 18" 30 = 30" 40 = 40" 80 = 80" 120 = 120" 180 = 180" 240 = 240" 360 = 360"	Blank = Assembly Only K = Kit (Assembly & BKC100 Clamp)
		,				

Examples

BKYT18-094-120K

KwikWire Accessory

2 legs - toggle leg termination - 18" legs - 1/16" diameter wire - 120" straight length - kit with clamp

KwikWire Accessory

single leg - looped leg termination - 1/16" diameter wire - 120" straight length - kit with clamp

KwikWire 'Y' Style Hook Termination

	Leg	Length	Wire Re	ope Dia.	Le	ngth
Part No.	in.	(mm)	in.	(mm)	in.	(mm)
BKYH18-094-40	18"	(457)	³ / ₃₂ "	(2.3)	40"	(1016)
BKYH18-094-80	18"	(457)	³ / ₃₂ "	(2.3)	80"	(2032)
BKYH18-094-120	18"	(457)	³ / ₃₂ "	(2.3)	120"	(3048)
BKYH18-094-180	18"	(457)	³ / ₃₂ "	(2.3)	180"	(4572)
BKYH18-094-240	18"	(457)	³ / ₃₂ "	(2.3)	240"	(6096)
BKYH18-094-360	18"	(457)	³ / ₃₂ "	(2.3)	360"	(9144)
BKYH30-094-40	30"	(762)	³ / ₃₂ "	(2.3)	40"	(1016)
BKYH30-094-80	30"	762)	³ / ₃₂ "	(2.3)	80"	(2032)
BKYH30-094-120	30"	(762)	³ / ₃₂ "	(2.3)	120"	(3048)
BKYH30-094-180	30"	(762)	³ / ₃₂ "	(2.3)	180"	(4572)
BKYH30-094-240	30"	(762)	³ / ₃₂ "	(2.3)	240"	(6096)
BKYH30-094-360	30"	(762)	³ / ₃₂ "	(2.3)	360"	(9144)


Box Quantity - 10 5 bags containing 2 pieces per bag

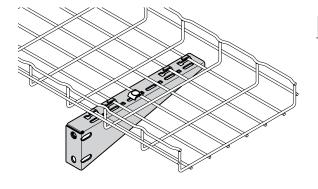
KwikWire 'Y' Style Hook Termination With Loop

	Wire Rope Dia.		Le	ngth
Part No.	in.	(mm)	in.	(mm)
BKYH18-094	³ / ₃₂ "	(2.3)	18"	(457)
BKYH30-094	³ / ₃₂ "	(2.3)	30"	(762)

- Hook designed for up to 3/8" diameter wire.
- Available as a wire rope with hook termination only or as a ready-to-use kit with a BKC100 clamp.
- Available in lengths of 40", 80", 120", 180", 240", and 360".
- Available in single, double (Y), and triple (3) leg styles.

Box Quantity - 10

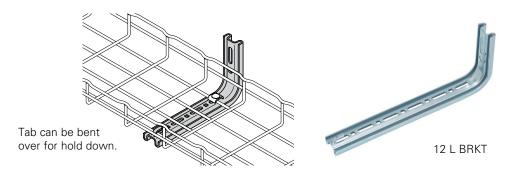
5 bags containing 2 pieces per bag


Flextray

For more information on KwikWire accessories see the KwikWire catalog.

- For use with 6" (150mm) to 24" (600mm) wide trays.
- Built-in tab for hold down.
- Optional hardware (FTSCH) sold separately.
- Finishes __: **GLV** (HDG and SS6 available upon request).

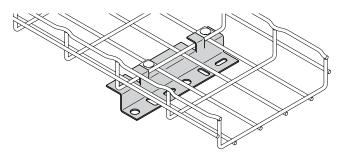
Part Number	Use With in.	Tray Width (mm)	Qty./Box	Wt./Pc. lbs. (kg)
FTB06CS	6"	(150)	1	0.5 (0.22)
FTB08CS	8"	(200)	1	0.6 (0.27)
FTB12CS	12"	(300)	1	1.2 (0.54)
FTB16CS	16"	(400)	1	1.7 (0.77)
FTB18CS	18"	(450)	1	1.9 (0.86)
FTB20CS	20"	(500)	1	2.6 (1.18)
FTB24CS	24"	(600)	1	3.2 (1.45)



L Brackets

Shelf Brackets

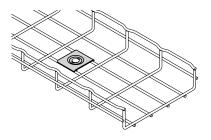
- Installs tray to wall cleanly.
- Built-in tab for hold down (not available in stainless steel).
- For use with 4" (100mm) to 24" (600mm) wide trays.
- Use with pedestal clamp in raised floor applications.
- Optional hardware (FTSCH) sold separately.
- Finishes __: EG (HD, BLE and 316S available upon request).


Part Number	Use With in.	Tray Width (mm)	Qty./Box	Wt./Pc. lbs. (kg)
4 L BRKT	4"	(150)	1	0.6 (0.27)
8 L BRKT	6" 8"	(150) (200)	1	0.8 (0.36)
12 L BRKT	12"	(300)	1	1.3 (0.59)
16 L BRKT	16"	(400)	1	1.4 (0.63)
20 L BRKT	18" 20"	(450) (500)	1	2.0 (0.91)
24 L BRKT	24"	(600)	1	2.3 (1.04)

Z Brackets

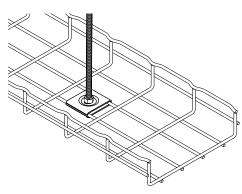
Part Number	Description	Qty./Box	Wt. Ibs.	./Box (kg)
Z BRKT	Z Bracket	25	14.0	(6.35)

- Used for horizontal and/or vertical mounting.
- 8" (200mm) wide bracket for use with 6" (100mm) to 32" (800mm) wide trays.
- Can be used to offset trays from floor.
- Can be used to terminate tray run at wall.
- Multiple brackets can be used for wider tray widths.
- Use with two (2) FTSCH (sold separately).
- Finishes __: **GS** (BLE available upon request).


Hold Down Plate

Part Number	Description	Qty./ Box	Wt./Box lbs. (kg)	
SUPT WASHER_	.28" x .70" (7.1mm x 17.8mm)	50	4.7 (2.13)	
FTA6HD	.40" x .70" (10.1mm x 17.8mm)	50	3.5 (1.59)	

- Easy way to mount 4" (100mm) wide tray for raceway run.
- Use ¹/₄" screws to attach SUPT WASHER to your specific wall/ stud application (hardware sold separately).
- FTA6HD can be used in pairs to create a center-hung support using $^3\!/_8"$ rod.
- To protect cables use threaded rod protector (page D-20).
- To complete ³/₈" center hanger assembly use: 2 - FTA6HD
 - 2 HN 3/8"-16 hex nuts
- Finish: **ZN** (SS6 available upon request).



SUPT WASHER

FTA6HD

Description

Support for

FT2x2x10

Attachment Clips

Qty./Box

50

Wt./Box

3.4 (1.54)

Wt./Box

lbs. (kg)

2.1 (0.95)

Wt./Box

lbs. (kg)

0.8 (0.36)

(kg)

lbs.

- Wall attachment for 2" (50mm) wide tray only (FT2X2X10).
- Low-profile appearance.
- Built-in tab to hold down tray.
- Can also be used with 2" (50mm) Center Hanger (see page D-19).
- Hardware sold separately.
- Finishes _: GS (BLE available upon request).

1.12/12/110	

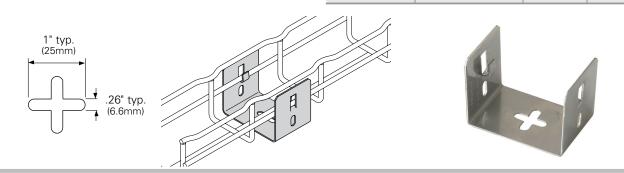
Description

Light Duty

Wall/Rack Bracket

Description

Wall Support


Bracket

Mounting Bracket

Qty./Box

10

- Designed to support FT2X2X10 Flextray.
- Click tabs for Flextray attachment.
- Use 1/4" hardware and washer (not included) to mount bracket.
- Finishes _: SS6.

Part

Number

Part

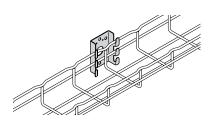
Number

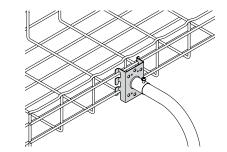
FTB2UB

Part

Number

FTA050CC

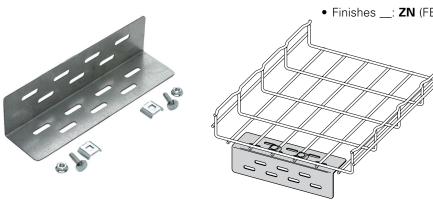

ATTACHMENT CLP


Wall Supports

Qty./Box

1

- Used to attach 2" (50mm) or 4" (100mm) wide trays to walls, struts or cabinets.
- Use for raceway mounting.
- Mount to metal framing for vertical support.
- Tabs are built in for tray hold down.
- Mount to side rail for electrical box connection.
- Finishes _: GLV.



Part Number	Le in.	ength (mm)	Qty./Box	Wt Ibs.	/Box (kg)	when terminatedMount slotted and
FTA9WTK	9"	(228.6)	1	1.3	(0.59)	(not included). • Wall Termination 1 - Angle with
						2 - FTSCH • Finishes _: ZN (F
	//	1				

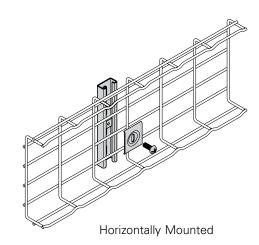
Wall Termination Kit

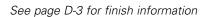
- Kit includes all hardware necessary to support Flextray d at a wall.
- ngle to wall with up to 3/8" hardware
- h Kit includes: Slots
- (FB and SS6 available upon request).

Wall Mount Kit

Part Number	Length in. (mm)	Qty./Box	Wt./Box lbs. (kg)
WB48WMK	8" (203.2)	1	0.76 (0.35)
WB1224WMK	12" (304.8)	1	1.22 (0.55)

WB1224WMK shown

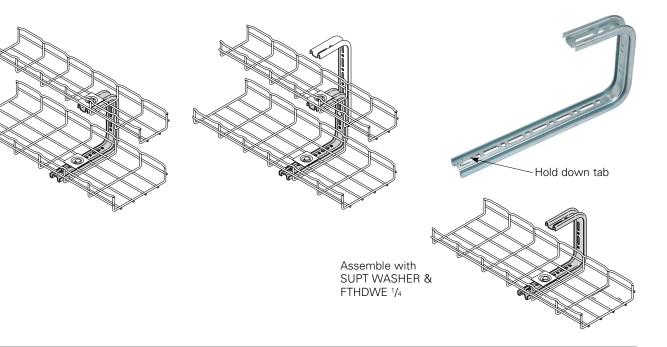

- Kit includes all components necessary to mount Flextray to a wall horizontally or vertically
- Mount strut to wall with up to 1/2" hardware (not included).
- Wall Mount Kit includes: WB4


1

1

18WMK	WB1224WMK	
1	1	B54SH Strut
1	2	SUPT WASHER H

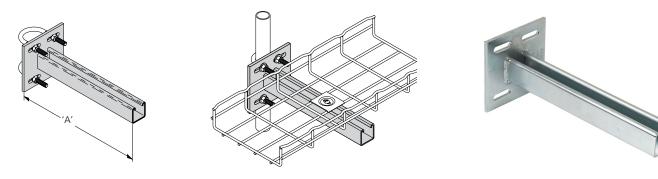
- Hold Downs 1/4"-20 x 1" Slotted Head Screw 2 2 N224WO Channel Nut
- Finish: Channel GLV; Hardware ZN; (SS6 available upon request)



Vertically Mounted

- Tab can be used for hold down (stainless steel will not have these tabs)
- For use with 4" (100mm) to 12" (300mm) wide trays
- C bracket attaches to hard ceiling types
- All brackets are 7-7/8" (200mm) tall
- Cables can be side loaded
- L brackets (page D-26) and C brackets can be combined for layered tray runs
- Finishes __: EG (BLE and HD available upon request)

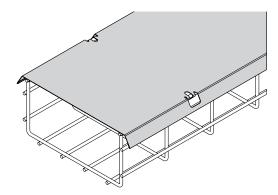
Part Number	Tray Width - Up To in. (mm)		Qty./Box	Wt./Box Ibs. (kg)
4 C BRKT_	4"	(100)	1	1.2 (0.54)
8 C BRKT	8"	(200)	1	1.4 (0.63)
12 C BRKT	12"	(300)	1	1.9 (0.86)


C Brackets

- Under floor support bracket provides rugged support for FLEXTRAY System from access floor post.
- To complete the installation, the following hardware must be ordered separately.
 - (2) B501 U-Bolts
 - (1) SUPT WASHER Hold Down
 - (1) 1/4"-20 x 1" Slotted Head Screw
 - (1) N224WO Channel Nut
- Finish: **ZN**

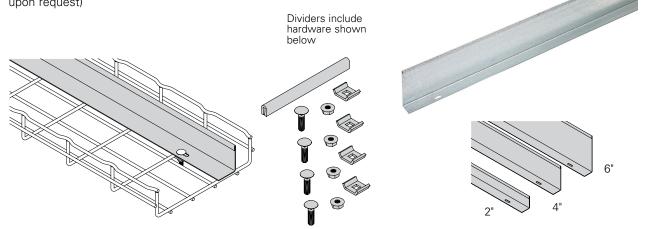
Part 'A'		Вох	Wt. Per Each	
Number	in.	(mm)	Quantity	lbs. (kg)
B409UF-12	12"	(300)	1	3.6 (1.63)
B409UF-18	18"	(450)	1	4.5 (2.04)
B409UF-21	21"	(533)	1	5.4 (2.45)

Under floor support bracket



Covers

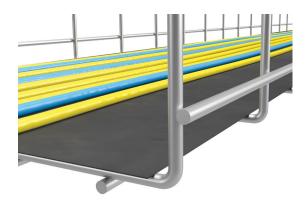
- Protects cable from debris and dust
- Adds security to installation; please note flex tray covers are not designed to be utilized in environments with environmental loads
- Easy bend-over tabs secure cover to trays
- Available for 2" (50mm) to 24" (600mm) wide trays
- Comes in 118" (2997mm) length
- Flextray covers are intended for indoor use only
- Finishes __: **GS** (BLE, 304S and 316S available upon request)

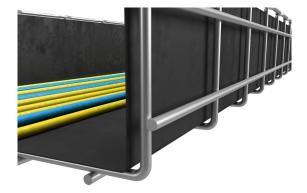


Part Number	For Tray in.		Qty./Box	Wt./ Ibs.	Box (kg)
2 IN COVER	2"	(50)	1	3.8	(1.72)
4 IN COVER	4"	(100)	1	5.7	(2.58)
6 IN COVER	6"	(150)	1	6.7	(3.04)
8 IN COVER	8"	(200)	1	8.7	(3.94)
12 IN COVER	12"	(300)	1	11.6	(5.26)
16 IN COVER	16"	(400)	1	15.6	(7.07)
18 IN COVER	18"	(450)	1	17.0	(7.71)
20 IN COVER	20"	(500)	1	18.5	(8.39)
24 IN COVER	24"	(600)	1	22.0	(9.98)

- Allows cable separation within a single tray
- Hemmed, rounded edge provides cable jacket safety
- Hardware included (see image below)
- Field miter for bends and turns
- Dual slots every 24" (609mm) for field cutting
- Available in 2" (50mm), 4" (100mm) and 6" (150mm) heights
- Comes in 118.125" (3000mm) length
- Finishes __: **GS** (BLE, 304S and 316S available upon request)

Part Number	For Tray Depth Of in. (mm)	Qty./Box	Wt./Box Ibs. (kg)
2 IN DIVIDER_	2" (50)	1	3.5 (1.59)
4 IN DIVIDER	4" (100)	1	9.6 (4.35)
6 IN DIVIDER	6" (150)	1	14.5 (6.58)




See page D-3 for finish information

Flextray

- Uses UL 94 V-0 rated material in thickness of 0.017"
- Available in flat and scored flat for sidewalls
- Available in black (BLK) and white (WHT)
- Rolls are 100 feet in length
- Installation is as simple as position, roll and cut to size by using industrial utility knife

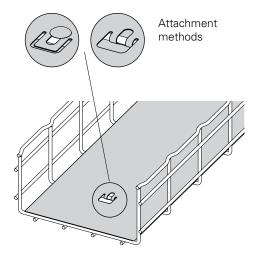
Polypropylene liner for Flextray wire basket

Flat liners

Straight Cut Part No.*	Flextray Width in.
FT POLY-LINER 6x100	6
FT POLY-LINER 12x100	12
FT POLY-LINER 18x100	18
FT POLY-LINER 24x100	24
FT POLY-LINER 34x100	34

* Specify color ___: Black (BLK) or White (WHT)

Scored flat plus sidewall

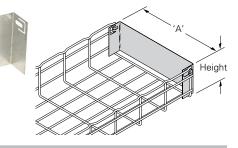

Scored Flat Plus Sidewall Part No.*	Flextray Width in.	Sidewall Flextray Height in.
FT POLY-LINERSW 2x2x100	2	2
FT POLY-LINERSW 2x32x100	32	2
FT POLY-LINERSW 2x34x100	34	2
FT POLY-LINERSW 4x4x100	4	4
FT POLY-LINERSW 4x30x100	30	4
FT POLY-LINERSW 6x6x100	6	6
FT POLY-LINERSW 6x8x100	12	6
FT POLY-LINERSW 6x10x100	10	6
FT POLY-LINERSW 6x12x100	12	6
FT POLY-LINERSW 6x14x100	14	6
FT POLY-LINERSW 6x16x100	16	6
FT POLY-LINERSW 6x18x100	18	6
FT POLY-LINERSW 6x20x100	20	6
FT POLY-LINERSW 6x24x100	24	6

* Specify color ___: Black (BLK) or White (WHT)

Part Number	For Tray in.	Width Of	Qty./Box	Wt./ Ibs.	/Box kg
INSERT 4X118	4"	(100)	1	6.8	(3.08)
INSERT 6X118	6"	(150)	1	9.8	(4.44)
INSERT 8X118	8"	(200)	1	13.3	(6.03)
INSERT 12X118	12"	(300)	1	21.6	(9.80)
INSERT 16X118	16"	(400)	1	26.4	(11.97)
INSERT 18X118	18"	(450)	1	32.4	(14.69)
INSERT 20X118	20"	(500)	1	32.9	(14.92)
INSERT 24X118	24"	(600)	1	39.3	(17.82)

Solid bottom inserts

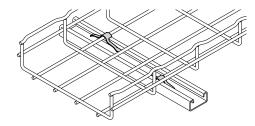
- Continuous support for sensitive cables
- Security of cable in high-traffic areas
- Hardware included
- Available for 4" (100mm) to 24" (600mm) wide trays
- Comes in 118" (2997mm) length
- Finishes __: **GS** (BLE, 304S and 316S also available upon request)


Blind ends

Part Number	ín.	A′ (mm)		ght (mm)	Box Quantity
FT BE 2X2	2"	(50)	2"	(50)	1
FT BE (*)X4	4"	(100)	(*)	(*)	1
FT BE (*)X6	6"	(150)	(*)	(*)	1
FT BE (**)X8	8"	(200)	(*)	(*)	1
FT BE (**)X12	12"	(300)	(* *)	(**)	1
FT BE (**)X16	16"	(400)	(* *)	(**)	1
FT BE (**)X18	18"	(450)	(* *)	(**)	1
FT BE (**)X20	20"	(500)	(* *)	(**)	1
FT BE (**)X24	24"	(600)	(* *)	(**)	1

• Tab features eliminate need for hardware

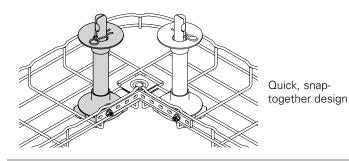
- Forms a closure for a dead-end Flextray
- Hardware included
- Finish: GLV (SS6 also available upon request)


(*) Insert: 2 = 2" (50 mm), 4 = 4" (100 mm) for height (**) Insert: 2 = 2" (50mm), 4 = 4" (100mm), 6 = 6" (150mm) for height

Strut mounting clip

Part Number			Wt./Box lbs. (kg)			
BW4	Strut Mounting Clip	100	0.9 (0.41)			

- Use to secure FLEXTRAY to horizontal strut support
- Designed for use as shown in drawing (no load rating)
- Finish: Black Zinc Phosphate



Qty./Box

Cable roller

Wt./Box

- Protects and maintains recommended cable radii for Cat 5, Cat 5E, Cat 6, Cat 6A, Fiber, etc.
- Height of roller can be adjusted to tray depth
- Installs in seconds with no tools
- Reduces cable installation time
- Prevents migration of cables
- For use with 4" (100mm) to 32" (800mm) tray widths
- Finish: Cast Aluminum

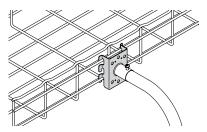
Number	Description	City./ Box	lbs. (kg)
CABLE ROLLER	Cable Roller	1	1.0 (0.45)

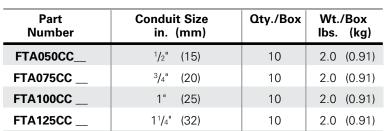
Description

Part

Toolless clip

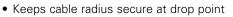
- · Securely holds tray to support
- Snap-in locking pin
- No tools or fastening required
- Fast hold-down method
- For use with the following: FTB_CS (see pg. D-26) L BRKT (see pg. D-26)
 - C BRKT (see pg. D-30)
- Finish: Plenum rated resin (black)

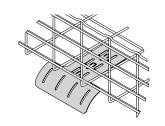

Wt./Box Part Description Qty./Box Number lbs. (kg) Toolless **TOOLLESS CLIP** 50 1.0 (0.45) Hold-Down Clip

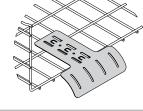


Conduit connector

- Conduit connector is designed to connect conduit to the side or bottom of Flextray
- Conduit bushing will remain outside of tray to keep cable pathway clear
- · Bend tabs to secure connector to tray
- No hardware included
- Finishes __: GLV

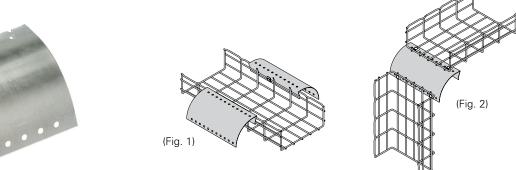





Drop out fitting

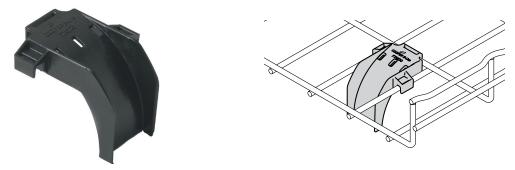
Part Number	Description	Bend radius	Qty./ Box	Wt./Box lbs. (kg)	•
DROP OUT	Drop Out Fitting	2.5″	50	15.0 (6.8)	

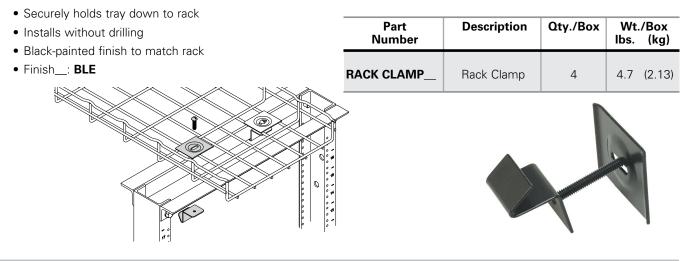
- Retention tabs to secure positioning
- For use with 4" (100mm) to 32" (800mm) wide trays
- Attaches to tray without hardware
- Drop outs can be attached at bottom, side or ends of tray
- Retention tabs on bottom of drop out to secure positioning
- Finishes __: EG (BLE and SS6 also available upon request)



Side drop out fitting

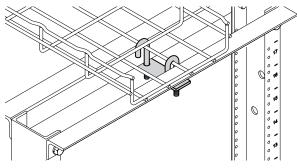
Part Number	Width in. (mm)	Bend radius	Qty./ Box	Wt./Box Ibs. (kg)
FTA6SDO	6.0 (152.4)	4"	10	7.17 (3.2)
FTA8SDO	8.0 (203.2)	4"	10	9.57 (4.3)
FTA12SDO	12.0 (304.8)	4"	10	14.35 (6.5)


- Keeps cable radius secure at drop point
- For use with 4" (100mm) to 32" (800mm) wide trays (Fig. 1)
- For use with 6" (152mm) to 12" (300mm) wide trays (Fig. 2)
- Drop outs can be attached at side or ends of tray as shown
- Finishes __: EG (BLE and SS6 also available upon request)


Cable drop out

Part Number	Description	Qty./Box	Wt./Box lbs. (kg)
FTA2DO	Cable Drop Out	10	0.17 (0.08)

- Non-metallic 2" (50mm) radius Cable Drop-Out snap locks into mesh bottom and protects cables from sharp bend
- Material: Black Plenum-rated Plastic



Rack clamp

Adaptor kit

- Adaptor kit includes all hardware necessary to connect Flextray system to top of relay rack at right angle or parallel position
- Finish_: YZN

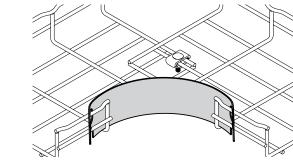
Part Number	Description	Qty./Box	Wt./Box lbs. (kg)
SB2204	Adaptor Kit	1	0.37 (0.17)

Adaptor Kit includes: (1) - Mounting Plate

(2) - ⁵/₁₆"-18 x 2" "J"-Bolts

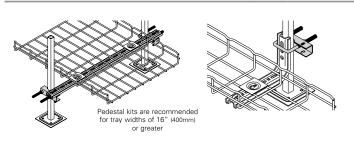
- (2) HN ⁵/16"-18 Hex Nuts
- (2) LW ⁵/16" Lock Washers




Radius shield

- Provides a smooth inside radius surface.
- No tools or fasteners needed to install.
- Sizes for 2", 4" & 6" deep Flextray; 90° horizontal bends, tees, and crosses.
- Installs in seconds. Simply hold in place and bend back tabs.
- Slick surface to reduce cable friction.
- Material: Black Polycarbonate

Part Number	Height A in. (mm)	Qty./Box	Wt./Box Ibs. (kg)
FTA2RS	2.5 (63)	50	4.0 (1.8)
FTA4RS	4.3 (110)	50	7.0 (3.2)
FTA6RS	5.9 (150)	25	5.0 (2.3)



i edestal Clamp & Kit				
Part Number	Description	Qty./ Box	Wt./Box Ibs. (kg)	
PEDESTAL CLAMP_	Pedestal Clamp	1	0.6 (0.27)	
PEDESTAL KIT	Pedestal Clamp Kit	1*	3.3 (1.49)	

Pedestal Clamp & Kit

Under floor stand

Part Number	Overall Height in. (mm)	Wt. Per Each Ibs. (kg)
WBU1203	3" (76)	1.32 (0.60)
WBU1204	4" (101)	1.60 (0.72)
WBU1205	5" (127)	1.88 (0.85)
WBU1206	6" (152)	2.17 (0.98)

Floor Stand

Part Number	Wt. P lbs.	er Pc. (kg)	Box Quantity
FTA2FS	0.44"	(0.20)	10

- Clamps to existing raised-access floor stanchion
- Use L BRKT (shown on D-26) or full pedestal kit to support trays under the raised access floor (sold separately)
- For tray widths 2" (50mm) to 20" (500mm)
- *Pedestal Clamp Kit includes two (2) pedestal clamps, 28" (711mm) profile section, bolts & nuts
- Kits include hardware
- SUPTWASHER & FTHDWE 1/4 sold separately
- Finishes __: EG

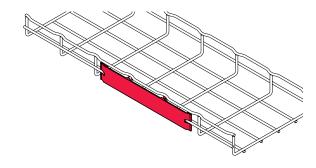
- Heights of 3", 4", 5" or 6"
- Leg cutout allows for airflow
- No tools required to mount FLEXTRAY to stand
- Use WBUHD hold down clips to secure basket
- Stand width is 12"
- Fasten to floor for maximum stability
- Floor mounting slot size: .313" (7.9mm) x .813" (20.6mm) for ¹/₄" hardware

- Non-metallic snap lock floor stand is designed for use under access floors.
- Floor stand elevates Flextray system $1^{5}/8^{"}$ (41.3mm) above the floor.
- To attach floor stand, use construction adhesive or anchors.
- Elevation increments of $1^{3}/\scriptscriptstyle 8^{"}$ (35mm) can be obtained by stacking floor stands.
- Sized for 1/4" hardware (order separately).
- Material: Black Plenum-rated plastic

Rubber cap

Part	Box	Wt. P	er 100	$\stackrel{\scriptstyle \scriptstyle \times}{\scriptstyle \scriptstyle \times}$
Number	Quantity	Ibs.	(kg)	
B719EB	100	0.20	(0.10)	C

Install on wire ends if required. Fits all wire diameters
Sold as each


Paint

Part Number	Color	Qty./Box	Wt./Box lbs. (kg)
SB420ATG	Gray Lacquer	1	0.9 (0.41)
SB420ACW	Computer White Lacquer	1	0.9 (0.41)
B999	Silver Zinc-Rich Paint	1	0.9 (0.41)

- Size: 12 ounce aerosol can
- Cannot ship air freight

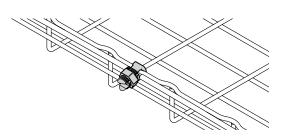
Label clip

- Clips easily into trays
- Use for identifying your cable pathways
- Can be used on all tray sizes
- Will not fit on side of 11/2" deep Flextray
- Finish: Non-plenum-rated resins

Part	Length	Qty./Box	Wt./Box
Number	in. (mm)		lbs. (kg)
LABEL CLIP	10 ¹ /2" (267)	10	0.6 (0.27)

Ground bolt

Wt./Box


lbs. (kg)

1.0 (0.45)

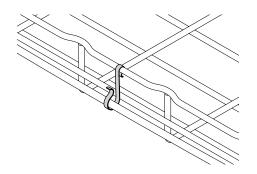
Qty./Box

100

- Attaches up to #1 ground wire to each tray section when separate ground wire is required
- Used for UL grounding compliance.
- When using color powder coated finish or paint, coating must be removed at the points of contact.
- Finish: Copper Plated

Description

Ground Bolt


Part

Number

GROUND BOLT

Ground wire supports

- Supports ground wire along side of tray
- Can be used on all trays
- Finish __: Zinc plated

Part Number	Description	Qty./Box	Wt./Box lbs. (kg)
GROUND SUPT GL	Ground Wire Support	100	0.6 (0.27)

See page D-3 for finish information

Flextray

- Complete source of hardware for ceiling connections
- Available in stock
- Strut can be purchased in pre-cut lengths and various colors
- All hardware is zinc plated

Threaded rod

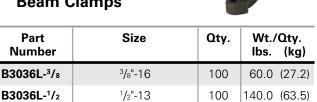
The section of the se
and the second second

		Therease	
Part Number	Size	Qty.	Wt./Qty. Ibs. (kg)
ATR ¹ /4x72	¹ /4" x 72" (1828mm)	1	0.7 (0.31)
ATR ¹ / ₄ x120	¹ /4" x 120" (3048mm)	1	1.2 (0.54)
ATR ¹ / ₄ x144	¹ /4" x 144" (3657mm)	1	1.4 (0.63)
ATR ³ /8x72	³/ଃ" x 72" (1828mm)	1	1.7 (0.77)
ATR ³ /8x120	³ /8" x 120" (3048mm)	1	2.9 (1.31)
ATR ³ /8x144	³ /8" x 144" (3657mm)	1	3.5 (1.58)
ATR ¹ /2x72	¹ /2" x 72" (1828mm)	1	3.2 (1.45)
ATR ¹ /2x120	¹ / ₂ " x 120" (3048mm)	1	5.4 (2.45)
ATR ¹ /2x144	¹ /2" x 144" (3657mm)	1	6.5 (2.95)

Lock washers

Part Number	Size	Qty.	Wt./Qty. Ibs. (kg)
¹ / ₄ LW	1/4"	200	0.6 (0.27)
³ /8 LW	³ /8"	200	1.6 (0.72)
¹ / ₂ LW	1/2"	200	2.0 (0.91)

Flat washers


		-	
Part Number	Size	Qty.	Wt./Qty. Ibs. (kg)
¹ /₄ FW	¹ /4"	200	1.2 (0.54)
³/8 FW	³ /8"	200	3.0 (1.36)
¹ / ₂ FW	1/2"	200	6.6 (2.99)

Square washers

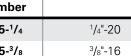
Part Number	Size	Qty.	Wt./Qty. Ibs. (kg)
B201	7/16	50	6.0 (2.72)
B202	⁹ /16	50	7.0 (3.17)

Beam Clamps

_	Number
	B655-1/4
	B655-3/8

Part

B655-¹/₂


Part

Number

¹/₄HN

³/8HN

 $1/_2$ HN

Size

¹/₂"-13

Size

¹/4"-20

³/8"-16

¹/₂"-13

Rod couplings

Wt./Qty.

lbs. (kg)

2.0 (0.91)

5.5 (2.49)

6.0 (2.72)

Wt./Qty.

lbs. (kg)

0.6 (0.27)

1.6 (0.72)

4.3 (1.95)

Qty.

50

50

50

Qty.

100

100

100

пех	NUTS	

Qty.

100

Wt./Qty.

lbs. (kg)

160 (72.5)

_	-
Beam	clamps

U-Bolt clamps

Part

Number

B441-22

Part Number	Size	Qty. Wt./ Ibs.	
B444- ¹ / ₄	1/4"-20	100	160 (72.5)
B444-³/ 8	³ /8"-16	100	430 (195.0)
B444- ¹ / ₂	1/2"-13	100	430 (195.0)

Size

3/8"-16 x 33/8" long

opinig nato		C	2
Part Number	Thread Size	Qty.	Wt./Qty. Ibs. (kg)
N224	¹ /4"-20	100	6.5 (2.95)
N228	³ /8"-16	100	9.3 (4.22)
N225	¹ /2"-13	100	11.3 (5.12)

Concrete Rapid Rod[™] hanger

Part	Rod	Shank	Qty.	Wt./Qty.
Number	Size	Size		Ibs. (kg)
ARC-37-150-2	³ /8 ["]	¹ / ₄ " x 1 ¹ / ₂ "	100	3.4 (1.54)

Wood Rapid Rod[™] hanger

Part Number	Rod Size	Shank Size	Qty.	Wt./Qty. Ibs. (kg)
ARW-37-200-2	³ /8"	¹ /4" x 2"	100	3.4 (1.54)
ARW-37-200SW-2	³ /8"	¹ /4" × 2"	100	3.4 (1.54)

U-Bolts

Part Number	'A' in. (n	nm)	Thread Size	Box Qty	Wt. Ibs.	Per Box (kg)
B501-1	1 ³ /8"	(30)	⁵ / ₁₆ "-18	50	7.0	(3.17)
B501-1 ¹ / ₂	2"	(50)	⁵ / ₁₆ "-18	50	8.0	(3.63)
B501-2	2 ⁷ /16"	(62)	³ /8"-16	20	5.4	(2.45)
B501-2 ¹ / ₂	2 ¹⁵ /16"	(75)	³ /8"-16	25	8.0	(3.63)

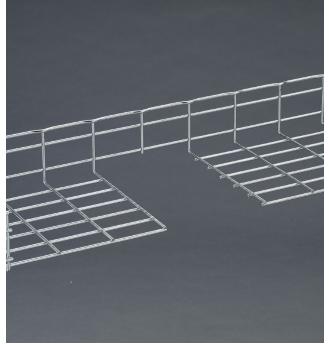
Strut o	channels
---------	----------

Part Number	Channel Size	Qty.	Wt./Qty. Ibs. (kg)
B22SGALV120	1 ⁵ /8" x 120" - 12 ga.	1	6.0 (2.72)
B22SHGALV120	1 ⁵ /8" x 120" - 12 ga.	1	6.0 (2.72)

SW = Side Mount

Steel Rapid Rod[™] hanger




Part Number	Rod Size	Shank Size	Qty.	Wt./Qty. Ibs. (kg)
ARS-37-150-2	³ /8"	¹ /4" x 1 ¹ /2"	100	3.4 (1.54)
ARS-37-100SW-2	³ /8"	¹ /4" x 1"	100	3.4 (1.54)

SW = Side Mount

Sockets for Rapid Rod hangers

Part Number	Size	Qty.	Wt./Qty. Ibs. (kg)
7187S-2	Steel Socket	1	4.5 (2.04)
7187-2	Concrete Socket	1	4.5 (2.04)
7197-2	³ /8" Concrete Socket	1	4.5 (2.04)

Flextray cutters

Qty./Box

1 per box

Wt./Box

lbs. (kg)

4.3 (1.95)

- Exclusive, patented Cleanshear[™] cuts tray fast
- No sharp edges
- Designed specifically for cutting Flextray
- Safely cut and bend Flextray into any configuration

1 Face tray up. Slide cutter next to vertical wire and cut.

2 Turn tray to the side with open side facing you. Repeat step 1 to cut wire.

Part

Number

CLEANSHEAR

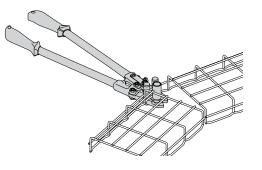
3 Finish cutting all side wires.

Description

CLEANSHEAR

Cutting Tool

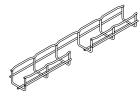
4 Turn tray open-side down and cut wires from bottom of tray.

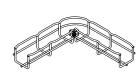

5 Finish cutting by moving to other side of tray to cut remaining wires.

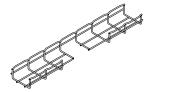
Flextray bender

- Cleanshear bender has our exclusive bending attachment
- Makes bending larger trays easy
- Recommended for bending tray widths of 16" (400mm) or greater

Part Number	Description	Qty./Box	Wt./Box lbs. (kg)
CLEANSHEAR BEND	CLEANSHEAR Cutting Tool With Bender Attachment	1 per box	5.4 (2.45)

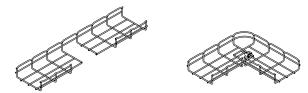


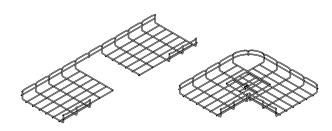



Flextray

90° Horizontal bends (short radius)

- Make your own field cut horizontal bends using Cleanshear to make safe, smooth cuts
- Can be made from any tray width and depth with any available finish
- SUPT WASHER & FTHDWE 1/4 hardware may be used on bottom of tray instead of WASHER SPL KIT where desired
- Note: Please note the number of WASHER SPL KIT's recommended on this page for forming fittings does not guarantee the UL Classification will be met




2" (50mm) Tray Width

Flextra in.	y Depth (mm)	Required Hardware Description	Quantity
2"	(50)	WASHER SPL KIT	1

4" (100mm) Tray Width

Flextra in.	ay Depth (mm)	Required Hardware Description	Quantity
2"	(50)	WASHER SPL KIT	1
4"	(100)	WASHER SPL KIT	1

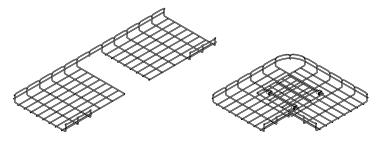
6" (150mm) Tray Width

Flextra in.	ay Depth (mm)	Required Hardware Description	Quantity
2"	(50)	WASHER SPL KIT	1
4"	(100)	WASHER SPL KIT	1

8" (200mm) Tray Width

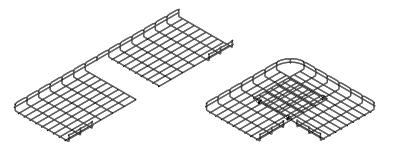
Flextra in.	ay Depth (mm)	Required Hardware Description	Quantity
2"	(50)	WASHER SPL KIT	1
4"	(100)	WASHER SPL KIT	1
6"	(150)	WASHER SPL KIT	1

12" (300mm) Tray Width

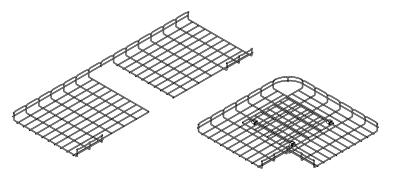

Flextra in.	ay Depth (mm)	Required Hardware Description	Quantity
2"	(50)	WASHER SPL KIT	1
4"	(100)	WASHER SPL KIT	1
6"	(150)	WASHER SPL KIT	1

90° Horizontal bends (short radius)

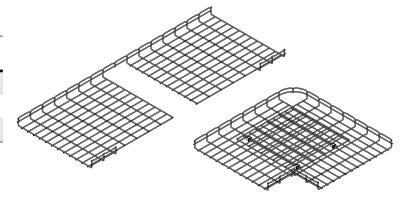
- Make your own field cut horizontal bends using Cleanshear to make safe, smooth cuts
- Can be made from any tray width and depth with any available finish
- SUPT WASHER & FTHDWE ¹/₄ hardware may be used on bottom of tray instead of WASHER SPL KIT where desired


16" (400mm) Tray Width

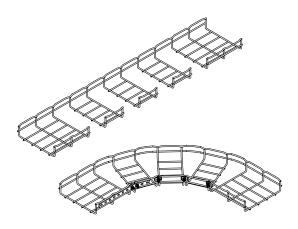
	ay Depth (mm)	Required Hardware Description	Quantity
2"	(50)	WASHER SPL KIT	3
4"	(100)	WASHER SPL KIT	3
6"	(150)	WASHER SPL KIT	3


18" (450mm) Tray Width

	ay Depth (mm)	Required Hardware Description	Quantity
2"	(50)	WASHER SPL KIT	3
4"	(100)	WASHER SPL KIT	3
6"	(150)	WASHER SPL KIT	3

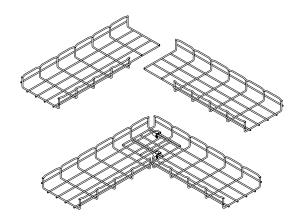

20" (500mm) Tray Width

	ay Depth (mm)	Required Hardware Description	Quantity
2"	(50)	WASHER SPL KIT	3
4"	(100)	WASHER SPL KIT	3
6"	(150)	WASHER SPL KIT	3


24" (600mm) Tray Width

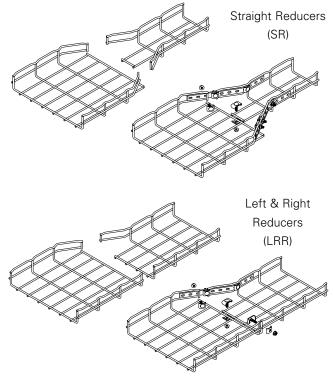
Flextray Depth in. (mm)		Required Hardware Description	Quantity
2"	(50)	WASHER SPL KIT	3
4"	(100)	WASHER SPL KIT	3
6"	(150)	WASHER SPL KIT	3

90° Horizontal Bends (Long Radius)


- Make your own field cut horizontal sweeps using Cleanshear to make safe, smooth cuts
- Can be made from any tray width and depth with any available finish
- Cut as many segments as required to control sweep radius (use chart for recommendations)
- One (1) WASHER SPL KIT is required to connect each cut segment minus one, this segment uses one (1) SPLICE BAR, two (2) FTHDWE ¹/₄ and two (2) BTM WASHER
- Illustration shown below is for a 8" (200mm) width
- 1.5" deep Flextray has only one (1) side wire
- 2" deep Flextray has two (2) side wires shown
- 4" deep Flextray has three (3) side wires
- 6" deep Flextray has four (4) side wires

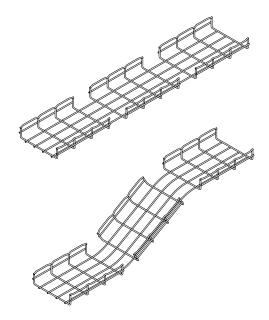
Flextray Width in. (mm)	Segments To Be Removed	WASHER SPL KIT	Component Qty. FTHDWE 1/4 & BTM WASHER	SPLICE BAR
4" (100)	2	1	2	1
6" (150)	3	2	2	1
8" (200)	4	3	2	1
12" (300)	6	5	2	1
16" (400)	7	6	2	1
18" (450)	8	7	2	1
20" (500)	10	9	2	1
24" (600)	11	10	2	1
30" (750)	13	12	2	1
32" (800)	13	12	2	1

90° Horizontal Bend From (2) Straight Sections

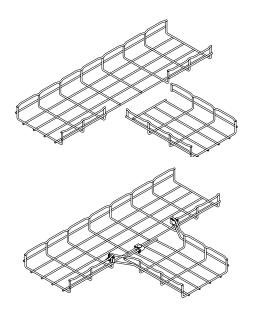

- Cut required number of wire side sections listed in chart per the illustration below (Illustration is for a 8" (200mm) width)
- 1.5" deep Flextray has only one (1) side wire
 2" deep Flextray has two (2) side wires shown
 4" deep Flextray has three (3) side wires
 6" deep Flextray has four (4) side wires

Flextra in.	y Width (mm)	Side Sections To Be Removed	WASHER SPL KIT Qty.
4"	(100)	1	2
6"	(150)	2	2
8"	(200)	2	2
12"	(300)	3	2
16"	(400)	4	2
18"	(450)	5	2
20"	(500)	5	2
24"	(600)	6	2
30"	(750)	8	2
32"	(800)	8	2

Reducers


Flex	nrge xtray idth (mm)		SHER _ KIT (LRR)	FTHD	nent Qty. WE ¹ /4 WASHER (LRR)	SPLICE BAR (SR) (LRR)		
4"	(100)		1	(011)	2	(011)	1	
6"	(150)	—	2	_	2	—	1	
8"	(200)	1	2	4	2	2	1	
12"	(300)	2	3	4	2	2	1	
16"	(400)	2	3	4	2	2	1	
18"	(450)	2	3	4	2	2	1	
20"	(500)	3	3	4	2	2	1	
24"	(600)	3	3	4	2	2	1	
30"	(750)	3	3	4	2	2	1	
32"	(800)	3	3	4	2	2	1	

- 1.5" deep Flextray has only one (1) side wire
 - 2" deep Flextray has two (2) side wires shown
 - 4" deep Flextray has three (3) side wires
 - 6" deep Flextray has four (4) side wires


Vertical inside & outside bends

- Cut wire section as shown and bend to desired angle
- 1.5" deep Flextray has only one (1) side wire
- 2" deep Flextray has two (2) side wires shown
- 4" deep Flextray has three (3) side wires
- 6" deep Flextray has four (4) side wires

Horizontal tees (and crosses)

- Cut wire side sections as shown in the illustration below (Illustration is for a 8" (200mm) width)
 - 2" deep Flextray has two (2) side wires (shown below)
 - 4" deep Flextray has three (3) side wires
 - 6" deep Flextray has four (4) side wires
- For crosses, duplicate process on opposite side

Tray in.	Width (mm)	WASHER SPL KIT Qty.
2"	(50)	2
4"	(100)	2
6"	(150)	3
8"	(200)	3
12"	(300)	4
16"	(400)	4
18"	(450)	4
20"	(500)	4
24"	(600)	4
30"	(750)	5
32"	(800)	5

KwikSplice cable channel tray

With an innovative dove tail splice design, Eaton's B-Line series KwikSplice cable channel is designed for fast installation, reduced complexity and improved versatility.

The system is ideal in a variety of commercial and industrial applications.

- Commercial buildings
- Data centers
- Institutional buildings
- Healthcare and hospitals
- Manufacturing facilities
- Petrochemical

Installs quickly and easily

The KwikSplice cable channel dove tail side rail and guided splice plate system is fast and easy to install. As an added benefit, fittings are shipped pre-assembled with an integrated splice attachment, which helps reduce the total installation time.

Reduces jobsite complexity

Unlike other instrumentation channel tray, the KwikSplice cable channel can be cut and spliced at any point along the tray, simplifying field modification. Plus, it is available with perforated holes along the channel which provides ventilation and NEC heat compliance.

Improved versatility

The system includes an extensive line of quick connect fittings and accessories to provide pathway integrity and versatility.

KwikSplice system helps pay for itself through support savings

The KwikSplice cable channel comes in 20-foot spans, requiring fewer supports than other channel solutions available today. For example, transitioning from 10 ft. (3m) spans to 20 ft. (6m) spans reduces supports by 50%. Now, multiply the number of cable channels installed on a typical jobsite and the savings really add up.* In fact, the savings often outweigh the cost of the cable channel.

*NEMA VE-2 (NEMA BI 50016), (section 3.4.1) defines an allowable straight section support span as the following: "straight section support span should not exceed the straight section length". Therefore, to eliminate supports, one option is to increase the length of cable ladder.

For additional information on KwikSplice cable channel, visit Eaton.com/KSCC.

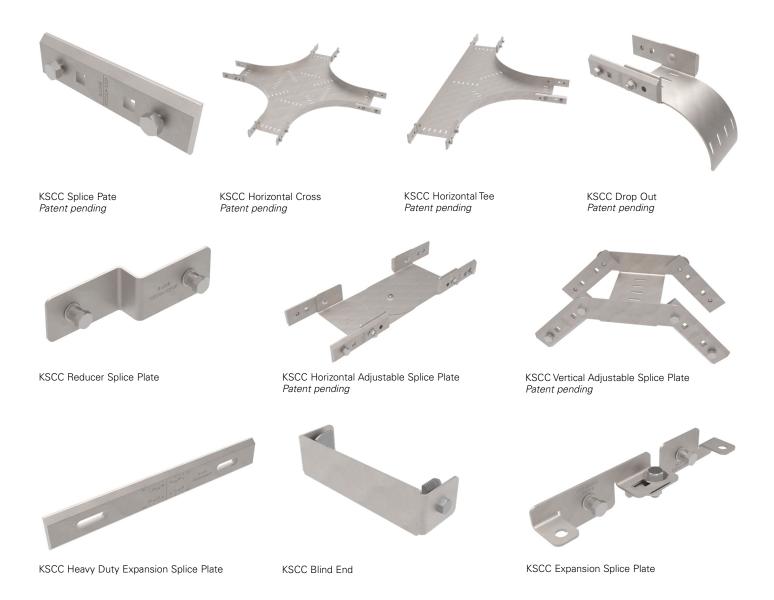
The KwikSplice difference - Dove tail side rail and guided splice plate system

- Installs quick and easy
- Superior strength allows for longer spans and higher loads
- Designed for easy field modification no drilling required!
- Thermal expansion splice plate available

KSCCNA-06-240 Non-Ventilated Cable Channel Patent pending

KSCCA-06-240 Ventilated Cable Channel with Pass Through

Patent pending

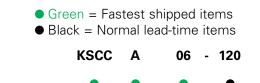


KSCCSA-06-240

Patent pending

Ventilated Cable Channel

KwikSplice cable channel tray - accessories & fittings



How The Service Advisor Works

We know that your time is important! That's why the color-coding system in this catalog is designed to help you select products that fit your service needs. Products are marked to indicate the typical lead time for orders of 50 pieces or less.

Customer: How do I select my cable channel product so that I get the quickest turnaround?

Service Advisor: Each part of our selection chart is shown in colors. If any section of a part number is a different color, the part will typically ship with the longer lead time represented by the colors.

Tray data & loading

Material	Tray	N	/idth	D	epth	UL Cross-Sectional	s	pan	Lo	ading
Туре	Series	in.	(mm)	in.	(mm)	Area	ft.	(m)	lbs/ft	(kg/m)
							10	(3.0)	13	(20)
	KSCCN*A-02	2	(51)	2	(51)	0.40 in ²	12	(3.7)	9	(14)
Aluminum							20	(6.1)	3	(5)
Non-							10	(3.0)	27	(40)
Ventilated	KSCCN*A-04	4	(101)	2	(51)	0.60 in ²	12	(3.7)	19	(28)
solid							20	(6.1)	7	(10)
bottom							10	(3.0)	40	(60)
	KSCCN*A-06	6	(152)	2	(51)	0.60 in ²	12	(3.7)	28	(41)
							20	(6.1)	10	(15)
							10	(3.0)	13	(20)
	KSCCS*A-02	2	(51)	2	(51)	0.40 in ²	12	(3.7)	9	(14)
							20	(6.1)	3	(5)
Aluminum	KSCCS*A-04						10	(3.0)	27	(40)
Ventilated		4	(101)	2	(51)	0.60 in ²	12	(3.7)	19	(28)
slotted							20	(6.1)	7	(10)
							10	(3.0)	40	(60)
	KSCCS*A-06	6	(152)	2	(51)	0.60 in ²	12	(3.7)	28	(41)
							20	(6.1)	10	(15)
							10	(3.0)	27	(40)
Aluminum	KSCC*A-04	4	(101)	2	(51)	0.40 in ²	12	(3.7)	19	(28)
Ventilated							20	(6.1)	7	(10)
with Pass							10	(3.0)	40	(60)
Through	KSCC*A-06	6	(152)	2	(51)	0.60 in ²	12	(3.7)	28	(41)
							20	(6.1)	10	(15)

Splice Plate

Features dove tail locking design which allows for quick installation.

- Furnished in pairs with pre-installed hardware
- One pair provided with each straight section (Expansion splice quantity subtracted)
- 1 size fits all channel widths
- UL Classified as equipment grounding conductor *Patent pending*

Horizontal Adjustable Splice Plate

Adapts to changes in direction on a horizontal plane beyond the capability of the standard horizontal fittings.

- Allows 0 to 90° of adjustment
- Furnished as one assembly with hardware
- UL Classified as equipment grounding conductor

Patent pending

Vertical Adjustable Splice Plate

Adapts to changes in direction on a vertical plane beyond the capability of the standard vertical fittings.

- Allows 0 to 90° of adjustment
- Furnished as one assembly with hardware
- UL Classified as equipment grounding conductor

Patent pending

Expansion Splice Plate

Allow for one inch expansion or contraction of the cable channel run. See page C-8 for use instructions.

- 1 size fits all channel widths
- Bonding jumpers required

Patent pending

6 -3 6

Catalog No.	Channel Width			
	in.	(mm)		
KSCCA-SSP	2 to 6	(51 to 152)		

Catalog No.	Channel Width		
	in.	(mm)	
KSCCA-02-HSP	2	(51)	
KSCCA-04-HSP	4	(101)	
KSCCA-06-HSP	6	(152)	

Requires supports within 24" on both sides, per NEMA VE 2.

Catalog No.	Channel Width		
	in.	(mm)	
KSCCA-02-VSP	2	(51)	
KSCCA-04-VSP	4	(101)	
KSCCA-06-VSP	6	(152)	

Catalog No.	Channel Widt	
	in.	(mm)
KSCCA-ESP	2 to 6	(51 to 152)

Requires supports within 24" on both sides, per NEMA VE 2.

Heavy Duty Expansion Splice Plate

Engineered to eliminate the additional supports recommended by NEMA at an expansion joint location.

- Can be placed out to 1/4 support span without requiring any additional supports at junction.
- Can be used on all widths 2", 4" and 6"
- Installation will require field drilling on straight sections
- Bonding jumpers required

Catalog No.	Chanr in.	nel Width (mm)
KSCCA-HDESP	2 to 6	(51 to 152)

0 " " Della D

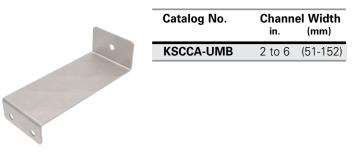
Cable Channel

Channel Reducer Plate

Used to join cable channel sections with different widths.

- Product will be boxed with one standard splice plate (included with the kit)
- Requires supports within 24" on both sides per NEMA VE 2

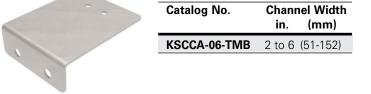
6	BUIE KSCOLICED	8


Catalog No.	Channel Width in. (mm)				
_					
KSCCA-20FSP		(101-51)			
KSCCA-20F5P	6 to 4	(152-101)			
KSCCA-40FSP	6 to 2				

Hold Down/Guide/Trapeze Support Bracket **Channel Width** Catalog No. (mm) in. · Locks into side rail with channel nut KSCCA-HLD 2 to 6 (51-152) attachment • No drilling of channel is required • Furnished as pair of brackets with channel mounting hardware. • Order ³/₈" support attachment hardware separately • Can be used on all widths 2", 4" and 6" Bracket includes widths dove tail nut To use part as a guide, torque down the nut before inserting into the channel Hold down Trapeze

Parallel Tray Mounting Bracket

Allows a parallel run of cable channel to be attached to the side of a cable tray / channel.

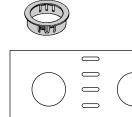

- Furnished as one support with channel mounting hardware
- Will support all widths 2", 4" and 6" widths

Tray Mounting Bracket

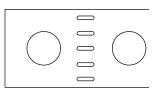
Allows a perpendicular run of cable channel to be attached to the side of a cable tray / channel.

- Furnished as one support with channel mounting hardware
- Will support all widths 2", 4" and 6" widths

Cable Channel

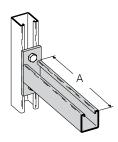

KwikSplice cable channel tray - accessories

6 4			
24 20	Catalog No.	Chann in.	el Width (mm)
	KSCCA-02-OUT	2	(51)
· · ·	KSCCA-04-OUT	4	(101)
	KSCCA-06-OUT	6	(152)
	22100	KSCCA-02-OUT KSCCA-04-OUT	in. KSCCA-02-OUT 2 KSCCA-04-OUT 4


Cable Channel Bushing

Used to help protect cable from mechanical wear.

• Snap in place plastic bushing


	Catalog	No.
99-1125	99-1125	

99-1125

Cable Channel Bracket

- Safety factor of 2.5
- Finishes available: ZN, GRN, HDG

Catalog	Channel Width		Uniform	n Load	A		
No.	in.	(mm)	lbs	(kN)	in.	(mm)	
B409-6	3	(76)	1920	(8.54)	6	(152)	
B409-9	4, 6	(101, 152)	1280	(5.69)	9	(228)	

Blind End

Designed to terminate channel run.

- Furnished as one plate with hardware
- Comes pre-assembled as pictured

Catalog No.	Channel Width				
-	in.	(mm)			
KSCCA-02-END	2	(51)			
KSCCA-04-END	4	(101)			
KSCCA-06-END	6	(152)			

Frame Type Connect	or
--------------------	----

Designed to attach the end of a cable channel run to a distribution cabinet or control center.

- Helps reinforce the box at the point of entry
- Furnished with channel connection hardware
- Comes pre-assembled as pictured

Catalog No.	Channel Width				
	in.	(mm)			
KSCCA-02-FTB	2	(51)			
KSCCA-04-FTB	4	(101)			
KSCCA-06-FTB	6	(152)			

KwikSplice cable channel tray - accessories

	Pull out load				
Dove Tail Nut					
Used to mount onto dove tail channel.			Catalog No.	Channe	l Width
• The slip load is 300 lbs with a safety factor	10.	_	_	in.	(mm)
of 3 • The pull out is 330 lbs with a safety factor		H	SCC-DTN-SS6	2 to 6	(51-152)
of 3	Slip	load			
Side Rail Drop Out					
Used to drop cable out of the side of the channel.					
• Furnished with ³ /8" bolt and dove tail nut hardware for connection	-	7	Catalog No.	Channe in.	el Width (mm)
Works on all channel widthsComes pre-assembled as pictured		F	(SCC-SDO	2 to 6	(51-152)
		11,			
Cable Drop Opening			Catalog No.	Channe	l Width
Fitting design to provide pass through hole on solid	As a construction	_		in.	(mm)
 bottom and slotted channel. Furnished as one assembly with hardware 	2.	0	(SCCA-02-CDO	2	(51)
 6" and 4" width have 2¹/₄" pass through opening. 	2.00		(SCCA-04-CDO (SCCA-06-CDO	4	(101) (152)
2" width has 11/2" pass through opening	and the second s	13			(
 Comes pre-assembled as pictured 					
Patent pending					
Bolted Cover Clamp					
 Secures the cover to the cable channel Furnished as one clamp with hardware 		C C	atalog No.	Channe in.	l Width (mm)
Quantity of Standard		-	SCCA-HDCC-02	2	(51)
Cover Clamps Required			SCCA-HDCC-04	4	(101)
Straight Section 120", 144" or 240"6 pcs.Horizontal/Vertical Bends4 pcs.Tees6 pcs.Crosses8 pcs.		<u> </u>	(SCCA-HDCC-06	6	(152)
Conduit to Channel Adaptor	Catalog No.	Conduit size			Vt./C
 Material: 7 gauge (4.5) Standard finishes: ZN, SS4 	B422- ¹ / ₂	<u>In. mm</u> ¹ /2" (15)	In. mm 2 ³ /8" (60.3		bs. kg 3 (17.2)
	B422- ³ /4	³ / ₄ " (20)	2 /8 (00.3 2 ³ /8" (60.3) (17.7)
	B422-1	1" (25)	2 ⁷ /8" (73.0		8 (21.8)
	D 400 414	41/11/023			(0.0

B422-11/4

B422-1¹/₂

B422-21/2

B422-3¹/₂

B422-2

B422-3

B422-4

首

11/4" (32)

11/2" (40)

2 (50)

21/2" (65)

3" (80)

31/2" (90)

4" (100)

Note: Recommended torque would be 11 ft-lbs.

Max torque would be 15 ft-lbs.

27/8" (73.0)

31/4" (82.5)

 $3^{11}/_{16}$ " (93.7)

41/4" (107.9)

47/8" (123.8)

57/16" (138.1)

6" (152.4)

50 (22.7)

59 (26.7)

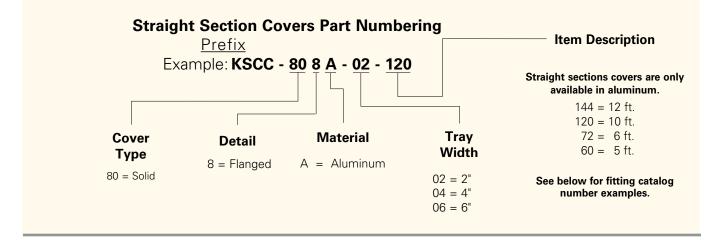
75 (34.0)

98 (44.4)

111 (50.3)

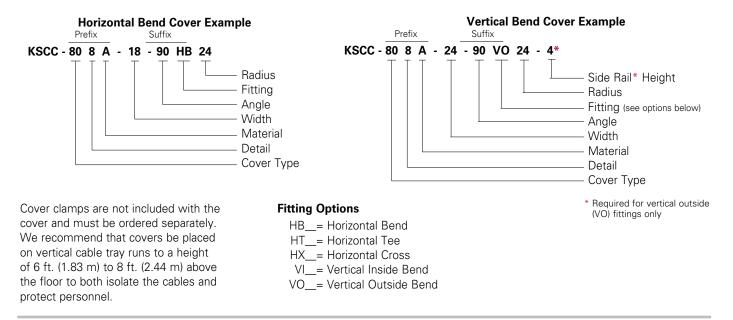
123 (55.8)

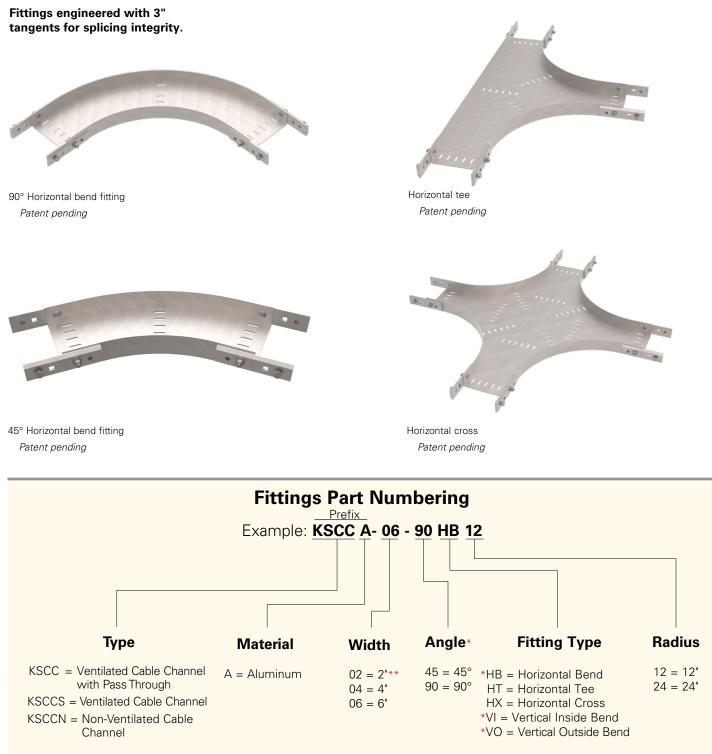
135 (61.2)


Aluminum

Standard Straight Section

Cable Channel Covers




Fittings Part Numbering

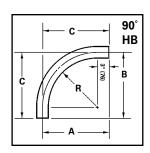
To order covers for fittings, reference examples below.

Check with B-Line Technical Support (<u>blinetechnicalsupport@eaton.com</u>) if there are questions/concerns about environmental loads for covers (wind, snow, sleet, rain, etc.).

KwikSplice cable channel tray - fittings

* Angle only required for HB, VI and VO fittings.

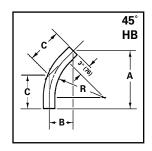
** 2" width is not offered with the KSCC Ventilated Cable Channel Pass Through option (the prefix of this option is: KSCC)


90° Horizontal Bend (HB)

• Factory mounted splice plate and hardware included

	Bend	Radius	Tray	Width	90° Horizontal Bend							
		R						Α		В		C
Catalog No.	in.	(mm)	in.	(mm)	in.	(mm)	in.	(mm)	in.	(mm)		
(Pre)-02-90HB12			2	(25)	17.0	(432)	17	(432)	17	(432)		
(Pre)-04-90HB12	12	(305)	4	(101)	17.0	(432)	17	(432)	17	(432)		
(Pre)-06-90HB12			6	(152)	17.0	(432)	17	(432)	17	(432)		
(Pre)-02-90HB24			2	(25)	29.0	(737)	29	(737)	29	(737)		
(Pre)-04-90HB24	24	(610)	4	(101)	29.0	(737)	29	(737)	29	(737)		
(Pre)-06-90HB24			6	(152)	29.0	(737)	29	(737)	29	(737)		

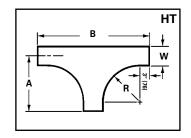
90° Horizontal Bend Ventilated perforation style shown


45° Horizontal Bend (HB)

• Factory mounted splice plate and hardware included

	Bend	Radius	dius Tray Width 45° Horizontal Bend							
		R			Α		В		C	
Catalog No.	in.	(mm)	in.	(mm)	in.	(mm)	in.	(mm)	in.	(mm)
(Pre)-02-45HB12			2	(25)	15.0	(382)	6.222	(158)	8.799	(223)
(Pre)-04-45HB12	12	(305)	4	(101)	15.0	(382)	6.222	(158)	8.799	(223)
(Pre)-06-45HB12			6	(152)	15.0	(382)	6.222	(158)	8.799	(223)
(Pre)-02-45HB24			2	(25)	23.5	(597)	9.737	(247)	13.77	(350)
(Pre)-04-45HB24	24	(610)	4	(101)	23.5	(597)	9.737	(247)	13.77	(350)
(Pre)-06-45HB24			6	(152)	23.5	(597)	9.737	(247)	13.77	(350)

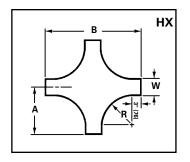
45° Horizontal Bend Ventilated perforation style shown


Horizontal Tee (HT)

• Factory mounted splice plate and hardware included

	Bend	Radius	Tray	Width		Horizon	tal Tee	
		R			Α		В	
Catalog No.	in.	(mm)	in.	(mm)	in.	(mm)	in.	(mm)
(Pre)-02-HT12			2	(25)	16	(406)	32	(813)
(Pre)-04-HT12	12	(305)	4	(101)	17	(432)	34	(864)
(Pre)-06-HT12			6	(152)	18	(457)	36	(914)
(Pre)-02-HT24			2	(25)	28	(711)	56	(1422)
(Pre)-04-HT24	24	(610)	4	(101)	29	(737)	58	(1473)
(Pre)-06-HT24			6	(152)	30	(762)	60	(1524)

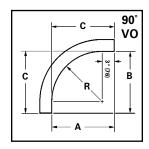
Horizontal Tee Ventilated perforation style shown


Horizontal Cross (HX)

• Factory mounted splice plate and hardware included

	Bend	Bend Radius		Tray Width		Horizontal Cross					
	R in. (mm)					Α	В				
Catalog No.			in.	(mm)	in.	(mm)	in.	(mm)			
(Pre)-02-HX12		(305)	2	(25)	16	(406)	32	(813)			
(Pre)-04-HX12	12		4	(101)	17	(432)	34	(864)			
(Pre)-06-HX12			6	(152)	18	(457)	36	(914)			
(Pre)-02-HX24			2	(25)	28	(711)	56	(1422)			
(Pre)-04-HX24	24	(610)	4	(101)	29	(737)	58	(1473)			
(Pre)-06-HX24			6	(152)	30	(762)	60	(1524)			

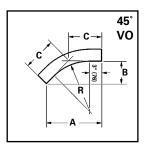
Horizontal Cross Ventilated perforation style shown



90° Vertical Outside Bends (VO)Factory mounted splice plate and hardware included

	Bend Radius R		Tray Width		90° Vertical Outside Bend							
					Α		В		C			
Catalog No.	in.	(mm)	in.	(mm)	in.	(mm)	in.	(mm)	in.	(mm)		
(Pre)-02-90VO12		(305)	2	(25)	15	(381)	15	(381)	15	(381)		
(Pre)-04-90VO12	12		4	(101)	15	(381)	15	(381)	15	(381)		
(Pre)-06-90VO12			6	(152)	15	(381)	15	(381)	15	(381)		
(Pre)-02-90VO24		24 (610)	2	(25)	27	(686)	27	(686)	27	(686)		
(Pre)-04-90VO24	24		4	(101)	27	(686)	27	(686)	27	(686)		
(Pre)-06-90VO24			6	(152)	27	(686)	27	(686)	27	(686)		

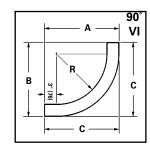
90° Vertical Outside Bend Ventilated perforation style shown


45° Vertical Outside Bends (VO)

• Factory mounted splice plate and hardware included

	Tray Width		45° Vertical Outside Bend							
	R				Α		В		C	
Catalog No.	in.	(mm)	in.	(mm)	in.	(mm)	in.	(mm)	in.	(mm)
(Pre)-02-45VO12			2	(25)	13.607	(346)	5.6	(143)	7.971	(202)
(Pre)-04-45VO12	12	(305)	4	(101)	13.607	(346)	5.6	(143)	7.971	(202)
(Pre)-06-45VO12			6	(152)	13.607	(346)	5.6	(143)	7.971	(202)
(Pre)-02-45VO24			2	(25)	22.092	(561)	9.2	(232)	12.941	(329)
(Pre)-04-45VO24	24	(610)	4	(101)	22.092	(561)	9.2	(232)	12.941	(329)
(Pre)-06-45VO24			6	(152)	22.092	(561)	9.2	(232)	12.941	(329)

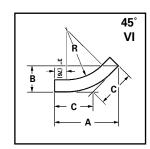
45° Vertical Outside Bend Ventilated perforation style shown


90° Vertical Inside Bends (VI)

• Factory mounted splice plate and hardware included

	Bend	Radius	Tray	Width	90° Vertical Inside Bend						
	R		Α		В		C				
Catalog No.	in.	(mm)	in.	(mm)	in.	(mm)	in.	(mm)	in.	(mm)	
(Pre)-02-90VI12			2	(25)	17.0	(432)	17	(432)	17	(432)	
(Pre)-04-90VI12	12	(305)	4	(101)	17.0	(432)	17	(432)	17	(432)	
(Pre)-06-90VI12			6	(152)	17.0	(432)	17	(432)	17	(432)	
(Pre)-02-90VI24		24 (305)	2	(25)	29.0	(737)	29	(737)	29	(737)	
(Pre)-04-90VI24	24		4	(101)	29.0	(737)	29	(737)	29	(737)	
(Pre)-06-90VI24			6	(152)	29.0	(737)	29	(737)	29	(737)	

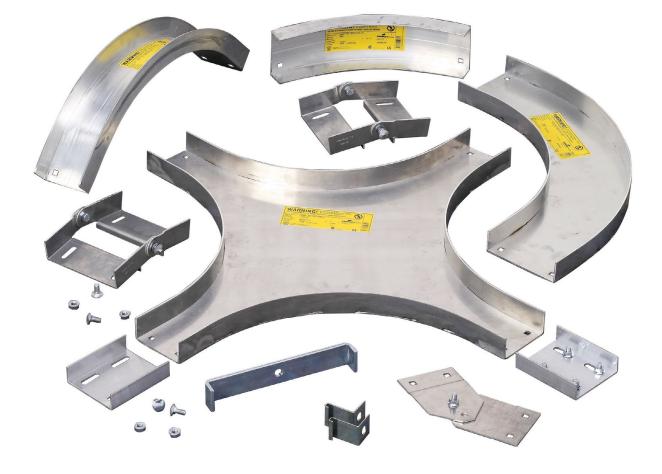
90° Vertical Inside Bend Ventilated perforation style shown


45° Vertical Inside Bends (VI)

• Factory mounted splice plate and hardware included

Bend Radius Tray Width					45° Vertical Inside Bend							
	R				Α		В		C			
Catalog No.	in.	(mm)	in.	(mm)	in.	(mm)	in.	(mm)	in.	(mm)		
(Pre)-02-45VI12			2	(25)	15.0	(382)	6.222	(158)	8.799	(223)		
(Pre)-04-45VI12	12	(305)	4	(101)	15.0	(382)	6.222	(158)	8.799	(223)		
(Pre)-06-45VI12			6	(152)	15.0	(382)	6.222	(158)	8.799	(223)		
(Pre)-02-45VI24			2	(25)	23.5	(597)	9.737	(247)	13.77	(350)		
(Pre)-04-45VI24	24	(305)	4	(101)	23.5	(597)	9.737	(247)	13.77	(350)		
(Pre)-06-45VI24			6	(152)	23.5	(597)	9.737	(247)	13.77	(350)		

45° Vertical Inside Bend Ventilated perforation style shown


Section 1- Acceptable Manufacturers

1.1 **Manufacturer:** Subject to compliance with these specifications, B-Line series channel cable tray systems shall be as manufactured by Eaton.

Section 2- Selection and Components

- 2.1 **General:** Except as otherwise indicated, provide ventilated metal channel cable trays, of types, classes and sizes indicated with splice connectors, fittings and all other necessary accessories for a complete system. Provide channel cable tray with rounded edges and smooth surfaces in compliance with applicable standards and with the following additional requirements.
- 2.2 Materials and finishes: Material and finishes specifications for each channel cable tray are as follows:
 A. Aluminum: Extruded components shall be made from Aluminum Association Alloy 6063. All fabricated parts shall be made from Aluminum Association Alloy 5052.
- 2.3 Cable channel straight sections shall consist of a singularly extruded channel shaped body that includes dove tail openings on each channel upright for the explicit purposes of:
 - A. Accommodating field cuts at any point on the section of cable channel without the need for additional modification, splices, hardware and/or labor
 - B. Attachment of splices, fittings and/or accessories in the creation of the desired cable channel system
- 2.4 The cable channel shall have a post-punched pattern on the underside of the profile consistent with one of the following:
 - A. Ventilated cable channel with pass through holes: a repeating uniform perforated pattern with 2.25 diameter cable pass through holes every 12 inches.
 - B. Ventilated cable channel: a repeating uniform perforated pattern for ventilation every 6 inches without pass through holes.
 - C. Non-ventilated cable channel (solid bottom).
- 2.5 Straight sections shall be supplied in standard [10 ft (3 m)] [12 ft (4 m)] [20 foot (6 m)] lengths, except where shorter lengths are permitted to facilitate cable channel assembly as shown on drawings.
- 2.6 Channel cable tray width shall be [2] [4] [6] inches with a minimum loading depth of 2 inches.
- 2.7 Fittings shall have a minimum radius of [12] [24] inches.
- 2.8 Each straight section of cable channel:
 - A. Shall include pre-assembled splices and hardware.
 - B. Pre-assembled splices and hardware can be pre-installed in straight sections upon request.
- 2.9 Fittings are to be supplied with pre-installed splices.
- 2.10 Loading Capacities
 - A. Cable channels shall be capable of carrying a uniformly distributed load of 10 lbs./ft. on a 20-foot support span with a safety factor of 1.5 when supported as a simple span and tested per NEMA VE 1 Section 5.2
- 2.11 Accessories to facilitate cable channel assembly as shown on drawings.
 - A. Splices
 - 1. Shall be universally compatible for all cable channel widths.
 - 2. Shall be pre-assembled for immediate field installation.
 - 3. The resistance of fixed splice connections between adjacent sections of cable channel shall not exceed 0.00033 ohms.

How The Service Advisor Works

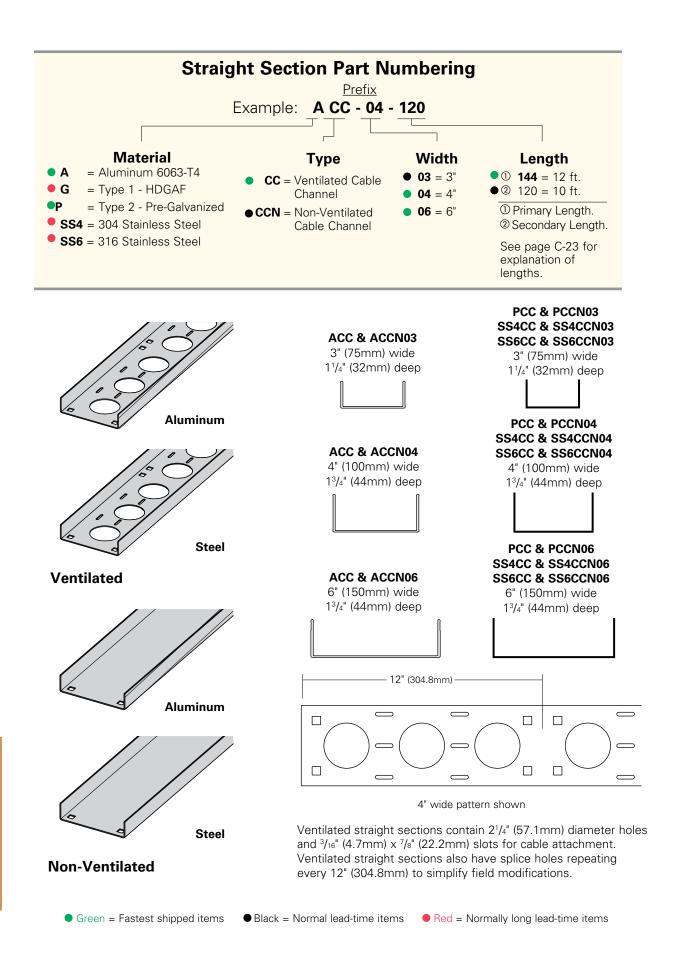
We know that your time is important! That's why the color-coding system in this catalog is designed to help you select products that fit your service needs. Products are marked to indicate the typical lead time for orders of 50 pieces or less.

Customer: How do I select my cable channel product so that I get the quickest turnaround?

• 03 - • 144

Service Advisor: Each part of our selection chart is shown in colors. If any section of a part number is a different color, the part will typically ship with the longer lead time represented by the colors.

- Green = Fastest shipped items
- Black = Normal lead-time items


• A • CC

• Red = Normally long lead-time items

Example:

Part will have a normal lead time because of the 03 width.

Changing the part number to 04 width instead of 03 will reduce the lead time.

Tray data & loading

						Load	ling
Material Type	Tray Series	Width in. (mm)	Depth in. (mm)	UL Cross- Sectional Area	Span ft. (m)	Deflection Ibs./ft. Multiplier	Deflection kg./m. Multiplier
Aluminum Ventilated	ACC-03	3 (76)	11/4 (32)	0.40 in ²	5 (1.5) 6 (1.8) 10 (3.0) 12 (3.7)	17 0.020 12 0.042 4 0.326 3 0.676	(26) 0.350 (18) 0.720 (6) 5.600 (4) 12.000
Aluminum Ventilated	ACC-04	4 (101)	1³/4 (44)	0.60 in ²	5 (1.5) 6 (1.8) 10 (3.0) 12 (3.7)	46 0.007 32 0.015 12 0.118 8 0.244	 (69) 0.130 (48) 0.260 (17) 2.000 (12) 4.200
Aluminum Ventilated	ACC-06	6 (152)	1³/4 (44)	0.60 in ²	5 (1.5) 6 (1.8) 10 (3.0) 12 (3.7)	60 0.006 42 0.013 15 0.102 10 0.211	 (90) 0.110 (62) 0.230 (22) 1.700 (16) 3.600
Aluminum Non-Ventilated	ACCN-03	3 (76)	11/4 (32)	0.40 in ²	5 (1.5) 6 (1.8) 10 (3.0) 12 (3.7)	23 0.020 16 0.042 6 0.326 4 0.676	(34) 0.350 (24) 0.720 (9) 5.600 (6) 12.000
Aluminum Non-Ventilated	ACCN-04	4 (101)	1³/4 (44)	0.60 in ²	5 (1.5) 6 (1.8) 10 (3.0) 12 (3.7)	46 0.007 32 0.015 12 0.118 8 0.244	 (69) 0.130 (48) 0.260 (17) 2.000 (12) 4.200
Aluminum Non-Ventilated	ACCN-06	6 (152)	1³/4 (44)	0.60 in ²	5 (1.5) 6 (1.8) 10 (3.0) 12 (3.7)	60 0.006 42 0.013 15 0.102 10 0.211	(90) 0.110 (62) 0.230 (22) 1.700 (16) 3.600

						Load	ding
Material Type	Tray Series	Width in. (mm)	Depth in. (mm)	UL Cross- Sectional Area	Span ft. (m)	Deflection Ibs./ft. Multiplier	Deflection kg./m. Multiplier
Steel & Stainless Steel Ventilated	GCC-03 PCC-03 SS4CC-03 SS6CC-03	3 (76)	11/4 (32)	0.20 in ²	5 (1.5) 6 (1.8) 10 (3.0) 12 (3.7)	24 0.013 17 0.028 6 0.216 4 0.447	(36) 0.220 (25) 0.480 (9) 3.700 (6) 7.600
Steel & Stainless Steel Ventilated	GCC-04 PCC-04 SS4CC-04 SS6CC-04	4 (101)	1 ³ / ₄ (44)	0.40 in ²	5 (1.5) 6 (1.8) 10 (3.0) 12 (3.7)	52 0.0039 36 0.0082 13 0.063 9 0.130	 (77) 0.070 (54) 0.140 (19) 1.100 (13) 2.200
Steel & Stainless Steel Ventilated	GCC-06 PCC-06 SS4CC-06 SS6CC-06	6 (152)	1 ³ / ₄ (44)	0.40 in ²	5 (1.5) 6 (1.8) 10 (3.0) 12 (3.7)	59 0.003 41 0.0063 15 0.049 10 0.101	(88) 0.050 (61) 0.110 (22) 0.840 (15) 1.700
Steel & Stainless Steel Non-Ventilated	GCCN-03 PCCN-03 SS4CCN-03 SS6CCN-03	3 (76)	11/4 (32)	0.20 in ²	5 (1.5) 6 (1.8) 10 (3.0) 12 (3.7)	24 0.013 17 0.028 6 0.216 4 0.447	 (36) 0.220 (25) 0.480 (9) 3.700 (6) 7.600
Steel & Stainless Steel Non-Ventilated	GCCN-04 PCCN-04 SS4CCN-04 SS6CCN-04	4 (101)	1³/4 (44)	0.40 in ²	5 (1.5) 6 (1.8) 10 (3.0) 12 (3.7)	52 0.0039 36 0.0082 13 0.063 9 0.130	 (77) 0.070 (54) 0.140 (19) 1.100 (13) 2.200
Steel & Stainless Steel Non-Ventilated	GCCN-06 PCCN-06 SS4CCN-06 SS6CCN-06	6 (152)	1 ³ / ₄ (44)	0.40 in ²	5 (1.5) 6 (1.8) 10 (3.0) 12 (3.7)	59 0.003 41 0.0063 15 0.049 10 0.101	(88) 0.050 (61) 0.110 (22) 0.840 (15) 1.700

Splice Plate

The Splice Plate has the standard 4-hole pattern for all cable channel.

- Provided with straight sections and fittings.
- UL Classified as equipment grounding conductor⁺.
- Furnished as one plate with hardware.
- (*) Insert 🗛 🕝 P SS4 SS6

Horizontal Adjustable Splice Plate

The Horizontal Adjustable Splice Plate adapts to changes in direction in a horizontal plane, beyond the capability of the standard horizontal fittings.

- Furnished as one plate with hardware.
- UL Classified as equipment grounding conductor[†].
- (*) Insert 🗛 🕝 🕑 SS4 SS6

	D	\geq	
, 			
S.			

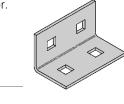
0

Requires supports

within 24" on both sides, per NEMA VE 2.

Catalog No.	Channe in.	el Width (mm)
9(*)-1043	3	(76)
9(*)-1044	4	(101)
9(*)-1044-6	6	(152)

(†) Not applicable for stainless steel.


Catalog No.	Channe in.	l Width (mm)
9(*)-1743	3	(76)
9(*)-1744	4	(101)
9(*)-1746	6	(152)

(†) Not applicable for stainless steel.

Box Connector

The Box Connector is used to attach the end of a cable channel run to a distribution box or a control center.

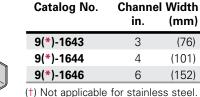
- Furnished as one connector with hardware.
- (*) Insert (A) (G) (P) (SS4) (SS6)

Catalog No.	Channel Width	
	in.	(mm)
9(*)-1543	3	(76)
9(*)-1544	4	(101)
9(*)-1546	6	(152)

Channel Reducer Plate

The Channel Reducer Plate is used to join cable channel sections of different widths.

- Furnished as one plate with hardware.
- UL Classified as equipment grounding conductor[†].
- (*) Insert (A) (G) (P) (SS4) (SS6)

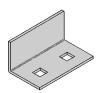

Catalog No	o. Cha	Channel Width			
	in.	(mn	n)		
9(*)-1843	4 to 3	(101 to	76)		
9(*)-1863	6 to 3	(152 to	76)		
9(*)-1864	6 to 4	(152 to	101)		
(+) Net explicable for staipless steel					

(†) Not applicable for stainless steel.

Vertical Adjustable Splice Plate

The Adjustable Splice Plate allows changes in elevation where standard vertical fittings are not applicable.

- Furnished as one plate with hardware.
- UL Classified as equipment grounding conductor[†]
- (*) Insert (A) (G) (P) (SS4) (SS6)
- Requires supports within 24" on both sides, per NEMA VE 2.


- Green = Fastest shipped items
- Black = Normal lead-time items
- Red = Normally long lead-time items

All dimensions in shaded areas are millimeters unless otherwise specified.

Blind End Plate

The Blind End Plate forms a closure for any cable channel dead end.

- Furnished as one plate with hardware.
- (*) Insert (A) (G) (P) (SS4) (SS6)

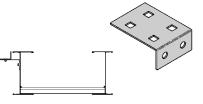
Catalog No.	Channel Width	
	in.	(mm)
9(*)-1583	3	(76)
9(*)-1584	4	(101)
9(*)-1586	6	(152)

Channel To Tray or Channel To Channel Connector

The Channel Connector is used to link a cable channel to a cable tray, or a cable channel to cable channel.

- Furnished as one plate with hardware.
- (*) Insert **AGP SS4 SS6**

Channel to	Channel
Channel	to Tray


\diamond

Catalog No.	Channel Widtl in. (mm)	
9(*)-1261-3	3	(76)
9(*)-1261-4	4	(101)
9(*)-1261-6	6	(152)

Mounting Bracket - Channel To Tray

The Mounting Bracket allows a parallel run of cable channel to be attached to the side of a cable tray. It can also serve as a support splice connection.

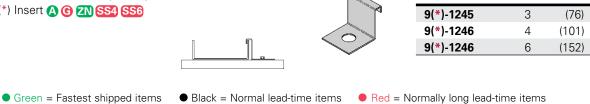
- Furnished as one bracket.
- Order hardware separately.
- (*) Insert (A) (G) (SS4) (SS6)

Catalog No.	Channel Width	
	in.	(mm)
9(*)-1237-3	3	(76)
9(*)-1237-4	4	(101)
9(*)-1237-6	6	(152)

Expansion Guide Clamp

The Expansion Guide Clamp allows cable channel to expand and contract in the horizontal plane, but not in the transverse plane.

- Furnished as one clamp.
- Order ¹/₂" hardware separately.
- (*) Insert (A) (G) (2N) (SS4) (SS6)


Catalog No.	Channel Width				
	in.	(mm)			
9(*)-1243	3	(76)			
9(*)-1244	4	(101)			
9(*)-1244	6	(152)			

Catalog No.

Hold-Down Clamp

The Hold-Down Clamp secures cable channel to a support member.

- Furnished as one clamp.
- Order 1/2" hardware separately.
- (*) Insert (A) (G) (2N) (SS4) (SS6)

All dimensions in shaded areas are millimeters unless otherwise specified.

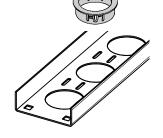
Channel Width

(mm)

in.

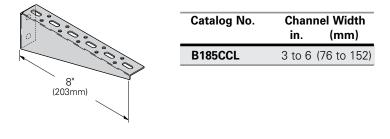
Channel To Floor Base Plate

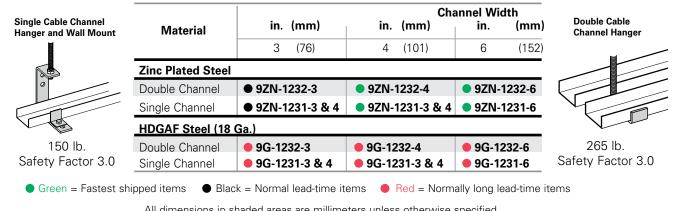
The Channel to Floor Base Plate is used to attach the end of a cable channel run to the floor or to an equipment mounting pad.


- Anchors and hardware are ordered separately.
- (*) Insert (A) (G) ZN (SS4) (SS6)

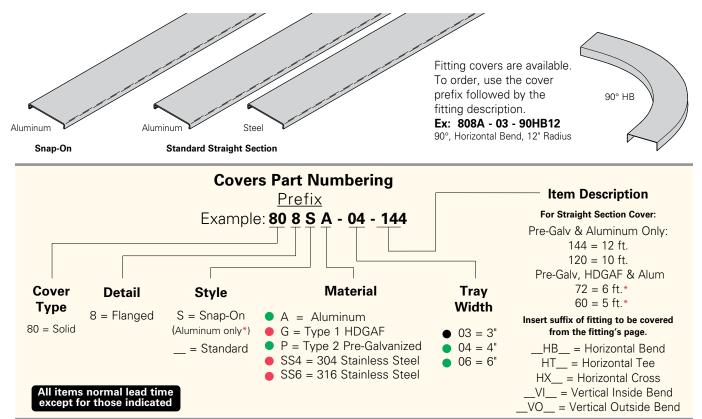
Catalog No.	Chann	el Width
	in.	(mm)
9(*)-3305-3	3	(76)
9(*)-3305-4	4	(101)
9(*)-3305-6	6	(152)

Cable Channel Bushing


The Cable Channel Bushing is a snap-in plastic bushing used to protect cable insulation from mechanical wear.


Cable Channel Bracket

- Uniform Load: 225 lbs (1.00 kN) Safety Factor of 2.5
- Finishes available: ZN G


Cable Channel Bracket

- Safety Factor of 2.5 Catalog **Channel Width Uniform Load** Α • Finishes available: ZN G GRN No. in. (mm) lbs (kN) in. (mm) B409-6 3 (76) 1920 (8.54) 6 (152) B409-9 4,6 (101,152) 1280 (5.69)9 (228)
- **Cable Channel Hanger** Designed for 1/2" threaded rod, double nut installation

All dimensions in shaded areas are millimeters unless otherwise specified.

Cable Channel Covers

Material	Le ft	ength (m)	on Part Number in. (mm)		
			3 (76)	4 (101)	6 (152)
Aluminum (.032)	12	3.56m	808A-03-144	808A-04-144	808A-06-144
Solid	10	3.05m	808A-03-120	808A-04-120	808A-06-120
Type II Pre-Galvanized Steel (20 Ga.)	12	3.56m	808P-03-144	808P-04-144	808P-06-144
Solid	10	3.05m)	808P-03-120	808P-04-120	808P-06-120
Type I Hot Dip Galvanized Steel (18 Ga.)	12	3.56m	808G-03-72	808G-04-72	808G-06-72
Solid	10	3.05m	808G-03-60	808G-04-60	808G-06-60

Wrap-Around Cover Clamp

Wrap-Around Cover Clamps are used to securely hold a cover on cable channel in locations where strong winds can prevail.

- Furnished as one clamp with hardware.
- (*) Insert (A) (G) (P) (SS4) (SS6)

Quantity of Standard Cover Clamps Required

Straight Section 120", 144" or 240"	6 pcs.
Horizontal/Vertical Bends	4 pcs.
Tees	6 pcs.
Crosses	8 pcs.

|--|

Catalog No.

9(*)-9023

9(*)-9024

9(*)-9024

-						
Catalog No.	Channel Width					
	in.	(mm)				
9(*)-9033	3	(76)				
9(*)-9034	4	(101)				
9(*)-9036	6	(152)				

Cover clamps are not included with the cover and must be ordered separately. We recommend that covers be placed on vertical cable tray runs to a height of 6 ft. (1.83 m) to 8 ft. (2.44 m) above the floor to both isolate the cables and protect personnel.

Combination Hold-Down & Cover Clamp

This clamp is used to hold both the cable channel and cover in place at the same time.

- Furnished as one clamp.
- Order 1/4" hardware separately.
- (*) Insert 🗛 🕝 🕑 SS6

Check with B-Line Technical Support (<u>blinetechnicalsupport@eaton.com</u>) if there are

questions/concerns about environmental loads for covers (wind, snow, sleet, rain, etc.).

Green = Fastest shipped items
Black = Normal lead-time items
Red = Normally long lead-time items

All dimensions in shaded areas are millimeters unless otherwise specified.

Channel Width

in.

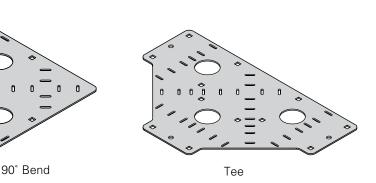
3

4

6

(mm)

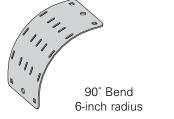
(76)

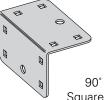

(101)

(152)

Channel Cable Tray Connectors

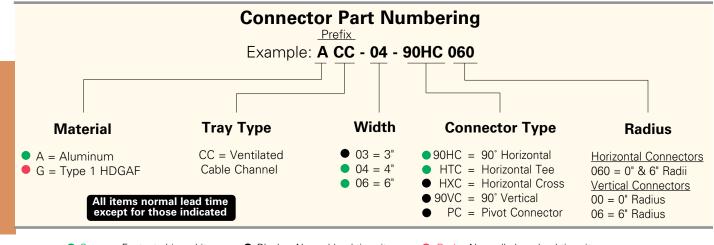
Fast, economical, space saving Channel Cable Tray Connectors Patent No. 5,628,481; 5,782,439. Other patents pending.





- The Pivot Connector is available for custom angle adjustment
 - up to +/- 45° angle adjustment
 - order the desired quantity separately
- Slotted for easy cable fastening
- Shipped with the required hardware

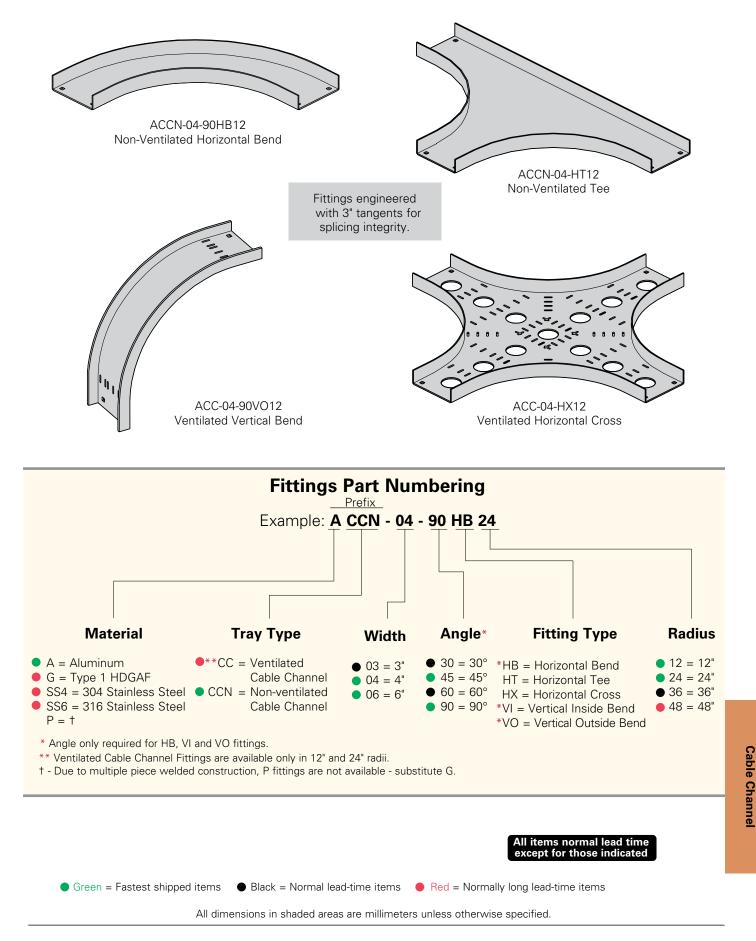
90° Vertical Square Connector 0-inch radius


Pivot Connector

Cross

Pivot

Connector

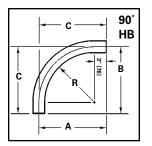

- Use the same part for VO and VI applications
- Slotted for easy cable fastening
- The Pivot Connector is available for custom angle adjustment (order separately)
- Shipped with the required hardware

Green = Fastest shipped items
 Black = Normal lead-time items
 Red = Normally long lead-time items

All dimensions in shaded areas are millimeters unless otherwise specified.

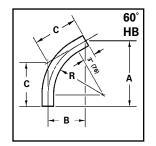
Cable Channel

E-25


Horizontal Bends 90°, 60° (HB) 1 splice plate with hardware included.

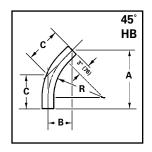
Bend Radius		「ray /idth	90° Horizontal Bend Dimensions						
R in. (mm)	in.	(mm)	Catalog No.	in.	Վ (mm)	in.	B (mm)	in.	C (mm)
	3	(76)	(Pre)-03-90HB12	16 ¹ /2	(419)	16 ¹ /2	(419)	16 ¹ /2	(419)
12 (305)	4	(101)	(Pre)-04-90HB12	17	(432)	17	(432)	17	(432)
	6	(152)	(Pre)-06-90HB12	18	(457)	18	(457)	18	(457)
	3	(76)	(Pre)-03-90HB24	28 ¹ / ₂	(723)	28 ¹ / ₂	(723)	28 ¹ / ₂	(723)
24 (609)	4	(101)	(Pre)-04-90HB24	29	(737)	29	(737)	29	(737)
	6	(152)	(Pre)-06-90HB24	30	(762)	30	(762)	30	(762)
	3	(76)	(Pre)-03-90HB36	40 ¹ / ₂	(1029)	401/2	(1029)	40 ¹ / ₂	(1029)
36 (915)	4	(101)	(Pre)-04-90HB36	41	(1041)	41	(1041)	41	(1041)
	6	(152)	(Pre)-06-90HB36	42	(1067)	42	(1067)	42	(1067)
	3	(76)	(Pre)-03-90HB48	52 ¹ / ₂	(1334)	52 ¹ / ₂	(1334)	52 ¹ /2	(1334)
48 (1218	4	(101)	(Pre)-04-90HB48	53	(1346)	53	(1346)	53	(1346)
	6	(152)	(Pre)-06-90HB48	54	(1372)	54	(1372)	54	(1372)
					60° H	lorizo	ntal Be	end	
	3	(76)	(Pre)-03-60HB12	16 ¹ /4	(412)	9 ³ /8	(239)	10 ³ /4	(273)
12 (305)	4	(101)	(Pre)-04-60HB12	16 ⁵ /8	(422)	9 ⁵ /8	(245)	11 ¹ /8	(283)
	6	(152)	(Pre)-06-60HB12	17 ¹ / ₂	(445)	10	(254)	11 ⁵ /8	(296)
	3	(76)	(Pre)-03-60HB24	265/8	(676)	15 ³ /8	(391)	17 ³ /4	(451)
24 (609)	4	(101)	(Pre)-04-60HB24	27	(686)	155/8	(397)	18	(450)
	6	(152)	(Pre)-06-60HB24	27 ⁷ /8	(708)	16	(406)	185/8	(466)
	3	(76)	(Pre)-03-60HB36	37	(940)	21 ³ /8	(543)	24 ⁵ /8	(625)
36 (915)	4	(101)	(Pre)-04-60HB36	37³/8	(949)	215/8	(549)	25	(635)
	6	(152)	(Pre)-06-60HB36	38 ¹ / ₄	(972)	22	(559)	25 ¹ / ₂	(648)
	3	(76)	(Pre)-03-60HB48	47 ³ /8	(1203)	27 ³ /8	(695)	315/8	(803)
48 (1218)	4	(101)	(Pre)-04-60HB48	47 ⁷ /8	(1216)	275/8	(702)	31 ⁷ /8	(810)
	6	(152)	(Pre)-06-60HB48	485/8	(1235)	28	(711)	32 ¹ / ₂	(826)

(Pre) See page E-10 for catalog number prefix.



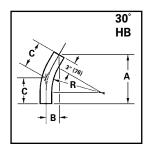
90° Horizontal Bend Ventilated Horizontal Bend

60° Horizontal Bend Non-Ventilated Horizontal Bend


All dimensions in shaded areas are millimeters unless otherwise specified.

Horizontal Bends 45°, 30° (HB)

1 splice plate with hardware included.

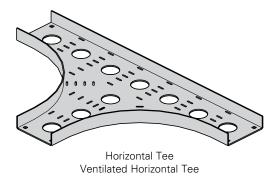

· 0-0-0-0
<i>v v</i>

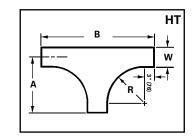
45° Horizontal Bend Ventilated Horizontal Bend

30° Horizontal Bend Non-Ventilated Horizontal Bend

\ :					Dime	nsions		
\lim		Catalog No.	-	۹		B,		C,
<u>/</u> m.	(mm)		in.	(mm)	in.	(mm)	in.	(mm)
3	(76)	(Pre)-03-45HB12	14 ⁵ /8	(371)	6 ¹ /8	(156)	85/8	(219)
) 4	(101)	(Pre)-04-45HB12	15	(381)	61/4	(159)	87/8	(225)
6	(152)	(Pre)-06-45HB12	15 ³ /4	(400)	6 ¹ / ₂	(165)	9 ¹ / ₄	(235)
3	(76)	(Pre)-03-45HB24	23 ¹ /8	(587)	9 ⁵ /8	(244)	135/8	(346)
4	(101)	(Pre)-04-45HB24	23 ¹ / ₂	(597)	9 ³ / ₄	(248)	133/4	(349)
6	(152)	(Pre)-06-45HB24	24 ¹ /8	(613)	10	(254)	14 ¹ /8	(359)
3	(76)	(Pre)-03-45HB36	315/8	(803)	13 ¹ /8	(334)	185/8	(473)
4	(101)	(Pre)-04-45HB36	32	(813)	13 ¹ /4	(337)	18 ³ /4	(476)
6	(152)	(Pre)-06-45HB36	32 ³ /4	(832)	13 ¹ / ₂	(343)	19 ¹ /8	(486)
3	(76)	(Pre)-03-45HB48	40 ¹ /8	(1019)	16 ⁵ /8	(422)	23 ¹ / ₂	(597)
3) 4	(101)	(Pre)-04-45HB48	40 ¹ / ₂	(1029)	16 ³ /4	(425)	23 ³ /4	(603)
6	(152)	(Pre)-06-45HB48	41 ¹ /8	(1045)	17	(432)	24 ¹ /8	(613)
				30° H	lorizo	ntal Be	end	
3	(76)	(Pre)-03-30HB12	12 ³ /8	(314)	31/4	(83)	6 ⁵ /8	(168)
4	(101)	(Pre)-04-30HB12	12 ⁵ /8	(321)	3 ³ /8	(86)	6 ³ / ₄	(171)
6	(152)	(Pre)-06-30HB12	13 ¹ /8	(334)	3 ¹ / ₂	(89)	7	(178)
3	(76)	(Pre)-03-30HB24	18 ³ /8	(467)	47/8	(124)	9 ⁷ /8	(251)
4	(101)	(Pre)-04-30HB24	18 ⁵ /8	(473)	5	(127)	10	(254)
6	(152)	(Pre)-06-30HB24	19 ¹ /8	(486)	5 ¹ /8	(130)	10 ¹ /4	(260)
3	(76)	(Pre)-03-30HB36	24 ³ /8	(619)	6 ¹ / ₂	(165)	13	(330)
4	(101)	(Pre)-04-30HB36	24 ⁵ /8	(626)	6 ⁵ /8	(168)	13 ¹ /8	(334)
6	(152)	(Pre)-06-30HB36	25 ¹ /8	(638)	63/4	(171)	13 ¹ /2	(343)
3	(76)	(Pre)-03-30HB48	30 ³ /8	(772)	8 ¹ /8	(207)	16 ¹ /4	(413)
3) 4	(101)	(Pre)-04-30HB48	305/8	(778)	8 ¹ / ₄	(210)	16 ³ /8	(416)
6	(152)	(Pre)-06-30HB48	31 ¹ /8	(791)	8 ³ /8	(213)	16 ⁵ /8	(422)
	3 4 6 33 4 6 33 4 6 33 4 6 33 4 6 33 4 6 33 4 6 33 4 6 33 4 6 33 4 6 33 4	4 (101) 6 (152) 3 (76) 4 (101) 6 (152) 3 (76) 4 (101) 6 (152) 3 (76) 4 (101) 6 (152) 3 (76) 4 (101) 6 (152) 3 (76) 4 (101) 6 (152) 3 (76) 4 (101) 6 (152) 3 (76) 4 (101) 6 (152) 3 (76) 4 (101) 6 (152) 3 (76) 4 (101) 6 (152) 3 (76) 4 (101) 6 (152) 3 (76) 4 (101) 6 (152) 3 (76)	4 (101) (Pre)-04-45HB12 6 (152) (Pre)-03-45HB12 3 (76) (Pre)-03-45HB24 4 (101) (Pre)-04-45HB24 6 (152) (Pre)-06-45HB24 3 (76) (Pre)-03-45HB36 4 (101) (Pre)-03-45HB36 4 (101) (Pre)-03-45HB36 6 (152) (Pre)-03-45HB36 6 (152) (Pre)-03-45HB48 6 (152) (Pre)-03-45HB48 6 (152) (Pre)-04-45HB48 6 (152) (Pre)-04-45HB48 6 (152) (Pre)-04-30HB12 6 (152) (Pre)-03-30HB12 3 (76) (Pre)-03-30HB24 4 (101) (Pre)-03-30HB24 3 (76) (Pre)-03-30HB36 3 (76) (Pre)-03-30HB36 4 (101) (Pre)-03-30HB36 5 (4 (101) (Pre)-03-30HB36 6 (152) (Pre)-03-30HB36 6 (152) (Pre)-03-30HB36 <td>1 4 (101) (Pre)-04-45HB12 15 6 (152) (Pre)-06-45HB12 15³/4 3 (76) (Pre)-03-45HB24 23¹/2 6 (152) (Pre)-04-45HB24 23¹/2 6 (152) (Pre)-04-45HB24 23¹/2 6 (152) (Pre)-04-45HB24 24¹/8 3 (76) (Pre)-03-45HB36 31⁵/8 4 (101) (Pre)-04-45HB36 32³/4 3 (76) (Pre)-03-45HB48 40¹/2 6 (152) (Pre)-04-45HB48 40¹/2 6 (152) (Pre)-04-30HB12 12⁵/8 6 (152) (Pre)-03-30HB12 12³/8 1 4 (101) (Pre)-04-30HB12 13¹/8 3 (76) (Pre)-03-30HB12 13¹/8 3 (76) (Pre)-03-30HB24 18⁵/8 6 (152) (Pre)-03-30HB24 18⁵/8 6 (152) (Pre)-03-30HB36 24³/8 4 (101) (Pre)-03-30HB36 24⁵/8</td> <td>1 4 (101) (Pre)-04-45HB12 15 (381) 6 (152) (Pre)-06-45HB12 15³/4 (400) 3 (76) (Pre)-03-45HB24 23¹/₈ (587) 4 (101) (Pre)-04-45HB24 23¹/₂ (597) 6 (152) (Pre)-04-45HB24 23¹/₂ (597) 6 (152) (Pre)-04-45HB24 24¹/₈ (613) 3 (76) (Pre)-03-45HB36 31⁵/₈ (803) 4 (101) (Pre)-04-45HB36 32² (813) 6 (152) (Pre)-03-45HB48 40¹/₈ (1019) 4 (101) (Pre)-04-45HB48 40¹/₈ (1019) 4 (101) (Pre)-04-45HB48 40¹/₂ (1029) 6 (152) (Pre)-04-30HB12 12³/₈ (314) 1 4 (101) (Pre)-04-30HB12 12³/₈ (314) 1 4 (101) (Pre)-03-30HB12 13¹/₈ (334) 3 (76) (Pre)-03-30HB24 18³/₈ (467)<!--</td--><td>1 4 (101) (Pre)-04-45HB12 15 (381) 6¹/4 6 (152) (Pre)-06-45HB12 15³/4 (400) 6¹/2 3 (76) (Pre)-03-45HB24 23¹/8 (587) 9⁵/8 4 (101) (Pre)-03-45HB24 23¹/2 (597) 9³/4 6 (152) (Pre)-04-45HB24 24¹/8 (613) 10 3 (76) (Pre)-03-45HB36 31⁵/8 (803) 13¹/8 4 (101) (Pre)-04-45HB36 32² (813) 13¹/4 6 (152) (Pre)-03-45HB48 40¹/8 (1019) 16⁵/8 3 (76) (Pre)-03-45HB48 40¹/2 (1029) 16³/4 6 (152) (Pre)-04-45HB48 40¹/2 (1029) 16³/4 6 (152) (Pre)-04-30HB12 12⁵/8 (321) 3³/8 7 3 (76) (Pre)-03-30HB12 12⁵/8 (321) 3³/8 6 (152) (Pre)-03-30HB24 18³/8 (467) 4⁷/8 <</td><td>1 4 (101) (Pre)-04-45HB12 15 (381) 6¹/₄ (159) 6 (152) (Pre)-06-45HB12 15³/₄ (400) 6¹/₂ (165) 3 (76) (Pre)-03-45HB24 23¹/₈ (587) 9⁵/₈ (244) 4 (101) (Pre)-04-45HB24 23¹/₂ (597) 9³/₄ (248) 6 (152) (Pre)-04-45HB24 24¹/₈ (613) 10 (254) 3 (76) (Pre)-03-45HB36 31⁵/₈ (803) 13¹/₈ (334) 6 (152) (Pre)-04-45HB36 32²/₄ (822) 13¹/₂ (337) 6 (152) (Pre)-03-45HB48 40¹/₂ (1019) 16⁵/₈ (422) 3 (76) (Pre)-04-45HB48 40¹/₂ (1029) 16³/₄ (425) 6 (152) (Pre)-04-45HB48 40¹/₂ (1029) 16³/₄ (425) 6 (152) (Pre)-04-30HB12 12³/₈ (314) 3¹/₄ (839) 3 (76)</td><td>1 4 (101) (Pre)-04-45HB12 15 (381) 6¹/₄ (159) 8⁷/₈ 6 (152) (Pre)-06-45HB12 15³/₄ (400) 6¹/₂ (165) 9¹/₄ 3 (76) (Pre)-03-45HB24 23¹/₈ (587) 9⁵/₈ (244) 13⁵/₈ 4 (101) (Pre)-04-45HB24 23¹/₂ (597) 9³/₄ (248) 13³/₄ 6 (152) (Pre)-06-45HB24 24¹/₈ (613) 10 (254) 14¹/₈ 3 (76) (Pre)-04-45HB36 31⁵/₈ (803) 13¹/₄ (337) 18³/₄ 6 (152) (Pre)-04-45HB36 32³/₄ (832) 13¹/₄ (337) 18³/₄ 7 3 (76) (Pre)-03-45HB48 40¹/₂ (102) 16³/₄ (422) 23¹/₂ 3 (76) (Pre)-04-45HB48 40¹/₂ (102) 16³/₄ (422) 23¹/₂ 6 (152) (Pre)-04-30HB12 12³/₈ (314) 3¹/₄ (830)</td></td>	1 4 (101) (Pre)-04-45HB12 15 6 (152) (Pre)-06-45HB12 15 ³ /4 3 (76) (Pre)-03-45HB24 23 ¹ /2 6 (152) (Pre)-04-45HB24 23 ¹ /2 6 (152) (Pre)-04-45HB24 23 ¹ /2 6 (152) (Pre)-04-45HB24 24 ¹ /8 3 (76) (Pre)-03-45HB36 31 ⁵ /8 4 (101) (Pre)-04-45HB36 32 ³ /4 3 (76) (Pre)-03-45HB48 40 ¹ /2 6 (152) (Pre)-04-45HB48 40 ¹ /2 6 (152) (Pre)-04-30HB12 12 ⁵ /8 6 (152) (Pre)-03-30HB12 12 ³ /8 1 4 (101) (Pre)-04-30HB12 13 ¹ /8 3 (76) (Pre)-03-30HB12 13 ¹ /8 3 (76) (Pre)-03-30HB24 18 ⁵ /8 6 (152) (Pre)-03-30HB24 18 ⁵ /8 6 (152) (Pre)-03-30HB36 24 ³ /8 4 (101) (Pre)-03-30HB36 24 ⁵ /8	1 4 (101) (Pre)-04-45HB12 15 (381) 6 (152) (Pre)-06-45HB12 15 ³ /4 (400) 3 (76) (Pre)-03-45HB24 23 ¹ / ₈ (587) 4 (101) (Pre)-04-45HB24 23 ¹ / ₂ (597) 6 (152) (Pre)-04-45HB24 23 ¹ / ₂ (597) 6 (152) (Pre)-04-45HB24 24 ¹ / ₈ (613) 3 (76) (Pre)-03-45HB36 31 ⁵ / ₈ (803) 4 (101) (Pre)-04-45HB36 32 ² (813) 6 (152) (Pre)-03-45HB48 40 ¹ / ₈ (1019) 4 (101) (Pre)-04-45HB48 40 ¹ / ₈ (1019) 4 (101) (Pre)-04-45HB48 40 ¹ / ₂ (1029) 6 (152) (Pre)-04-30HB12 12 ³ / ₈ (314) 1 4 (101) (Pre)-04-30HB12 12 ³ / ₈ (314) 1 4 (101) (Pre)-03-30HB12 13 ¹ / ₈ (334) 3 (76) (Pre)-03-30HB24 18 ³ / ₈ (467) </td <td>1 4 (101) (Pre)-04-45HB12 15 (381) 6¹/4 6 (152) (Pre)-06-45HB12 15³/4 (400) 6¹/2 3 (76) (Pre)-03-45HB24 23¹/8 (587) 9⁵/8 4 (101) (Pre)-03-45HB24 23¹/2 (597) 9³/4 6 (152) (Pre)-04-45HB24 24¹/8 (613) 10 3 (76) (Pre)-03-45HB36 31⁵/8 (803) 13¹/8 4 (101) (Pre)-04-45HB36 32² (813) 13¹/4 6 (152) (Pre)-03-45HB48 40¹/8 (1019) 16⁵/8 3 (76) (Pre)-03-45HB48 40¹/2 (1029) 16³/4 6 (152) (Pre)-04-45HB48 40¹/2 (1029) 16³/4 6 (152) (Pre)-04-30HB12 12⁵/8 (321) 3³/8 7 3 (76) (Pre)-03-30HB12 12⁵/8 (321) 3³/8 6 (152) (Pre)-03-30HB24 18³/8 (467) 4⁷/8 <</td> <td>1 4 (101) (Pre)-04-45HB12 15 (381) 6¹/₄ (159) 6 (152) (Pre)-06-45HB12 15³/₄ (400) 6¹/₂ (165) 3 (76) (Pre)-03-45HB24 23¹/₈ (587) 9⁵/₈ (244) 4 (101) (Pre)-04-45HB24 23¹/₂ (597) 9³/₄ (248) 6 (152) (Pre)-04-45HB24 24¹/₈ (613) 10 (254) 3 (76) (Pre)-03-45HB36 31⁵/₈ (803) 13¹/₈ (334) 6 (152) (Pre)-04-45HB36 32²/₄ (822) 13¹/₂ (337) 6 (152) (Pre)-03-45HB48 40¹/₂ (1019) 16⁵/₈ (422) 3 (76) (Pre)-04-45HB48 40¹/₂ (1029) 16³/₄ (425) 6 (152) (Pre)-04-45HB48 40¹/₂ (1029) 16³/₄ (425) 6 (152) (Pre)-04-30HB12 12³/₈ (314) 3¹/₄ (839) 3 (76)</td> <td>1 4 (101) (Pre)-04-45HB12 15 (381) 6¹/₄ (159) 8⁷/₈ 6 (152) (Pre)-06-45HB12 15³/₄ (400) 6¹/₂ (165) 9¹/₄ 3 (76) (Pre)-03-45HB24 23¹/₈ (587) 9⁵/₈ (244) 13⁵/₈ 4 (101) (Pre)-04-45HB24 23¹/₂ (597) 9³/₄ (248) 13³/₄ 6 (152) (Pre)-06-45HB24 24¹/₈ (613) 10 (254) 14¹/₈ 3 (76) (Pre)-04-45HB36 31⁵/₈ (803) 13¹/₄ (337) 18³/₄ 6 (152) (Pre)-04-45HB36 32³/₄ (832) 13¹/₄ (337) 18³/₄ 7 3 (76) (Pre)-03-45HB48 40¹/₂ (102) 16³/₄ (422) 23¹/₂ 3 (76) (Pre)-04-45HB48 40¹/₂ (102) 16³/₄ (422) 23¹/₂ 6 (152) (Pre)-04-30HB12 12³/₈ (314) 3¹/₄ (830)</td>	1 4 (101) (Pre)-04-45HB12 15 (381) 6 ¹ /4 6 (152) (Pre)-06-45HB12 15 ³ /4 (400) 6 ¹ /2 3 (76) (Pre)-03-45HB24 23 ¹ /8 (587) 9 ⁵ /8 4 (101) (Pre)-03-45HB24 23 ¹ /2 (597) 9 ³ /4 6 (152) (Pre)-04-45HB24 24 ¹ /8 (613) 10 3 (76) (Pre)-03-45HB36 31 ⁵ /8 (803) 13 ¹ /8 4 (101) (Pre)-04-45HB36 32 ² (813) 13 ¹ /4 6 (152) (Pre)-03-45HB48 40 ¹ /8 (1019) 16 ⁵ /8 3 (76) (Pre)-03-45HB48 40 ¹ /2 (1029) 16 ³ /4 6 (152) (Pre)-04-45HB48 40 ¹ /2 (1029) 16 ³ /4 6 (152) (Pre)-04-30HB12 12 ⁵ /8 (321) 3 ³ /8 7 3 (76) (Pre)-03-30HB12 12 ⁵ /8 (321) 3 ³ /8 6 (152) (Pre)-03-30HB24 18 ³ /8 (467) 4 ⁷ /8 <	1 4 (101) (Pre)-04-45HB12 15 (381) 6 ¹ / ₄ (159) 6 (152) (Pre)-06-45HB12 15 ³ / ₄ (400) 6 ¹ / ₂ (165) 3 (76) (Pre)-03-45HB24 23 ¹ / ₈ (587) 9 ⁵ / ₈ (244) 4 (101) (Pre)-04-45HB24 23 ¹ / ₂ (597) 9 ³ / ₄ (248) 6 (152) (Pre)-04-45HB24 24 ¹ / ₈ (613) 10 (254) 3 (76) (Pre)-03-45HB36 31 ⁵ / ₈ (803) 13 ¹ / ₈ (334) 6 (152) (Pre)-04-45HB36 32 ² / ₄ (822) 13 ¹ / ₂ (337) 6 (152) (Pre)-03-45HB48 40 ¹ / ₂ (1019) 16 ⁵ / ₈ (422) 3 (76) (Pre)-04-45HB48 40 ¹ / ₂ (1029) 16 ³ / ₄ (425) 6 (152) (Pre)-04-45HB48 40 ¹ / ₂ (1029) 16 ³ / ₄ (425) 6 (152) (Pre)-04-30HB12 12 ³ / ₈ (314) 3 ¹ / ₄ (839) 3 (76)	1 4 (101) (Pre)-04-45HB12 15 (381) 6 ¹ / ₄ (159) 8 ⁷ / ₈ 6 (152) (Pre)-06-45HB12 15 ³ / ₄ (400) 6 ¹ / ₂ (165) 9 ¹ / ₄ 3 (76) (Pre)-03-45HB24 23 ¹ / ₈ (587) 9 ⁵ / ₈ (244) 13 ⁵ / ₈ 4 (101) (Pre)-04-45HB24 23 ¹ / ₂ (597) 9 ³ / ₄ (248) 13 ³ / ₄ 6 (152) (Pre)-06-45HB24 24 ¹ / ₈ (613) 10 (254) 14 ¹ / ₈ 3 (76) (Pre)-04-45HB36 31 ⁵ / ₈ (803) 13 ¹ / ₄ (337) 18 ³ / ₄ 6 (152) (Pre)-04-45HB36 32 ³ / ₄ (832) 13 ¹ / ₄ (337) 18 ³ / ₄ 7 3 (76) (Pre)-03-45HB48 40 ¹ / ₂ (102) 16 ³ / ₄ (422) 23 ¹ / ₂ 3 (76) (Pre)-04-45HB48 40 ¹ / ₂ (102) 16 ³ / ₄ (422) 23 ¹ / ₂ 6 (152) (Pre)-04-30HB12 12 ³ / ₈ (314) 3 ¹ / ₄ (830)

(Pre) See page E-10 for catalog number prefix.

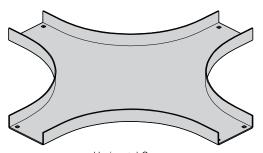

All dimensions in shaded areas are millimeters unless otherwise specified.


Horizontal Tee (HT)

2 splice plates with hardware included.

Bend Radius	Tray Width	Horizontal Tee Dimensions						
R in. (mm)	in. (mm)	Catalog No.	A in. (mm)	B in. (mm)				
	3 (76)	(Pre)-03-HT12	16 ¹ / ₂ (419)	33 (838)				
12 (305)	4 (101)	(Pre)-04-HT12	17 (432)	34 (864)				
	6 (152)	(Pre)-06-HT12	18 (457)	36 (914)				
	3 (76)	(Pre)-03-HT24	28 ¹ / ₂ (723)	57 (1448)				
24 (609)	4 (101)	(Pre)-04-HT24	29 (737)	58 (1473)				
	6 (152)	(Pre)-06-HT24	30 (762)	60 (1524)				
	3 (76)	(Pre)-03-HT36	401/2 (1029)	81 (2057)				
36 (915)	4 (101)	(Pre)-04-HT36	41 (1041)	82 (2083)				
	6 (152)	(Pre)-06-HT36	42 (1067)	84 (2134)				
	3 (76)	(Pre)-03-HT48	52 ¹ / ₂ (1334)	105 (2667)				
48 (1218)	4 (101)	(Pre)-04-HT48	53 (1346)	106 (2692)				
	6 (152)	(Pre)-06-HT48	54 (1372)	108 (2743)				

(Pre) See page E-10 for catalog number prefix.

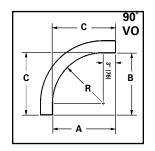


Horizontal Cross (HX)

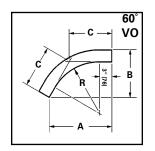
3 splice plates with hardware included.

Bend Radius	Tray Width	Horizontal Cross Dimensions						
R in. (mm)	in. (mm)	Catalog No.	A in. (mm)	B in. (mm)				
	3 (76)	(Pre)-03-HX12	16 ¹ / ₂ (419)	33 (838)				
12 (305)	4 (101)	(Pre)-04-HX12	17 (432)	34 (864)				
	6 (152)	(Pre)-06-HX12	18 (457)	36 (914)				
	3 (76)	(Pre)-03-HX24	281/2 (723)	57 (1448)				
24 (609)	4 (101)	(Pre)-04-HX24	29 (737)	58 (1473)				
	6 (152)	(Pre)-06-HX24	30 (762)	60 (1524)				
	3 (76)	(Pre)-03-HX36	401/2 (1029)	81 (2057)				
36 (915)	4 (101)	(Pre)-04-HX36	41 (1041)	82 (2083)				
	6 (152)	(Pre)-06-HX36	42 (1067)	84 (2134)				
	3 (76)	(Pre)-03-HX48	52 ¹ / ₂ (1334)	105 (2667)				
48 (1218)	4 (101)	(Pre)-04-HX48	53 (1346)	106 (2692)				
	6 (152)	(Pre)-06-HX48	54 (1372)	108 (2743)				

(Pre) See page E-10 for catalog number prefix.


Horizontal Cross Non-Ventilated Horizontal Cross

Vertical Outside Bends 90°, 60° (VO) 1 splice plate with hardware included.



90° Vertical Outside Bend Ventilated Vertical Outside Bend

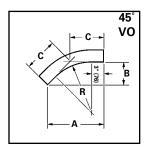
60° Vertical Outside Bend Non-Ventilated Vertical Outside Bend

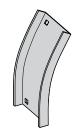
Bend Radius		Γray /idth	90° '	90° Vertical Outside Bend Dimensions					
R in. (mm)	in.	(mm)	Catalog No.	in.	գ (mm)	in.	B (mm)	in.	C (mm)
	3	(76)	(Pre)-03-90VO12	15	(381)	15	(381)	15	(381)
12 (305)	4	(101)	(Pre)-04-90VO12	15	(381)	15	(381)	15	(381)
	6	(152)	(Pre)-06-90VO12	15	(381)	15	(381)	15	(381)
	3	(76)	(Pre)-03-90VO24	27	(686)	27	(686)	27	(686)
24 (609)	4	(101)	(Pre)-04-90VO24	27	(686)	27	(686)	27	(686)
	6	(152)	(Pre)-06-90VO24	27	(686)	27	(686)	27	(686)
	3	(76)	(Pre)-03-90VO36	39	(991)	39	(991)	39	(991)
36 (915)	4	(101)	(Pre)-04-90VO36	39	(991)	39	(991)	39	(991)
	6	(152)	(Pre)-06-90VO36	39	(991)	39	(991)	39	(991)
	3	(76)	(Pre)-03-90VO48	51	(1295)	51	(1295)	51	(1295)
48 (1218)	4	(101)	(Pre)-04-90VO48	51	(1295)	51	(1295)	51	(1295)
	6	(152)	(Pre)-06-90VO48	51	(1295)	51	(1295)	51	(1295)
				60° Vertical Outside Bend					
	3	(76)	(Pre)-03-60VO12	14 ⁷ /8	(378)	8 ¹ / ₂	(216)	9 ⁷ /8	(251)
12 (305)	4	(101)	(Pre)-04-60VO12	14 ⁷ /8	(378)	8 ¹ / ₂	(216)	9 ⁷ /8	(251)
	6	(152)	(Pre)-06-60VO12	14 ⁷ /8	(378)	8 ¹ / ₂	(216)	9 ⁷ /8	(251)
	3	(76)	(Pre)-03-60VO24	25 ³ /8	(645)	145/8	(372)	16 ⁷ /8	(428)
24 (609)	4	(101)	(Pre)-04-60VO24	25 ³ /8	(645)	14 ⁵ /8	(372)	16 ⁷ /8	(428)
	6	(152)	(Pre)-06-60VO24	25 ³ /8	(645)	145/8	(372)	16 ⁷ /8	(428)
	3	(76)	(Pre)-03-60VO36	35 ³ /8	(905)	205/8	(524)	23 ³ /4	(603)
36 (915)	4	(101)	(Pre)-04-60VO36	35 ³ /8	(905)	205/8	(524)	23³/ 4	(603)
	6	(152)	(Pre)-06-60VO36	35 ³ /8	(905)	205/8	(524)	233/4	(603)
	3	(76)	(Pre)-03-60VO48	46 ¹ /8	(1172)	265/8	(676)	303/4	(781)
48 (1218)	4	(101)	(Pre)-04-60VO48	46 ¹ /8	(1172)	265/8	(676)	303/4	(781)
	6	(152)	(Pre)-06-60VO48	46 ¹ /8	(1172)	265/8	(676)	303/4	(781)

(Pre) See page E-10 for catalog number prefix.

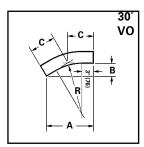
All dimensions in shaded areas are millimeters unless otherwise specified.

B-Line series Cable Tray Systems

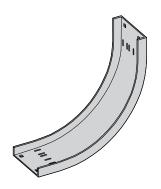

Vertical Outside Bends 45°, 30° (VO) 1 splice plate with hardware included.

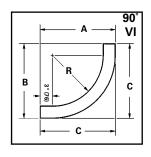

(Pre) See page E-10 for catalog number prefix.

_	end dius		ray /idth	45°	Vertica	l Outs		nd nsions	;	
	R			Catalog No.	ļ	۱		В	(0
in.	(mm)	in.	(mm)	-	in.	(mm)	in.	(mm)	in.	(mm)
		3	(76)	(Pre)-03-45VO12	135/8	(346)	55/8	(143)	8	(203)
12	(305)	4	(101)	(Pre)-04-45VO12	135/8	(346)	55/8	(143)	8	(203)
		6	(152)	(Pre)-06-45VO12	135/8	(346)	5 ⁵ /8	(143)	8	(203)
		3	(76)	(Pre)-03-45VO24	22 ¹ / ₄	(565)	9 ¹ / ₄	(235)	13	(330)
24	(609)	4	(101)	(Pre)-04-45VO24	22 ¹ /4	(565)	9 ¹ / ₄	(235)	13	(330)
		6	(152)	(Pre)-06-45VO24	22 ¹ /4	(565)	9 ¹ / ₄	(235)	13	(330)
		3	(76)	(Pre)-03-45VO36	30 ¹ / ₂	(775)	12 ⁵ /8	(321)	17 ⁷ /8	(454)
36	(915)	4	(101)	(Pre)-04-45VO36	30 ¹ / ₂	(775)	12 ⁵ /8	(321)	17 ⁷ /8	(454)
		6	(152)	(Pre)-06-45VO36	30 ¹ / ₂	(775)	12 ⁵ /8	(321)	17 ⁷ /8	(454)
		3	(76)	(Pre)-03-45VO48	39	(991)	16 ¹ /8	(410)	22 ⁷ /8	(581)
48	(1218)	4	(101)	(Pre)-04-45VO48	39	(991)	16 ¹ /8	(410)	22 ⁷ /8	(581)
		6	(152)	(Pre)-06-45VO48	39	(991)	16 ¹ /8	(410)	22 ⁷ /8	(581)
					30	° Verti	cal Ou	ıtside l	Bend	
		3	(76)	(Pre)-03-30VO12	11 ⁵ /8	(296)	3 ¹ /8	(79)	6 ¹ /4	(158)
12	(305)	4	(101)	(Pre)-04-30VO12	11 ⁵ /8	(296)	3 ¹ /8	(79)	6 ¹ /4	(158)
		6	(152)	(Pre)-06-30VO12	11 ⁵ /8	(296)	3 ¹ /8	(79)	6 ¹ /4	(158)
		3	(76)	(Pre)-03-30VO24	17 ¹ /2	(445)	4 ⁷ /8	(124)	9 ³ /8	(238)
24	(609)	4	(101)	(Pre)-04-30VO24	17 ¹ /2	(445)	4 ⁷ /8	(124)	9 ³ /8	(238)
		6	(152)	(Pre)-06-30VO24	17 ¹ /2	(445)	4 ⁷ /8	(124)	9 ³ /8	(238)
		3	(76)	(Pre)-03-30VO36	23 ¹ /2	(597)	6 ³ /8	(162)	12 ⁵ /8	(321)
36	(915)	4	(101)	(Pre)-04-30VO36	23 ¹ / ₂	(597)	6 ³ /8	(162)	12 ⁵ /8	(321)
		6	(152)	(Pre)-06-30VO36	23 ¹ / ₂	(597)	6 ³ /8	(162)	12 ⁵ /8	(321)
		3	(76)	(Pre)-03-30VO48	29 ⁵ /8	(753)	8	(203)	15 ⁷ /8	(403)
48	(1218)	4	(101)	(Pre)-04-30VO48	295/8	(753)	8	(203)	15 ⁷ /8	(403)
		6	(152)	(Pre)-06-30VO48	295/8	(753)	8	(203)	15 ⁷ /8	(403)



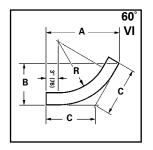
45° Vertical Outside Bend Ventilated Vertical Outside Bend


30° Vertical Outside Bend Non-Ventilated Vertical Outside Bend


Cable Channel

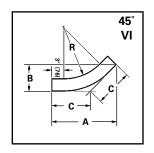
All dimensions in shaded areas are millimeters unless otherwise specified.

Vertical Inside Bends 90°, 60° (VI) 1 splice plate with hardware included.



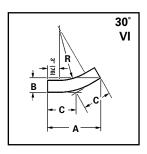
90° Vertical Inside Bend Ventilated Vertical Inside Bend

60° Vertical Inside Bend Non-Ventilated Vertical Inside Bend


Bend Radius		Γray /idth	90°	90° Vertical Inside Bend Dimensions								
R			Catalog No.	-	4		В		С			
in. (mm)	in.	(mm)		in.	(mm)	in.	(mm)	in.	(mm)			
	3	(76)	(Pre)-03-90VI12	16 ¹ /4	(413)	16 ¹ /4	(413)	16 ¹ /4	(413)			
12 (305) 4	(101)	(Pre)-04-90VI12	16 ³ /4	(425)	16 ³ /4	425)	16 ³ /4	425)			
	6	(152)	(Pre)-06-90VI12	16 ³ /4	(425)	16 ³ /4	425)	16 ³ /4	425)			
	3	(76)	(Pre)-03-90VI24	28 ¹ /4	(718)	28 ¹ / ₄	(718)	28¹/ ₄	(718)			
24 (609)	4	(101)	(Pre)-04-90VI24	28 ³ /4	(730)	28 ³ /4	(730)	28³/ 4	(730)			
	6	(152)	(Pre)-06-90VI24	28 ³ /4	(730)	28³/ 4	(730)	28³/ 4	(730)			
	3	(76)	(Pre)-03-90VI36	40 ¹ / ₄	(1024)	401/4	(1024)	40 ¹ / ₄	(1024			
36 (915)	4	(101)	(Pre)-04-90VI36	403/4	(1035)	403/4	(1035)	40 ³ /4	(1035			
	6	(152)	(Pre)-06-90VI36	40 ³ /4	(1035)	403/4	(1035)	403/4	(1035			
	3	(76)	(Pre)-03-90VI48	52 ¹ /4	(1327)	52 ¹ /4	(1327)	52 ¹ /4	(1327			
48 (1218	3) 4	(101)	(Pre)-04-90VI48	52 ³ /4	(1340)	52 ³ /4	(1340)	52 ³ /4	(1340			
	6	(152)	(Pre)-06-90VI48	52 ³ /4	(1340)	52 ³ /4	(1340)	52 ³ /4	(1340			
				(60° Ver	tical l	nside B	end				
	3	(76)	(Pre)-03-60VI12	16	(406)	9 ¹ / ₄	(235)	105/8	(270)			
12 (305)	4	(101)	(Pre)-04-60VI12	16 ¹ /2	(419)	9 ¹ / ₂	(241)	11	(280)			
	6	(152)	(Pre)-06-60VI12	16 ¹ /2	(419)	9 ¹ / ₂	(241)	11	(280)			
	3	(76)	(Pre)-03-60VI24	26 ¹ /2	(673)	15 ¹ /4	(387)	17 ⁵ /8	(448)			
24 (609)	4	(101)	(Pre)-04-60VI24	26 ⁷ /8	(683)	15 ¹ /2	(394)	17 ⁷ /8	(454)			
	6	(152)	(Pre)-06-60VI24	26 ⁷ /8	(683)	15 ¹ /2	(394)	17 ⁷ /8	(454)			
	3	(76)	(Pre)-03-60VI36	36 ³ /4	(933)	21 ¹ / ₄	(540)	24 ¹ / ₂	(622)			
36 (915)	4	(101)	(Pre)-04-60VI36	37 ¹ /8	(943)	21 ³ /8	(543)	24 ³ /4	(629)			
	6	(152)	(Pre)-06-60VI36	37 ¹ /8	(943)	21 ³ /8	(543)	24 ³ /4	(629)			
	3	(76)	(Pre)-03-60VI48	47 ¹ /8	(1197)	27 ¹ /8	(689)	31 ³ /8	(797)			
48 (1218) 4	(101)	(Pre)-04-60VI48	47 ⁵ /8	(1210)	27 ¹ / ₂	(699)	31 ³ /4	(806)			
. ,	6	(152)	(Pre)-06-60VI48	47 ⁵ /8	(1210)	27 ¹ /2	(699)	31 ³ /4	(806)			

(Pre) See page E-10 for catalog number prefix.

Vertical Inside Bends 45°, 30° (VI) 1 splice plate with hardware included.


Bend	ł		Tray	45° Vertical Inside Bend								
Radiu	IS	N	/idth	Dimensions								
R				Catalog No.	-	1		B		C		
in. (m	m)	in.	(mm)		in.	(mm)	in.	(mm)	in.	(mm)		
		3	(76)	(Pre)-03-45VI12	14 ¹ / ₂	(368)	6	(152)	8 ¹ / ₂	(216)		
12 (30	25)	4	(101)	(Pre)-04-45VI12	14 ⁷ /8	(373)	6 ¹ /8	(156)	8 ³ / ₄	(222)		
		6	(152)	(Pre)-06-45VI12	14 ⁷ /8	(373)	6 ¹ /8	(156)	8 ³ / ₄	(222)		
		3	(76)	(Pre)-03-45VI24	23	(584)	9 ¹ / ₂	(241)	13 ¹ /2	(343)		
24 (60)9)	4	(101)	(Pre)-04-45VI24	23 ¹ /4	(591)	9 ⁵ /8	(245)	135/8	(346)		
		6	(152)	(Pre)-06-45VI24	23 ¹ /4	(591)	9 ⁵ /8	(245)	135/8	(346)		
		3	(76)	(Pre)-03-45VI36	31 ³ /8	(797)	13	(330)	18 ³ /8	(467)		
36 (91	5)	4	(101)	(Pre)-04-45VI36	31 ³ /4	(806)	13¹/ ₈	(334)	185/8	(473)		
		6	(152)	(Pre)-06-45VI36	31 ³ /4	(806)	13 ¹ /8	(334)	185/8	(473)		
		3	(76)	(Pre)-03-45VI48	39 ⁷ /8	(1013)	16 ¹ /2	(419)	23 ³ /8	(594)		
48 (12	18)	4	(101)	(Pre)-04-45VI48	40 ³ /8	(1026)	16 ³ /4	(425)	235/8	(600)		
		6	(152)	(Pre)-06-45VI48	40 ³ /8	(1026)	16 ³ /4	(425)	235/8	(600)		
					3	30° Ver	tical lı	nside E	lend			
		3	(76)	(Pre)-03-30VI12	12 ¹ /8	(308)	3 ¹ /8	(83)	6 ¹ /2	(165)		
12 (30)5)	4	(101)	(Pre)-04-30VI12	12 ³ /8	(314)	3 ³ /8	(86)	6 ⁵ /8	(163)		
		6	(152)	(Pre)-06-30VI12	12 ³ /8	(314)	3 ³ /8	(86)	6 ⁵ /8	(163)		
		3	(76)	(Pre)-03-30VI24	18¹/ ₈	(461)	4 ³ /4	(121)	9 ³ / ₄	(248)		
24 (60)9)	4	(101)	(Pre)-04-30VI24	18³/8	(467)	4 ⁷ /8	(124)	9 ⁷ /8	(251)		
		6	(152)	(Pre)-06-30VI24	18³/8	(467)	47/8	(124)	9 ⁷ /8	(251)		
		3	(76)	(Pre)-03-30VI36	24 ¹ / ₄	(616)	6 ¹ /2	(165)	13	(330)		
36 (91	5)	4	(101)	(Pre)-04-30VI36	24 ¹ / ₂	(622)	6 ⁵ /8	(168)	13 ¹ /8	(334)		
		6	(152)	(Pre)-06-30VI36	24 ¹ / ₂	(622)	6 ⁵ /8	(168)	13 ¹ /8	(334)		
		3	(76)	(Pre)-03-30VI48	30 ³ /8	(772)	8 ¹ /8	(207)	16 ¹ /4	(413)		
48 (12	18)	4	(101)	(Pre)-04-30VI48	305/8	(778)	8 ¹ /4	(210)	16 ³ /8	(416)		
	6	(152)	(Pre)-06-30VI48	305/8	(778)	8 ¹ /4	(210)	16 ³ /8	(416)			

45° Vertical Inside Bend Ventilated Vertical Inside Bend

30° Vertical Inside Bend Non-Ventilated Vertical Inside Bend

(Pre) See page E-10 for catalog number prefix.

All dimensions in shaded areas are millimeters unless otherwise specified.

Section 1- Acceptable Manufacturers

1.01 Manufacturer: Subject to compliance with these specifications, B-Line series channel cable tray systems shall be as manufactured by Eaton.

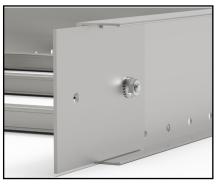
Section 2- Selection and Components

- 2.01 General: Except as otherwise indicated, provide ventilated metal channel cable trays, of types, classes and sizes indicated with splice connectors, fittings and all other necessary accessories for a complete system. Provide channel cable tray with rounded edges and smooth surfaces in compliance with applicable standards, and with the following additional requirements.
- 2.02 Materials and finishes: Material and finishes specifications for each channel cable tray are as follows:
 - 1. Aluminum: Extruded components shall be made from Aluminum Association Alloy 6063. All fabricated parts shall be made from Aluminum Association Alloy 5052.
 - 2. Pre-Galvanized Steel: Straight sections and fittings shall be made from structural quality mill galvanized 14 gauge steel meeting the properties of ASTM A653SS, coating designation G90.
 - Hot Dip Galvanized Steel: Straight sections and fittings shall be made from 14 gauge structural quality steel meeting the minimum mechanical properties of ASTM A1011 SS, Grade 33 and shall be hot-dip galvanized after fabrication in accordance with ASTM A123. All hot dip galvanized after fabrication cable trays must be returned to point of manufacture after coating for inspection, conditioning and labeling.
 - 4. Stainless Steel: Straight sections and fittings shall be AISI Type [304] [316].
- 2.03 Channel cable tray straight sections shall be constructed with ventilated flat bottom. Ventilated bottom shall be perforated with 2.25" diameter holes and have slots to facilitate the use of cable ties to secure the cables.
- 2.04 Straight sections shall be supplied in standard [12 foot] [10 foot (3 m)] lengths, except where shorter lengths are permitted to facilitate tray assembly as shown on drawings.
- 2.05 Ventilated straight sections shall have splice holes every 12 inches to simplify field modifications.
- 2.06 Channel cable tray width shall be [3] [4] [6] inches with a minimum loading depth of 1¹/4".
- 2.07 Fittings will have a minimum radius of [12] [24] [36] [48] inches.
- 2.08 Splice plates and hardware shall be included with each straight section and fitting.

KwikRail aluminum cable tray

Reduce installation time and modify to your needs

The KwikRail[™] cable tray system features an I-beam side rail splice retention groove that allows installers to easily guide and snap the splice in place with just 2 bolts. The splice retention groove holds the splice in place while maintaining structural integrity.


NEMA class 12A and 12B, the KwikRail cable tray system is ideal for cable management in commercial buildings, light industrial buildings, data centers, hospitals, healthcare facilities, university buildings, government buildings and multi-tenant buildings.

Features and benefits

- I-beam rungs for high strength to weight ratio
- Siderail splice retention groove to snap in 2-bolt splice plate to speed install while maintaining structural integrity
- Straight sections available with welded rungs or bolted rungs to allow installers to add or remove rungs* in the field
- Straight sections and fittings feature perforations along the side rail to allow for quick, easy additions or changes
- Wide range of fittings and accessories to support various cable management applications
- Add-a-rung kits allow for a rung to be added at any location along the length of the tray
- Tab-and-lock trapeze solution can save up to 75% installation time over traditional methods

Specifications and certifications

- NEMA 12A and 12B (CSA class C-3 and D-3M) load classes
- Vibration tested
- UL Classified as an electrical grounding conductor
- CSA Certified

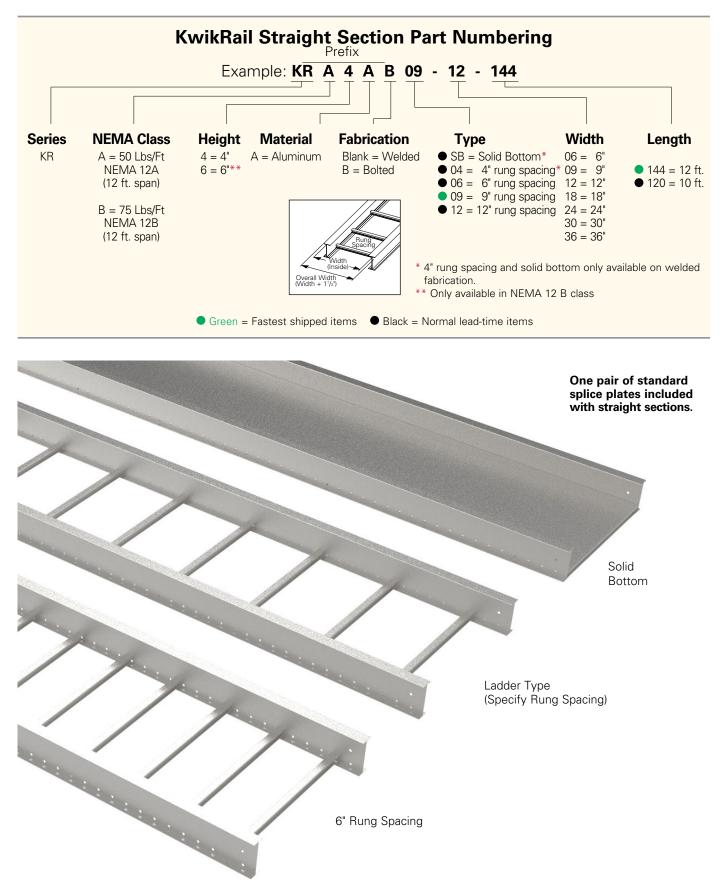
KwikRail Aluminum Cable Tray - Straight Sections

KwikRail cable tray system advantages

The KwikRail straight sections are available with welded rungs or bolted rungs to allow installers to add or remove rungs* in the field.

The straight sections and fittings feature perforations along the side rail to allow you to quickly and easily alter the system.

Plus, add-rung-kits allow you to add rung at any location along the length of the tray making cable support and adding accessories simple to achieve.


- I-beam rungs provide high strength to weight ratio
- Vibration tested
- Patented fastener holes provide
 maximum grip for fastener threads
- Innovative time saving accessories
- Fast, easy to modify tray in the field

Patent Information

U.S. Patent D361982; 5,580,014 Canada 2,137,879 UK Patent 2,285,343

*If your application requires removal of more than one (1) rung from a KwikRail straight section, please contact the B-Line series technical team. We do not recommend removing rungs from the welded system. Please contact us if you have any questions.

Straight Sections	Accessories	Covers	Fittings	Specifications
see pages KR-1 – KR-3	see pages KR-4 – KR15	see page KR-10	see pages KR16 – KR-20	see pages KR-21 – KR-22

KRA4A, KRB4A and KRB6A Straight Section Technical Data

Side Rail Dime	ensions	NEMA, CSA & UL Classifications	Span ft	Load Ibs/ft	Deflection Multiplier	Design Factors for Two Rails	Span meters	Load kg/m	Deflection Multiplier	Design Factors for Two Rails
-	1.36	NEMA: 12A	6	221	0.0016	Area = 0.80 in ²	1.8	328	0.028	Area = 5.16 cm ²
KRA4A	2.97	CSA: C-3m	8	124	0.0051	$Sx = 0.90 \text{ in}^3$	2.4	185	0.088	Sx = 14.75 cm ³
3.86		UL Cross-Sectional	10	79	0.0126	$lx = 1.79 in^4$	3.0	125	0.215	lx = 74.51 cm₄
Ł.		Area: 0.60 in ²	12	55	0.0261	1.70 m	3.7	82	0.445	

Side Rail Dimensions	NEMA, CSA & UL	Span	Load	Deflection	Design Factors	Span	Load	Deflection	Design Factors
	Classifications	^{ft}	Ibs/ft	Multiplier	for Two Rails	meters	kg/m	Multiplier	for Two Rails
KRB4A 3.88 2.95	NEMA: 12B CSA: D-3m UL Cross-Sectional Area: 0.60 in ²	8 10 12	198 127 88	0.0040 0.0097 0.0201	Area = 0.99 in ² Sx = 1.07 in ³ Ix = 2.32 in ⁴	2.4 3.0 3.7	295 195 131	0.068 0.166 0.343	Area = 6.39 cm ² Sx = 17.53 cm ³ lx = 96.57 cm ⁴

Side Rail Dimensions	NEMA, CSA & UL	Span	Load	Deflection	Design Factors	Span	Load	Deflection	Design Factors
	Classifications	ft	Ibs/ft	Multiplier	for Two Rails	meters	kg/m	Multiplier	for Two Rails
KRB6A	NEMA: 12B CSA: D-3m UL Cross-Sectional Area: 1.00 in ²	8 10 12	170 114 79	0.0015 0.0037 0.0076	Area = 1.25 in^2 Sx = 1.91 in^3 Ix = 6.16 in^4	2.4 3.0 3.7	266 179 118	0.026 0.062 0.129	Area = 8.06 cm ² Sx = 31.30 cm ³ lx = 256.40 cm ⁴

When cable trays are used in continuous spans, the deflection of the cable tray is reduced by as much as 50%. Design factors: Ix = Moment of Inertia, Sx = Section Modulus.

Values are based on simple beam tests per NEMA VE-1 (NEMA BI 50015) on 36" wide cable tray with rungs spaced on 12" centers. The published load safety factor is 1.5. To convert 1.5 safety factor to 2.0, multiply the published load by 0.75. To obtain mid-span deflection, multiply a load by the deflection multiplier. Cable tray must be supported on spans shorter than or equal to the length of the tray.

 Standard Splice Plates Furnished in pairs with 1/4" hardware. UL Classified as equipment grounding conductor. Splice plates and hardware included with straight sections and fittings. 	000000000000000000000000000000000000000	Tray Series KR_4A KRB6A _ = insert A or B	Catalog No. KR4A-SSP KR6A-SSP
 Expansion Splice Plates Furnished in pairs with ¹/₄" hardware. Bonding jumpers required on each side rail. Requires supports within 24" on both sides, per NEMA VE 2. 		Tray Series KR_4A KRB6A _ = insert A or I	Catalog No. KR4A-ESP KR6A-ESP B for class
 Step Down Splice Plates Furnished in pairs with 1/4" hardware. UL Classified as equipment grounding conductor. 		Tray Series KR_4A to KRB6/ _ = insert A or I	
 Vertical Adjustable Splice Plates Furnished in pairs with 1/4" hardware. UL Classified as equipment grounding conductor. Bonding jumpers not required. Requires supports within 24" on both sides, per NEMA VE 2. 		Tray Series KR_4A KRB6A _ = insert A or B	Catalog No. KR4A-VSP KR6A-VSP
 Horizontal Adjustable Splice Plates (Flex-Mount Furnished in pairs with ¹/4" hardware. Horizontally adjustable to 90°. Vertically adjustable to 15°. UL Classified as equipment grounding conductor. Requires supports within 24" on both sides, per NEMA VE 2. For optional rung, see page KR-14. 	ht™)	Tray Series KR_4A KRB6A _ = insert A or I	Catalog No. KR4A-FSP KR6A-FSP 3 for class
 Tray-To-Box Splice Plates Furnished in pairs with ¹/₄" hardware. 		Tray Series KR_4A KRB6A	Catalog No. KR4A-TTB KR6A-TTB

All dimensions in parentheses are millimeters unless otherwise specified.

l l

KwikRail Cable Tray

= insert A or B for class

 Offset Reducing Splice Plates Furnished in pairs with ¹/₄" hardware. 		Tray Series	Catalog No.
		KR_4A	KR4A-RSP- <mark>†</mark> r
		KRB6A	KR6A-RSP-† r
Right (Reduce		+ C = center redu S = side reduce	the following: cer r 3", 6", 9", 12", 15", 18",
Adapter Splice Plates	all all	Iray	
 Furnished in pairs with ¹/₄" hardware. 		Series	Catalog No.
• For transitioning from Redi-Rail to		KR_4A	KR4A-ASP
KwikRail.		KRB6A	KR6A-ASP
		_ = insert A or I	B for class
Frame Type Box Connector • Furnished with ¹ /4" hardware for tray		Tray Series	Catalog No.
connection.		KR_4A	KR4A-FTB-†
		KRB6A	KR6A-FTB-†
		† = Insert tray w	vidth
Bonding Jumper		Ampacity	Catalog No.
 Sold individually with ¼" hardware. UL Classified. 		1200	99-30
 Length: 14¹/2" (368mm) 			 0
Grounding Clamp		Material	Catalog No.

- Accepts #6 AWG to 250 MCM.
- UL Classified.

Eaton's B-Line series cable tray is UL[®] classified as to its suitability as an equipment grounding conductor. If a separate conductor for additional grounding capability is desired, we offer this clamp for bolting the conductor at least once to each tray section.

Conduit-to-Tray Adaptors

- For easy attachment of conduit terminating at a cable tray.
- Use on aluminum or steel cable trays.
- UL Classified.

SP: (4)

Cone	duit Size	Catalog No.
in.	(mm)	
¹ /2, ³ /4	(15, 20)	9G-1158-1/2 & 3/4
1, 1 ¹ /4	(25, 32)	9G-1158-1 & 1 ¹ /4
1 ¹ /2, 2	(40, 50)	9G-1158-11/2 & 2
21/2, 3	(65, 80)	9G-1158-21/2 & 3
31/2, 4	(90, 100)	9G-1158-31/2 & 4

Conduit Size

1/2, 3/4 (15, 20)

1, 1¹/₄ (25, 32)

in.

(mm)

Tin plated aluminum

Guide-Rite[™] Conduit-to-Tray Adaptor

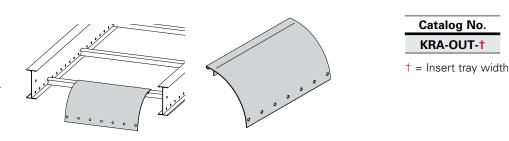
- Assemblies support 1/2", 3/4", & 1" conduit.
- Attaches to top or bottom of I-Beam side rail flange.

Patent #4958792

All dimensions in parentheses are millimeters unless otherwise specified.

9A-2130

Catalog No.

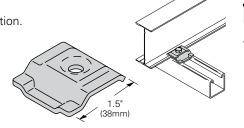

BG-8-12-W2

BG-16-W2

KwikRail Cable Tray

Drop-Out

- Snaps on to both bolted and welded rung variations .
- Provides 4" (101mm) radius.
- · Holes provided to secure cables.


Side Rail Drop-Out

- Snaps on to cable tray side rail.
- Provides 4" (101mm) radius.
- · Holes provided to secure cables.

Clamp/Guide
• Features a no-twist design.

- Each side is labeled to ensure proper installation.
- Designed for 1/4" hardware.
- Furnished in pairs with or without hardware.
- Not recommended for vertical support.

Patent No. RE35479

Catalog No. 9ZN-1204 (without hardware) 9ZN-1204NB (with hardware)

Length

(mm)

(152)

(305)

(457)

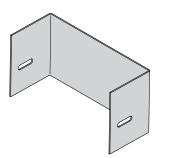
in.

6

12

18

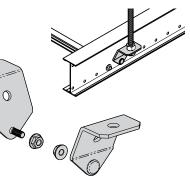
Catalog No.


KRA-SDO-06

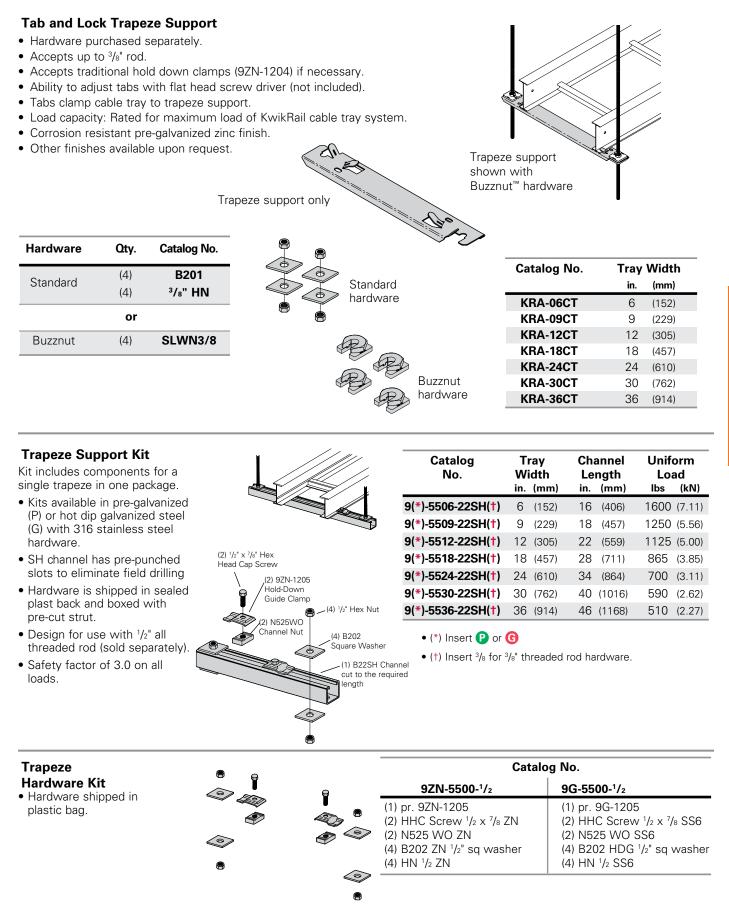
KRA-SDO-12

KRA-SDO-18

Blind End


• Furnished as one plate with 1/4" hardware.

Tray Series	Catalog No.				
KR_4A	KR4A-END-†				
KRB6A	KR6A-END-†				
t = Insert tray width					
_ = insert A or B for class					


Hanger Rod Bracket

- Furnished as pair of studded clamps with 1/4" serrated flanged lock nuts.
- Loading is 1,000 lbs. (4.45kN) per pair with safety factor of 3.
- Position ATR 3" (76mm) wider than cable tray.

Catalog No.
9(*)-R238
9(*)-R250

(*) Insert ZN option or SS4 option

All dimensions in parentheses are millimeters unless otherwise specified.

KwikRail Cable Tray

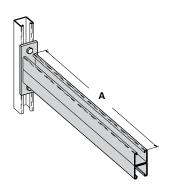
Bracket

- Finishes available: ZN, GRN, or HDG.
- Safety Load Factor 2.5.
- Bottom brace is B42 channel on B494-24 and smaller and B22 channel on B494-30 and larger.

Catalog	Unifor	m Load	Tray	Width	,	A′	Ή'
No.	lbs	(kN)	in.	(mm)	in.	(mm)	in. (mm)
B494-12	2500	(11.12)	6&9	(152 & 229)	12	(305)	83/4 (222)
B494-18	1700	(7.56)	12	(305)	18	(457)	83/4 (222)
B494-24	1300	(5.78)	18	(457)	24	(610)	83/4 (222)
B494-30	1600	(7.11)	24	(610)	30	(762)	11 ¹ / ₄ (286)
B494-36	1100	(4.89)	30	(762)	36	(914)	11 ¹ / ₄ (286)
B494-42	980	(4.36)	36	(914)	42	(1067)	16 (406)

For more dimensional data, see B-Line series Strut Systems catalog.

Cantilever Bracket

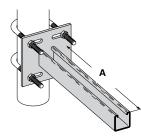

- Finishes available: ZN, GRN, HDG, SS4 or SS6.
- Safety Load Factor 2.5.

Catalog	Uniform Load		Tray	Width	,	A'
No.	lbs	(kN)	in.	(mm)	in.	(mm)
B409-12	960	(4.27)	6&9(152 & 229)	12	(305)
B409-18	640	(2.84)	12	(305)	18	(457)
B409-24	480	(2.13)	18	(457)	24	(610)

For more dimensional data, see B-Line series Strut Systems catalog.

Cantilever Bracket

- Finishes available: ZN, GRN, HDG, or SS4.
- Safety Load Factor 2.5.

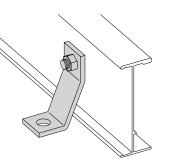


Catalog	Unifor	m Load	Tray	Width	4	Ά′
No.	lbs	(kN)	in.	(mm)	in.	(mm)
B297-12	1660	(7.38)	6&9	(152 & 229)	12	(305)
B297-18	1100	(4.89)	12	(305)	18	(457)
B297-24	835	(3.71)	18	(457)	24	(610)
B297-30	665	(2.95)	24	(610)	30	(762)
B297-36	550	(2.44)	30	(762)	36	(914)
B297-42	465	(2.06)	36	(914)	42	(1067)

For more dimensional data, see B-Line series Strut Systems catalog.

Underfloor Support (U-Bolts not included)

- Finishes available: ZN.
- Safety Load Factor 2.5.
- Order 2 properly sized U-Bolts (sold separately) for each underfloor support.

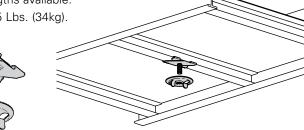


Catalog No.	Uniform Load	Tray Width	'Α'	
	lbs (kN)	in. (mm)	in. (mm)	
B409UF-12	800 (3.55)	6 & 9 (152 & 229)	12 (305)	
B409UF-21	450 (2.00)	12 & 18 (305 & 457)	21 (533)	

U-Bolt Size	Fits Pipe O.D.		
	in.	(mm)	
B501- ³ /4	.841 - 1.050	(21 - 26)	
B501-1	1.051 - 1.315	(27 - 33)	
B501-1 ¹ /4	1.316 - 1.660	(33 - 42)	
B501-1 ¹ /2	1.661 - 1.900	(42 - 48)	
B501-2	1.901 - 2.375	(48 - 60)	
B501-2 ¹ /2	2.376 - 2.875	(60 - 73)	

Heavy Duty Hold Down Bracket

- Design load is 2000 lbs/pair.
- Two bolt design.
- Sold in pairs.
- ³/₈" cable tray attachment hardware provided.
- ³/⁸" support attachment hardware **not** provided.
- · Recommended for support of vertical trays.
- (*) Insert ZN, SS4, or SS6.



Catalog No.
9(*)-1241

- Supports electrical fixtures from bottom of rung or siderails.
- Wing nut included.

flat surfaces.

- Various 1/4"-20 stud lengths available.
- Static Load Capacity: 75 Lbs. (34kg).

Catalog No.	Stud Length in. (mm)
BAX-4-16	⁵ /8 (16)
BAX-4-16-24	1 ¹ / ₂ (38)
BAX-4-16-32	2 (51)
BAX-4-16-48	3 (76)

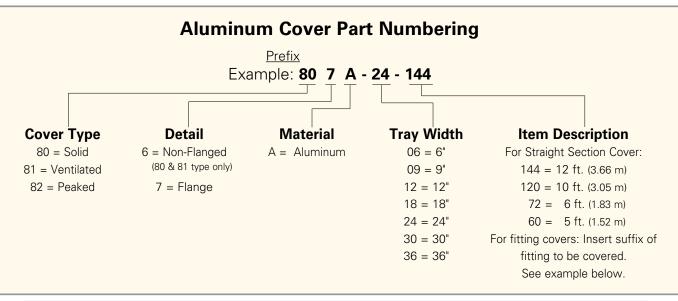
DURA-BLOK[™] Support Bases with B22 Channel • Designed as a superior rooftop support for cable tray, UV resistant and approved for most roofing material or other

• Can be used with any of our cable tray clamps and guides. • Ultimate Uniform Load Capacity: 1,000 lbs. (4.45kN).

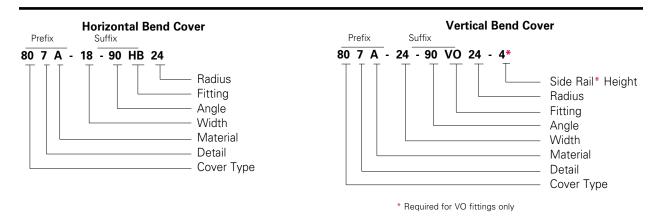
Catalog No.	Height x Width x Length			
	in.	(mm)		
DB10-28	5 ⁵ /8 x 6 x 28	(143 x 152 x 711)		
DB10-36	5 ⁵ /8 x 6 x 36	(143 x 152 x 914)		
DB10-42	5 ⁵ / ₈ x 6 x 42	(143 x 152 x 1067)		
DB10-50	5 ⁵ /8 x 6 x 50	(143 x 152 x 1270)		
DB10-60	5 ⁵ /8 x 6 x 60	(143 x 152 x 1524)		

General Note: Consult roofing manufacturer or engineer for roof load capacity. The weakest point may be the insulation board beneath the rubber membrane.

LEEDS credit available, base made from 100% recycled material.


Solid Non-Flanged Solid Flanged Ventilated Flanged Peaked Flanged

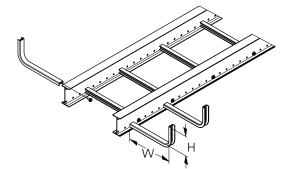
Covers for KRA4A, KRB4A and KRB6A


A full range of covers are available for straight sections and fittings.

Solid covers should be used when maximum enclosure of the cable is desired and no accumulation of heat is expected. **Ventilated covers** provide cable protection, while allowing heat to escape. **Flanged covers** have a $\frac{1}{2}$ in. (13 mm) flange.

We recommend that covers be placed on vertical cable tray runs to a height of 6 ft. (1.83 m) to 8 ft. (2.44 m) above the floor to both isolate cables and protect personnel. Cover clamps are <u>not included</u> with the cover and must be ordered separately.

Examples of Catalog Numbers for Fitting Covers:

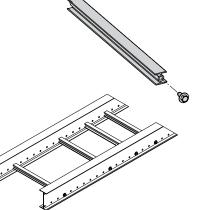


Check with B-Line Technical Support (<u>blinetechnicalsupport@eaton.com</u>) if there are questions/concerns about environmental loads for covers (wind, snow, sleet, rain, etc.).


Standard Cover Clamp For indoor service only.	Tray Type		le Rail eight	Catalog No.
Setscrew included.	KR Serie	es All	Sizes	9ZN-9012
				9A-9012
leavy Duty Cover Clamp Recommended for outdoor service. Should not be used on overlapping sections.		Н	de Rail leight . (mm)	Catalog No.
Use Series 2-5 AL part numbers for peaked covers.		4	(101)	KR4A-HDCC-(‡)
		6 (‡) Ins	(152) ert tray wic	KR6A-HDCC-(‡)
Quantity of Standard Cover Clamps Required	Cover Joint Strip • Used to join covers.	(‡) Ins	/	Catalog No.
Quantity of Standard Cover Clamps Required Straight Section 60" or 72"	 Used to join covers. Plastic. Only for use on flat Color - gray. 	(‡) Ins	/	lth
Quantity of Standard Cover Clamps Required Straight Section 60" or 72"	Used to join covers.Plastic.Only for use on flat	(‡) Ins	/	Catalog No.
Quantity of Standard Cover Clamps Required Straight Section 60" or 72" 4 pcs. Straight Section 120" or 144" 6 pcs. Horizontal/Vertical Bends 4 pcs.	 Used to join covers. Plastic. Only for use on flat Color - gray. 	(‡) Ins	/	Catalog No.
Quantity of Standard Cover Clamps Required Straight Section 60" or 72" 4 pcs. Straight Section 120" or 144" 6 pcs. Horizontal/Vertical Bends 4 pcs. Tees 6 pcs.	 Used to join covers. Plastic. Only for use on flat Color - gray. 	(‡) Ins	/	Catalog No.

Out Board Rungs

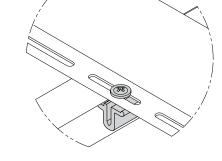
- Formed aluminum rung with attachment screw.
- Field installs as required.
- Torque rung fasteners to 6 ft•lbs.
- Uniform load capacity on rung: 10 lbs. (0.04kN)



Catalog No.	Fill Depth 'H' in (mm)	Width 'W' in (mm)
9A-SR0406	4 101	6 152
9A-SR0409	4 101	9 226
9A-SR0506	5 127	6 152
9A-SR0509	5 127	9 226

Add-a-Rung Kit

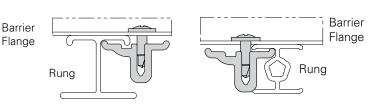
- Kit allows an additional rung to be added to a desired location throughout the tray system.
- Pre-cut rung sections supplied.
- Attachment hardware is included.
- Torque rung fasteners to 18 ft•lbs.
- Add-a-Rung[™] kit can be added to welded or bolted versions of KwikRail.
- Add-a-Rung kit does not work on any of the KwikRail horizontal fittings.
- Add-a-Rung does work with KwikRail VI/VO fittings.



Q

in (mm) Catalog No. 6 (152) 9A-R06RK 9 (226) 9A-R09RK 12 (305) 9A-R12RK 18 (452) 9A-R18RK 24 (609) 9A-R24RK		ray idth	
9 (226) 9A-R09RK 12 (305) 9A-R12RK 18 (452) 9A-R18RK	Catalog No.	(mm)	in
12 (305) 9A-R12RK 18 (452) 9A-R18RK	9A-R06RK	(152)	6
18 (452) 9A-R18RK	9A-R09RK	(226)	9
	9A-R12RK	(305)	12
24 (609) 9A-R24RK	9A-R18RK	(452)	18
	9A-R24RK	(609)	24
30 (762) 9A-R30RK	9A-R30RK	30 (762)	
36 (914) 9A-R36RK	9A-R36RK	(914)	36

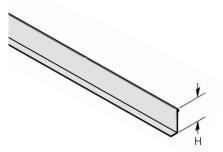
Barrier Strip Clip


- Provides attachment to bolted or welded KwikRail rungs.
- Allows for installed barrier adjustment.
- Asymmetrical clip provides a wide range for screw location.
- · Barrier strip clips and hardware are included with all barriers.

Catalog No.

9A-RBC

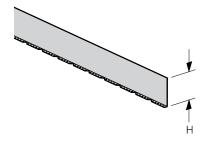
Screw slot for sheet metal screw



Bolted rung assembly

Welded rung assembly

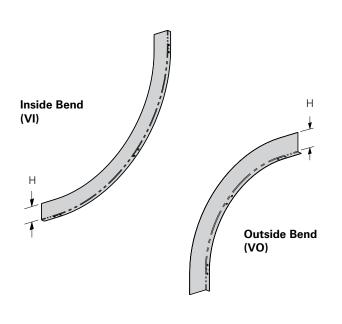
Straight Section Barrier Strip


- Furnished with four (4) barrier strip clips, mounting hardware and splice.
- Standard lengths are 144" or 12 ft (3.7m) & 120" or 10 ft (3.0m).
- Order catalog number based on loading depth 'H'.

Tray			н
Series	Catalog No.	in.	(mm)
KR_4A	KR4A-DSL-Length	3	(76)
KRB6A	KR6A-DSL-Length	5	(127)

Horizontal Bend Barrier Strip

- Furnished with three (3) barrier strip clips, mounting hardware and splice.
- Standard length is 72" or 6 ft (1.8m).
- Flexible to fit desired angles.
- Order catalog number based on loading depth 'H'.



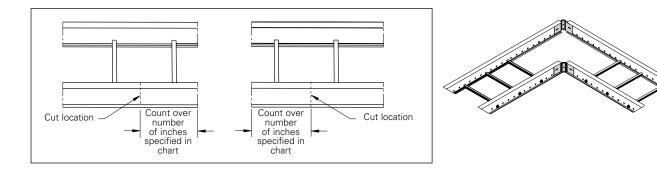
Tray		н
Series	Catalog No.	in. (mm)
KR_4A	KR4A-DHB	3 (76)
KRB6A	KR6A-DHB	5 (127)

KwikRail Cable Tray

Vertical Bend Barrier Strip

• Furnished with three (3) barrier strip clips, mounting hardware and splice.

Tray	Catalog No.		н
Series	Inside Bend Outside Bend	in.	(mm)
KR_4A	KR4A-DVI-(**)R(†) KR4A-DVO-(**)R(†)	3	(76)
KRB6A	KR6A-DVI-(**)R(†) KR6A-DVO-(**)R(†)	5	(127)


(**) Insert 45°, 90° for angles

(†) Insert 12, 24 for radius

How to miter cut KwikRail cable tray for use with Horizontal Adjustable splice plates.

- Mark desired hole/cut locations per chart.
- Remove any rungs (if necessary) affected by cuts.
- Cut side rails through center of required holes per chart.
- Mount outside Horizontal Adjustable splice plate with provided hardware and bend KwikRail sections to desired angle.
- Form inside Horizontal Adjustable splice plate to fit contour of inner rails and bolt into place.
- Reinstall (if necessary) appropriate rungs. Torque to 18 ft•lbs.
- If Splice Rung Kit (see below) is required, order separately.
- Recommend adding one to the value in the chart if the first hole is less than 3/8" (9.5mm) from the end of tray.

т	ray		Cut Length from Rail End For Desired Angle										
W	idth	3	30°	4	5°	e	50°	9	90°				
in.	(mm)	in.	(mm)	in.	(mm)	in.	(mm)	in.	(mm)				
6	(152)	1 ⁵ /8	(41.3)	3 ¹ /8	(79.4)	31/8	(79.4)	61/4	(158.7)				
9	(228)	31/8	(79.4)	3 ¹ /8	(79.4)	43/4	(120.6)	9 ³ /8	(238.2)				
12	(305)	31/8	(79.4)	4 ¹ /8	(120.6)	6 ¹ / ₄	(158.7)	12 ⁵ /8	(320.7)				
18	(457)	43/4	(120.6)	77/8	(200.0)	11	(279.4)	17 ¹ / ₄	(438.1)				
24	(609)	61/4	(158.7)	9 ³ /8	(238.2)	14 ¹ /8	(358.8)	235/8	(600.1)				
30	(762)	77/8	(200.0)	12 ⁵ /8	(320.7)	17 ¹ /4	(438.1)	297/8	(758.8)				
36	(914)	9 ³ /8	(238.2)	15 ³ /4	(400.0)	20 ³ /8	(517.5)	361/8	(917.6)				

KRA5A09-12-144 Straight Section shown with required side rail removed to form 90° fitting.

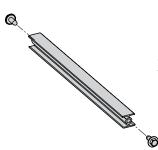
Example: For a 12" (305mm) wide 90° bend, the cuts must be made 125%" (320.7mm) from the end.

For Tray

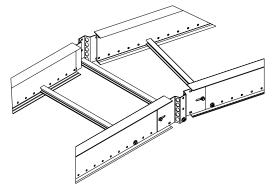
Width

Up to 12 (Up to 305)

18 & 24 (453 to 609)


30 & 36 (762 to 914)

(mm)


in.

Flex-Mount Splice Rung Kit

- Kit allows a support rung to be added to flex-mount splice plates so that cables may be supported through a bend.
- The support rung is available in three lengths and should be ordered based upon tray width.
- The rung length is sized so that it will fit a maximum tray width when Flex-Mount[™] splices are used to make a bend up to 90°.
- Once the Flex-Mount splices are installed in the cable tray system, the distance between the splice mounting surfaces should be measured. Cut support rung to the measured distance and install using the hardware included. Torque to 18 ft•lbs.

Example: Flex connectors are installed on an 18" (452mm) wide tray with approximately a 45° bend. The correct support rung kit is 9A-RFM-24RK. The tray width is 24" (609mm) orless and the angle is less than 90°.

Catalog No.

9A-RFM-12RK

9A-RFM-24RK

9A-RFM-36RK

Actual Rung Length

(mm)

(508)

(940)

54" (1448)

in.

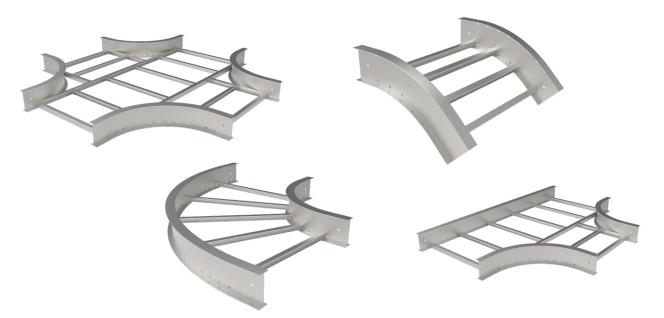
20"

37"

Data Cables

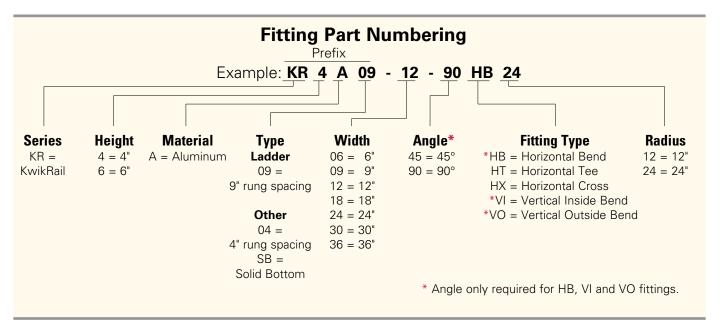
The National Electrical Code allows for 50% fill of ventilated cable tray for control or signal wiring (Article 392-9(b)). This rule requires that all the individual cable cross-sectional areas added up may not exceed one half the cable tray area.

The cable tray area is equal to the width times the load depth.


In actual practice with data cables, however, the cable tray becomes completely full in reaching the "50% cable fill". The tray is completely full, but the sum of the cable areas is only 50% of the tray area, due to the empty spaces between the cables.

Data Cable Fill and Weight Chart

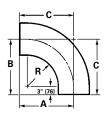
Tray Depth							Tra Wid							
-	6" (15	52mm)	9" (22	28mm)	12" (3	05mm)	18" (45	7mm)	24" (60)9mm)	30" (7	62mm)	36" (9	14mm)
in (mm)	Cables	lbs/ft	Cables	lbs/ft	Cables	lbs/ft	Cables	lbs/ft	Cables	lbs/ft	Cables	lbs/ft	Cables	lbs/ft
4" (101)	347	9	520	13	693	18	1040	27	1386	35	1733	43	2079	54
6" (152)	520	14	780	20	1040	27	1559	41	2079	52	2599	64	3119	81


Number of Category 5/5e/6 Cables and Calculated Cable Weight in Lbs/Ft

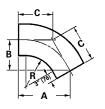
This chart was based on 50% fill of 4 UTP Category 5, 5e, or 6 cables (O.D. = .21" .026 lbs/ft). In the above loading grid, the weight of the cables is not the issue. The volume capacity of the tray governs. For example, the worst case (6" load depth, 36" wide) has a total cable weight of 81 lbs/ft.

Note: All fittings are only offered in welded assembly

Fittings engineered with 3" tangents for splicing integrity.


For ventilated or solid bottom, add 04 or SB as shown below: Available 6" thru 36"

Horizontal Bend 90° 45° (HB)

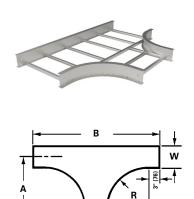

1 pair splice plates with hardware included.

45° Horizontal Bend

Bottoms manufactured: Ladder = 9" Rung Spacing 04 = 4" Rung Spacing SB = Flat sheet over 9" Rung Spacing

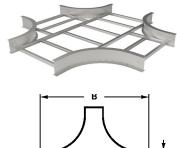
Bend Radius	Tray Width		90° H	orizont		ıd nsions				45° Horizo	ontal Bend Dimensions	
R		Catalog No.		A		В	(0	Catalog No.	Α	В	С
in. (mm)	in. (mm)		in.	(mm)	in.	(mm)	in.	(mm)		in. (mm) in. (mm)	in. (mm)
	6 (152)	(Pre)-06-90HB12	18	(457)	18	(457)	18	(457)	(Pre)-06-45HB12	15³/4 (400) 6¹/2 (165)	9 ³ / ₁₆ (233)
	9 (228)	(Pre)-09-90HB12	19 ¹ /2	(495)	19 ¹ /2	(495)	19 ¹ /2	(495)	(Pre)-09-45HB12	16 ¹³ /16 (427) 6 ¹⁵ / ₁₆ (176)	9 ¹³ / ₁₆ (249)
	12 (305)	(Pre)-12-90HB12	21	(533)	21	(533)	21	(533)	(Pre)-12-45HB12	17 ⁷ /8 (454) 7 ³ / ₈ (187)	107/16 (265)
12 (305)	18 (457)	(Pre)-18-90HB12	24	(610)	24	(610)	24	(610)	(Pre)-18-45HB12	20 (508	s) 8 ¹ / ₄ (210)	11 ¹¹ /16 (297)
	24 (610)	(Pre)-24-90HB12	27	(686)	27	(686)	27	(686)	(Pre)-24-45HB12	22 ¹ /16 (560) 91/8 (232)	12 ¹⁵ / ₁₆ (329)
	30 (762)	(Pre)-30-90HB12	30	(762)	30	(762)	30	(762)	(Pre)-30-45HB12	22 ¹ / ₁₆ (560) 91/8 (232)	1215/16 (329)
	36 (914)	(Pre)-36-90HB12	33	(838)	33	(838)	33	(838)	(Pre)-36-45HB12	30 ¹ /2 (775	i) 17 ⁵ /8 (448)	20 ⁵ /16 (516)
	6 (152)	(Pre)-06-90HB24	30	(762)	30	(762)	30	(762)	(Pre)-06-45HB24	24 ³ /16 (614) 10 (254)	14 ³ / ₁₆ (360)
	9 (228)	(Pre)-09-90HB24	31 ¹ /2	(800)	31 ¹ /2	(800)	31 ¹ /2	(800)	(Pre)-09-45HB24	25 ¹ /4 (641) 10 ¹ / ₂ (267)	14 ¹³ / ₁₆ (376)
	12 (305)	(Pre)-12-90HB24	33	(838)	33	(838)	33	(838)	(Pre)-12-45HB24	265/16 (668) 10 ¹⁵ / ₁₆ (278)	157/16 (392)
24 (610)	18 (457)	(Pre)-18-90HB24	36	(914)	36	(914)	36	(914)	(Pre)-18-45HB24	28 ⁷ /16 (722) 11 ¹³ / ₁₆ (300)	1611/16 (424)
	24 (610)	(Pre)-24-90HB24	39	(991)	39	(991)	39	(991)	(Pre)-24-45HB24	30 ⁹ /16 (766) 12 ¹¹ / ₁₆ (322)	17 ¹⁵ / ₁₆ (456)
	30 (762)	(Pre)-30-90HB24	42	(1067)	42	(1067)	42	(1067)	(Pre)-30-45HB24	3211/16 (830) 13 ⁹ / ₁₆ (344)	191/8 (486)
	36 (914)	(Pre)-36-90HB24	45	(1143)	45	(1143)	45	(1143)	(Pre)-36-45HB24	34 ¹³ / ₁₆ (884) 14 ⁷ / ₁₆ (367)	20 ³ /8 (518)

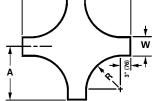
(Pre) = prefix. See page KR-16 for catalog number prefix.


Width dimensions are to inside wall. For aluminum fittings add 1.5 inches for total outside width.

Manufacturing tolerances apply to all dimensions.

KwikRail Cable Tray

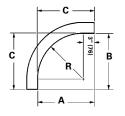

Horizontal Cross (HX)


3 pair splice plates with hardware included.

2 pair splice plates with hardware included.

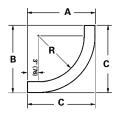
Horizontal Tee (HT)

Bend Radius	Tray Width	Horizo	ontal Tee	e Dimer	isions	Horizon	tal Cro	ss Dimen	sions		
R		Catalog Number	A	4		в	Catalog Number		Α		В
in. (mm)	in. (mm)	_	in.	(mm)	in.	(mm)	-	in.	(mm)	in.	(mm)
	6 (152)	(Prefix)-06-HT12	18	(457)	36	(914)	(Prefix)-06-HX12	18	(457)	36	(914)
	9 (229)	(Prefix)-09-HT12	19 ¹ / ₂	(496)	39	(991)	(Prefix)-09-HX12	19 ¹ /2	(496)	39	(991)
	12 (305)	(Prefix)-12-HT12	21	(533)	42	(1067)	(Prefix)-12-HX12	21	(533)	42	(1067)
12 (305)	18 (457)	(Prefix)-18-HT12	24	(609)	48	(1219)	(Prefix)-18-HX12	24	(609)	48	(1219)
	24 (609)	(Prefix)-24-HT12	27	(686)	54	(1372)	(Prefix)-24-HX12	27	(686)	54	(1372)
	30 (762)	(Prefix)-30-HT12	30	(762)	60	(1524)	(Prefix)-30-HX12	30	(762)	60	(1524)
	36 (914)	(Prefix)-36-HT12	33	(838)	66	(1676)	(Prefix)-36-HX12	33	(838)	66	(1676)
	6 (152)	(Prefix)-06-HT24	30	(762)	60	(1524)	(Prefix)-06-HX24	30	(762)	60	(1524)
	9 (229)	(Prefix)-09-HT24	31 ¹ / ₂	(800)	63	(1600)	(Prefix)-09-HX24	31 ¹ /2	(800)	63	(1600)
	12 (305)	(Prefix)-12-HT24	33	(838)	66	(1676)	(Prefix)-12-HX24	33	(838)	66	(1676)
24 (610)	18 (457)	(Prefix)-18-HT24	36	(914)	72	(1828)	(Prefix)-18-HX24	36	(914)	72	(1828)
	24 (609)	(Prefix)-24-HT24	39	(991)	78	(1982)	(Prefix)-24-HX24	39	(991)	78	(1982)
	30 (762)	(Prefix)-30-HT24	42 (1067)	84	(2134)	(Prefix)-30-HX24	42	(1067)	84	(2134)
	36 (914)	(Prefix)-36-HT24	45 (1143)	90	(2286)	(Prefix)-36-HX24	45	(1143)	90	(2286)


(Prefix) See page KR-16 for catalog number prefix.

Width dimensions are to inside wall. For aluminum fittings add 1.5 inches for total outside width. Manufacturing tolerances apply to all dimensions.

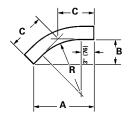
Vertical Bend 90° (VO, VI) 1 pair splice plates with hardware included.



90° Vertical Outside

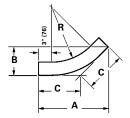
90° Vertical Inside

Bend Radius	Tray Width	,			Rail t	VI Side Rail Height						
R	Insert	"VI" for	4" - 6" (101-152)			4" (101)			6" (152)			
		Vert. Inside Bend	Α	В	С	A	В	С	A	В	С	
in. (mm)	in. (mm)	Catalog No.	in. (mm)	in. (mm)	in. (mm)	in. (mm)	in. (mm)	in. (mm)	in. (mm)	in. (mm)	in. (mm	
	6 (152)	(Prefix)-06-90(*)12										
	9 (228)	(Prefix)-09-90(*)12		15 (381)	15	19 (483)	19 (483)	19 (483)		01		
10	12 (305)	(Prefix)-12-90(*)12	1 -						01		0.1	
12 (305)	18 (457)	(Prefix)-18-90(*)12	15 (381)		(381)				21 ((533)	21 (533)	21 (533)	
(303)	24 (609)	(Prefix)-24-90(*)12	(001)		(001)					(000)	(000)	
	30 (762)	(Prefix)-30-90(*)12										
	36 (914)	(Prefix)-36-90(*)12										
	6 (152)	(Prefix)-06-90(*)24										
	9 (228)	(Prefix)-09-90(*)24										
0.4	12 (305)	(Prefix)-12-90(*)24	07	07	07	01	01	01	00	00	00	
24 (609)	18 (457)	(Prefix)-18-90(*)24	27 (686)	27 (686)	27 (686)	31 (787)	31 (787)	31 (787)	33 (838)	33 (838)	33 (838)	
(000)	24 (609)	(Prefix)-24-90(*)24	(000)	(000)	(000)	(707)) (787)	(787)	(000)	(000)	(000)	
	30 (762)	(Prefix)-30-90(*)24										
	36 (914)	(Prefix)-36-90(*)24										


(Prefix) See page KR-16 for catalog number prefix.

Manufacturing tolerances apply to all dimensions.

Vertical Bend 45° (VO, VI) 1 pair splice plates with hardware included.



45° Vertical Outside

45° Vertical Inside

Bend Radius	Tray Width	(*) Insert "VO" for Vert. Outside Bend	VO Side Rail Height					Side R	Rail Height		
R	Insert	"VI" for	4" - (6" (101-		4" (101)		6" (127)			
		Vert. Inside Bend	Α	В	С	A	В	С	A	В	С
in. (mm)	in. (mm)	Catalog No.	in. (mm)	in. (mm)	in. (mm)	in. (mm)	in. (mm)	in. (mm)	in. (mm)	in. (mm)	in. (mm)
	6 (152)	(Prefix)-06-45(*)12									
	9 (228)	(Prefix)-09-45(*)12									
4.0	12 (305)	(Prefix)-12-45(*)12	105/	5 ⁵ /8 (143)	0	107/	6 ¹³ / ₁₆ (173)	9 ⁵ /8 (245)	4 77/	7 ³ /8 (188)	10 ⁷ / ₁₆ (265)
12 (305)	18 (457)	(Prefix)-18-45(*)12	13 ⁵ /8 (346)		8 (203)	16 ⁷ / ₁₆			$17^{7}/_{8}$		
(303)	24 (609)	(Prefix)-24-45(*)12			(200)	(417)					(200)
	30 (762)	(Prefix)-30-45(*)12									
	36 (914)	(Prefix)-36-45(*)12									
	6 (152)	(Prefix)-06-45(*)24									
	9 (228)	(Prefix)-09-45(*)24									
0.4	12 (305)	(Prefix)-12-45(*)24	0.01/	01/	1015/	0.415/	105/		0.05/	1015/	
24 (609)	18 (457)	(Prefix)-18-45(*)24	22 ¹ / ₁₆ (561)	9 ¹ /8 (232)	12 ¹⁵ / ₁₆ (329)	24 ¹⁵ / ₁₆	10 ⁵ / ₁₆ (262)	14 ³ /8 (372)		10 ¹⁵ / ₁₆ (278)	(392)
(000)	24 (609)	(Prefix)-24-45(*)24	(501)	1202)	(323)	(034)	(202)	(372)	(000)	(270)	(002)
	30 (762)	(Prefix)-30-45(*)24									
	36 (914)	(Prefix)-36-45(*)24									

(Prefix) See page KR-16 for catalog number prefix.

Manufacturing tolerances apply to all dimensions.

Section 161xx - KwikRail Cable Tray

PART 1 GENERAL

1.01 Section Includes

- A. The work covered under this section consists of the furnishing of all necessary labor, supervision, materials, equipment, tests and services to install complete cable tray systems as shown on the drawings.
- B. Cable tray systems are defined to include, but are not limited to straight sections of of [ladder type] [vented bottom type] [solid bottom type] cable trays, bends, tees, elbows, drop-outs, supports, and accessories.

1.02 References

- A. ANSI/NFPA 70 National Electrical Code
- B. NEMA VE 1-2009 (NEMA BI 50015) Metallic Cable Tray Systems
- C. NEMA VE 2-2013 (NEMA BI 50016) Cable Tray installation Guidelines

1.03 Drawings

- A. The drawings, which constitute a part of these specifications, indicate the general route of the cable runway systems. Data presented on these drawings is as accurate as preliminary surveys and planning can determine until final equipment selection is made. Accuracy is not guaranteed and field verification of all dimensions, routing, etc., is required.
- B. Specifications and drawings are for assistance and guidance, but exact routing, locations, distances and levels will be governed by actual field conditions. Contractor is directed to make field surveys as part of his work prior to submitting system layout drawings.

1.04 Submittals

- A. Submittal Drawings: Submit drawings of cable tray and accessories including clamps, brackets, hanger rods, splice plate connectors, expansion joint assemblies, and fittings, showing accurately scaled components.
- B. Product Data: Submit manufacturer's data on cable tray including, but not limited to, types, materials, finishes, rung spacings, inside depths and fitting radii. For side rails and rungs, submit cross sectional properties including Section Modulus (Sx) and Moment of Inertia (Ix).

1.05 Quality Assurance

- A. Manufacturers: Firms regularly engaged in manufacture of cable trays and fittings of types and capacities required, whose products have been in satisfactory use in similar service for not less than 10 years.
- B. NEMA Compliance: Comply with NEMA Standards Publication Number VE 1, "Cable Tray Systems".
- C. NEC Compliance: Comply with NEC, as applicable to construction and installation of cable tray and cable channel systems (Article 392, NEC).
- D. UL Compliance: Provide products that are UL-classified and labeled.
- E. NFPA Compliance: Comply with NFPA 70B, "Recommended Practice for Electrical Equipment Maintenance" pertaining to installation of cable tray systems.

1.06 Delivery, Storage and Handling

- A. Deliver cable tray systems and components carefully to avoid breakage, denting and scoring finishes. Do not install damaged equipment.
- B. Store cable trays and accessories in original cartons and in clean dry space; protect from weather and construction traffic. Wet materials should be unpacked and dried before storage.

PART 2 PRODUCTS

2.01 Acceptable Manufacturers

A. Subject to compliance with these specifications, B-Line series cable tray systems shall be as manufactured by Eaton.

2.02 Cable Tray Sections and Components

- A. General: Except as otherwise indicated, provide metal cable trays, of types, classes, and sizes indicated; with splice plates, bolts, nuts, and washers for connecting units. Construct units with rounded edges and smooth surfaces; in compliance with applicable standards; and with the following additional construction features. Cable tray shall be installed according to the latest revision of NEMA VE-2 (NEMA BI 50016).
- B. Material and Finish: Straight sections, fitting side rails, rungs and splice plates shall be extruded from Aluminum Association Alloy 6063. All fabricated parts shall be made from Aluminum Association Alloy 5052.

(continued on page KR-22)

(continued from page KRA-21)

2.03 Type of Tray System

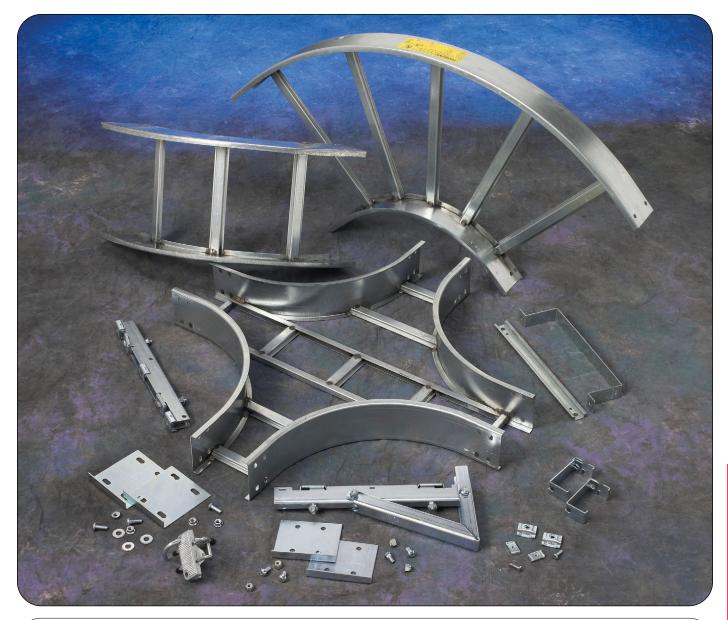
- A. Ladder Cable Trays shall consist of two longitudinal members (side rails) with transverse members (rungs) either mechanically fastened or welded to the side rails with the option to add mechanically fastened rungs at any point along the longitudinal members. Rungs shall be spaced [6] [9] [12] inches apart. Rung spacing in radiused fittings shall be industry standard 9" maximum and measured at the center of the tray's width. Mechanically fastened rungs shall be capable of easy removal, reinstallation, or replacement if necessary.
- B. Ventilated Bottom Cable Trays shall consist of two longitudinal members (side rails) with rungs spaced 6" apart.
- C. Solid Bottom Cable Trays shall consist of two longitudinal members (side rails) with a solid sheet over rungs spaced on 12" centers.
- D. Cable tray loading depth shall be [3] [4] [5] inched per NEMA VE-1 (NEMA BI 50015).
- E. Straight sections shall be supplied in standard [10 foot (3.05m)] [12 foot (3.65m)] lengths.
- F. Cable tray widths shall be [6] [9] [12] [18] [24] [30] [36] inches or as shown on drawings.
- G. Splice plates shall have (2) two nuts and bolts per plate. The resistance of fixed splice connections between adjacent sections of tray shall not exceed 0.00033 ohms. Splice plates shall be furnished with straight sections and fittings.
- H. All fittings must have an inside radius of [12] [24] inches.

2.04 Loading Capacities

- A. Cable trays shall meet NEMA class designation:
 - {NEMA 12A: [50 lbs./ft. on 12 ft. span]} OR {NEMA 12B: [75 lbs./ft. on 12 ft. span]}.

****** [OR] *****

B. Cable tray shall be capable of carrying a uniformly distributed load of ______ lbs./ft on a ______ foot support span with a safety factor of 1.5 when supported as a simple span and tested per NEMA VE-1 (NEMA BI 50015) Section 5.2.


PART 3 EXECUTION

3.01 Installation

- A. Install cable trays as indicated: Installation shall be in accordance with equipment manufacturer's instructions, and with recognized industry practices to ensure that cable tray equipment comply with requirements of NEC and applicable portions of NFPA 70B. Reference NEMA VE-2 (NEMA BI 50016) for general cable tray installation guidelines.
- B. Coordinate cable tray with other electrical work as necessary to properly integrate installation of cable tray work with other work.
- C. Provide sufficient space encompassing cable trays to permit access for installing and maintaining cables.
- D. Cable tray fitting supports shall be located such that they meet the strength requirements of straight sections. Install fitting supports per NEMA VE-2 (NEMA BI 50016) guidelines, or in accordance with manufacturer's instructions.
- 3.02 Testing
 - A. Test cable trays to ensure electrical continuity of bonding and grounding connections, and to demonstrate compliance with specified maximum grounding resistance. See NFPA 70B, Chapter 18, for testing and test methods.
 - B. Manufacturer shall provide test reports witnessed by an independent testing laboratory of the "worst case" loading conditions outlined in this specification and performed in accordance with the latest revision of NEMA VE-1-2002 (NEMA BI 50015)/CSA C22.2 No. 126.1-02.

END OF SECTION

How The Service Advisor Works

We know that your time is important! That's why the color-coding system in this catalog is designed to help you select products that fit your service needs. Products are marked to indicate the typical lead time for orders of 50 pieces or less.

Customer: How do I select my straight sections. covers, or fittings so that I get the quickest turnaround?

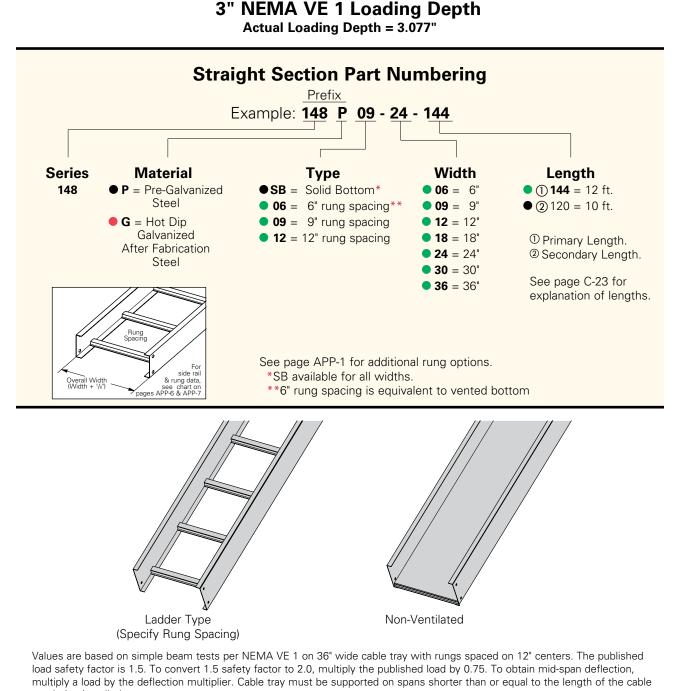
Service Advisor: Each part of our selection chart is shown in colors. If any section of a part number is a different color, the part will typically ship with the longer lead time represented by the colors.

144

- Green = Fastest shipped items
- Black = Normal lead-time items

156G

• Red = Normally long lead-time items


09

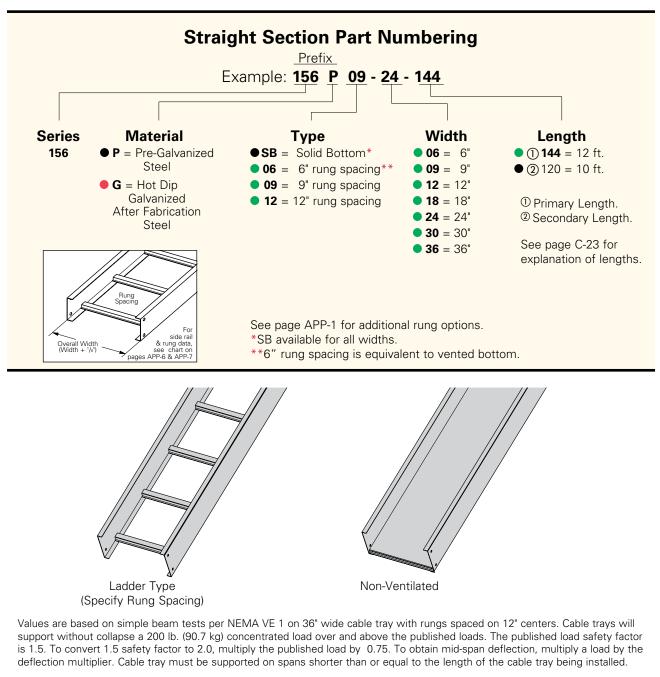
24

Example:

Part will have a long lead time because of the 156G material.

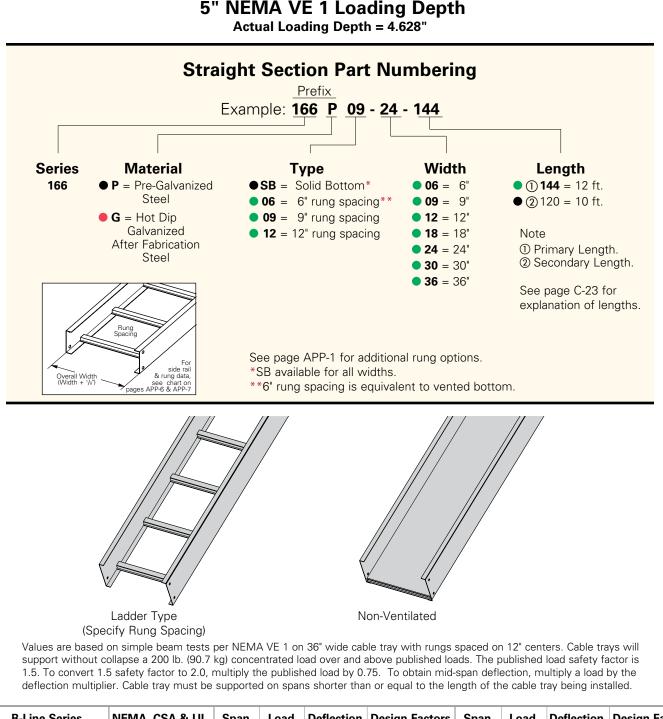
Changing the part number from 156G to 156P will change the coding to black for all sections and reduce lead time.

tray being installed.


	Line Series ail Dimensions	NEMA, CSA & UL Classifications	Span ^{ft}	Load Ibs/ft	Deflection Multiplier	Design Factors for Two Rails	Span meters	Load kg/m	Deflection Multiplier	Design Factors for Two Rails
	875	NEMA: <mark>12A,</mark> 8C	6	204 *	0.0011	Area = 0.510 in ²	1.8	304*	0.019	Area = 3.290 cm ²
148	3.625 3.077	CSA: C1-3m	8	115	0.0036	Sx = 0.480 in ³	2.4	171	0.061	Sx = 7.870 cm ³
140		UL Cross-Sectional	10	73	0.0087	lx = 0.890 in ⁴	3.0	109	0.149	lx = 37.04 cm₄
	18 gauge	Area: 0.40 in ²	12	51	0.0181		3.7	76	0.309	

*When using 12" rung spacing load capacity is limited to 195 lbs/ft (290.16 kg/m) for 36" tray width. When cable trays are used in continuous spans, the deflection of the cable tray is reduced by as much as 50%. Design factors: Ix = Moment of Inertia, Sx = Section Modulus.

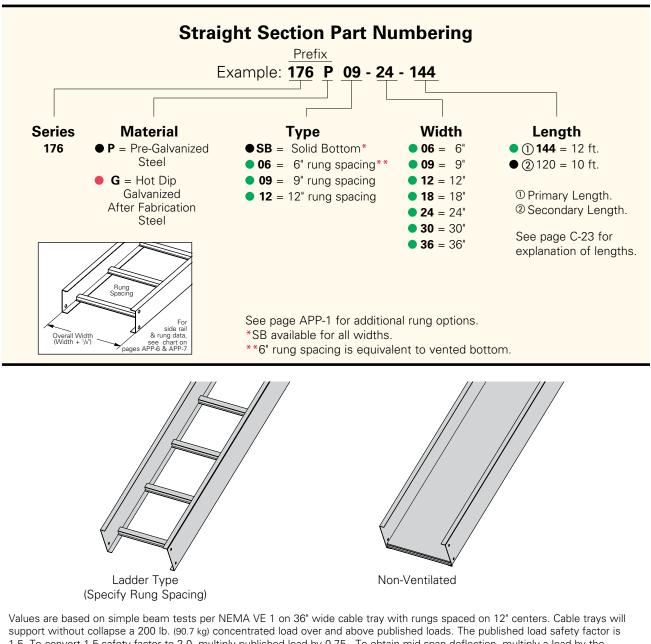
• Green = Fastest shipped items • Black = Normal lead-time items • Red = Normally long lead-time items



	Line Series ail Dimensions	NEMA, CSA & UL Classifications	Span ft	Load Ibs/ft	Deflection Multiplier	Design Factors for Two Rails	Span meters	Load kg/m	Deflection Multiplier	Design Factors for Two Rails
		NEMA: <mark>12B,</mark> 8C	6	304 *	0.0007	Area = 0.690 in^2	1.8	452*	0.011	Area = 4.390 cm ²
156	4.188 3.628	CSA: C1-3m	8	171	0.0021	Sx = 0.724 in ³	2.4	254	0.036	Sx = 11.860 cm ³
100		UL Cross-Sectional	10	109	0.0051	lx = 1.517 in4	3.0	163	0.087	lx = 63.140 cm₄
	16 gauge	Area: 0.40 in ²	12	76	0.0011		3.7	113	0.181	

*When using 12" rung spacing, load capacity is limited to 234 lbs/ft (348.192 kg/m) for 30" tray width and 195 lbs/ft (290.16 kg/m) for 36" tray width. When trays are used in continuous spans, the deflection of the tray is reduced by as much as 50%. Design factors: Ix = Moment of Inertia, Sx = Section Modulus.

Green = Fastest shipped items Black = Normal lead-time items Red = Normally long lead-time items


	ine Series il Dimensions	NEMA, CSA & UL Classifications	Span ft	Load Ibs/ft	Deflection Multiplier	Design Factors for Two Rails	Span meters	Load kg/m	Deflection Multiplier	Design Factors for Two Rails
	750	NEMA: <mark>12B,</mark> 8C	6	308 *	0.0004	Area = 0.770 in^2	1.8	458*	0.007	Area = 4.970 cm ²
166	5.188 4.628	CSA: C1-3m	8	173	0.0013	Sx = 0.930 in ³	2.4	258	0.023	Sx = 15.240 cm ³
100	5.166	UL Cross-Sectional	10	111	0.0032	lx = 2.400 in ⁴	3.0	165	0.055	lx = 99.900 cm ⁴
	16 gauge	Area: 0.70 in ²	12	77	0.0067		3.7	115	0.114	

*When using 12" rung spacing, the load capacity is limited to 234 lbs/ft (348.192 kg/m) for 30" tray width and 195 lbs/ft (290.16 kg/m) for 36" tray width. When trays are used in continuous spans, the deflection of the tray is reduced by as much as 50%. Design factors: Ix = Moment of Inertia, Sx = Section Modulus.

• Green = Fastest shipped items • Black = Normal lead-time items • Red = Normally long lead-time items

All dimensions in parentheses are millimeters unless otherwise specified.

1.5. To convert 1.5 safety factor to 2.0, multiply published load by 0.75. To obtain mid-span deflection, multiply a load by the deflection multiplier. Cable tray must be supported on spans shorter than or equal to the length of the cable tray being installed.

	ine Series il Dimensions	NEMA, CSA & UL Classifications	Span ft	Load lbs/ft	Deflection Multiplier	Design Factors for Two Rails	Span meters	Load _{kg/m}	Deflection Multiplier	Design Factors for Two Rails
	- <u>-</u> .750	NEMA: <mark>12B,</mark> 8C	8	194	0.0008	Area = 0.890 in ²	2.4	458*	0.014	Area = 5.740 cm ²
176	6.188 5.628	CSA: 137 kg/m 3.7m	10	124	0.0020	Sx = 1.230 in ³	3.0	258	0.035	Sx = 20.160 cm ³
170		UL Cross-Sectional	12	86	0.0042	lx = 3.800 in ⁴	3.7	165	0.072	lx = 158.200 cm4
	16 gauge	Area: 0.70 in ²								

When cable trays are used in continuous spans, the deflection of the tray is reduced by as much as 50%. Design factors: Ix = Moment of Inertia, Sx = Section Modulus.

Green = Fastest shipped items Black = Normal lead-time items Red = Normally long lead-time items

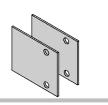
All dimensions in parentheses are millimeters unless otherwise specified.

Standard (L-Shaped) Splice Plates

- One pair including hardware provided with each straight section. (Expansion splice quantity subtracted)
- UL Classified as equipment grounding conductor.
- Furnished in pairs with hardware.
- Prepackaged in pairs in a plastic bag, with hardware.
- 4-hole pattern L-shaped splice plates.
- L-shaped lav-in design.
- (*) Insert **ZN** or **G**

Expansion (L-Shaped) Splice Plates

- Expansion plates allow for one inch expansion or contraction of the cable tray, or where expansion joints occur in the supporting structure.
- Bonding Jumpers are required on each side rail. Order Separately.
- L-shaped lay-in design.
- Furnished in pairs with hardware.
- (*) Insert ZN or G


Universal Splice Plates

- Used to splice to existing cable tray systems.
- Furnished in pairs with hardware.

Step Down Splice Plates

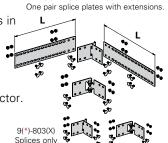
• (*) Insert **P** or **G**

• (*) Insert ZN or G

	Tray
Catalog No.	Series
9(*)-8044	156 to148
9(*)-8045	166 to 156 or 148
9(*)-8046	176 to 156 or 148
9(*)-8060	176 to 166

Vertical Adjustable Splice Plates

• Furnished in pairs with hardware.


• These plates provide for changes in elevation that do not conform to standard vertical fittings.

• These splice plates are offered for connecting cable tray sections having side rails of different heights. • UL Classified as equipment grounding conductor.

- UL Classified as equipment grounding conductor.
- Bonding jumpers not required.
- Furnished in pairs with hardware.
- (*) Insert ZN or G
- (**) Insert P or G

Horizontal Adjustable Splice Plates

- Offered to adjust a cable tray run for changes in direction in a horizontal plane that do not conform to standard horizontal fittings.
- Furnished in pairs with hardware.
- Bonding jumpers not required.
- UL Classified as equipment grounding conductor.
- (*) Insert **ZN** or **G**
- (X) Insert 4 for series 148 or 156, 5 for series 166, or 6 for series 176
 - Green = Fastest shipped items

Requires supports within

9(*)-803(X)-12 or 9(*)-803(X)-36

24" on both sides, per NEMA VE 2.

Catalog	Cable Tray	Tray	
No.	End Cut	Width	ʻL′
9(*)-803(X)	Mitered	Thru 36"	N/A
9(*)-803(X)-12	Not mitered	Thru 12"	16"
9(*)-803(X)-36	Not mitered	Thru 36"	41"

Requires supports within 24" on both sides, per NEMA VE 2.

Black = Normal lead-time items Red = Normally long lead-time items

All dimensions in parentheses are millimeters unless otherwise specified.

Eaton.com/cabletray

	Tray
Catalog No.	Series
9(*)-4004	148
9(*)-4005	156
9(*)-4006	166
9(*)-4007	176

	Tray	
	Series	Catalog No.
	148	9(*)-4014
	156	9(*)-4015
	166	9(*)-4016
	176	9(*)-4017
-	Requires support	ts within 24" on

Tray

Series

148

156

166

176

Trav

Series

148

156

166

176

both sides, per NEMA VE 2.

Catalog No.

9(*)-2004-1/2

9(*)-2005-1/2

9(*)-2006-1/2

9(*)-2007-1/2

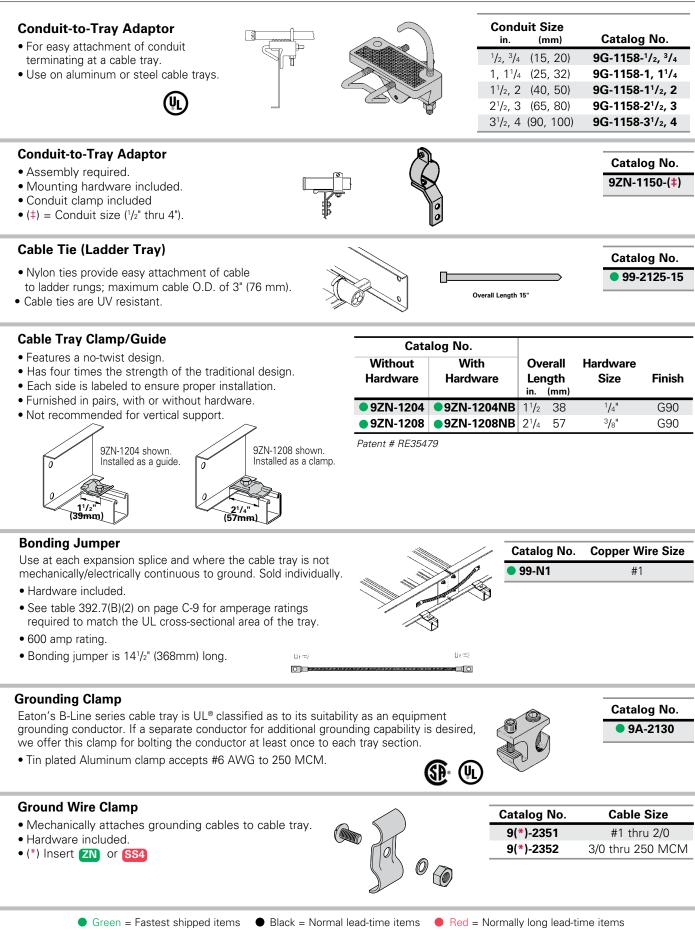
Catalog No.

9(**)-7024

9(*)-8024

9(*)-8025

9(*)-8026

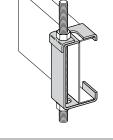

Series 1 Steel - Accessories

Branch Pivot Connectors Branch from existing cable tray runs at any point.	Tray Series	Catalog No.
Pivot to any required angle.	, 156 to 148	9(*)-8244
UL Classified as equipment grounding conductor.	166	9(*)-8245
• (*) Insert ZN or G	176	9(*)-8246
Offset Reducing Splice Plate		
• This plate is used for joining cable trays having different widths. When used in pairs they form a straight reduction;	Tray Series	Catalog No.
when used singly with a standard splice plate they form an offset reduction.	148	9(*)-8064-(‡)
• Furnished as one plate with hardware.	156	9(*)-8064-(‡)
• (‡) Insert reduction	166	9(*)-8065-(‡)
• (*) Insert P or G	176	9(*)-8066-(‡)
Tray to Box Splice Plates	Tray	
Used to attach the end of a cable tray	Series	Catalog No.
run to a distribution box or control panel.	148	9(*)-8054
 Furnished in pairs with hardware. (*) Insert P or G 	156	9(*)-8054
	166	9(*)-8055
	176	9(*)-8056
Frame Type Box Connector • Designed to attach the end of a cable tray run to	Tray Series	Catalog No.
a distribution cabinet or control center to help	148	9(*)-8074-(‡)
reinforce the box at the point of entry. • Furnished with tray connection hardware.	156	9(*)-8074-(‡
• (‡) Insert tray width	166	9(*)-8075-(‡)
• (*) Insert ZN or G	176	9(*)-8076-(‡)
Blind End		
This plate forms a closure for a dead end cable tray.	Tray Series	Catalog No.
Furnished as one plate with hardware.	148	9(*)-8084-(‡)
(‡) Insert tray width	156	9(*)-8084-(‡)
(*) Insert P or G	166	9(*)-8085-(‡
e	176	9(*)-8086-(‡
Tray Hardware		
Catalog No. • RNCB 3/8"-16 x 3/4" Znplt Catalog	Galvanized Tray Hardware g No. ● RNCB ³/₃"-16 x ³/₂ ge Bolt Chromium Zinc ASTN	
Catalog No. SFHN 3/8"-16 Znplt Serrated Flange Hex Nut ASTM A563 Grade A Catalog	g No. ● SFHN ³/₅"-16 CZ 3 romium Zinc ASTM F-1136-88	
Finish: Zinc Plated ASTM B633, SC1		

• Green = Fastest shipped items • Black = Normal lead-time items • Red = Normally long lead-time items

All dimensions in parentheses are millimeters unless otherwise specified.

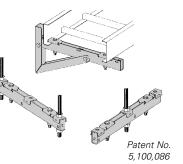
Series 1 Steel - Accessories


All dimensions in parentheses are millimeters unless otherwise specified.

Threaded Rod (ATR) & Rod Coupling Loading Threaded Rod **Available Lengths** Coupling Size Cat. No. lbs. (kN) Catalog No. • Loading based on safety factor 5. in. (mm) 36, 72, 120, 144 • Standard Finish: Zinc plated ³/8-16 730 (3.25) • ATR ³/₈ x Length **B655-**³/₈ (914, 1829, 3048, 3657) 36, 72, 120, 144 ¹/₂-13 1350 (6.00) ● B655-¹/₂ ATR ³/₈ x Length (914, 1829, 3048, 3657)

See B-Line series Strut Systems Catalog for other sizes and finishes.

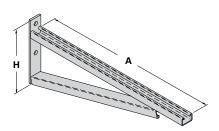
Hanger Rod Clamp


- For 1/2" ATR.
- Furnished in pairs.
- Order ATR and hex nuts separately.
- Two piece "J"-hanger design.
- 9ZN-1113 has 275 lbs./pair safety factor 3.
- 9ZN-532(X) has 1500 lbs./pair safety factor 3.

Tray Series	Catalog No.
148	9ZN-1113
156	9ZN-5324
166	9ZN-5325
176	9ZN-5326

Support Bracket

- Designed for center hung or trapeze supports.
- Used with ladder or vented bottom tray only.
- Can be purchased as a wall mounted bracket.
- Load capacity is 600 lbs. (272.1 kg), safety factor 3.
- All components are zinc plated.
- 1/2" threaded rod and 1/2" hex nuts not included.



Cata	Catalog No.			
Center Hung or Trapeze	Wall Mount	Cable Tray Width in. (mm)		
9ZN-5106	• 9ZN-5106-WB	6	(152)	
9ZN-5109	• 9ZN-5109-WB	9	(226)	
9ZN-5112	• 9ZN-5112-WB	12	(305)	
9ZN-5118	• 9ZN-5118-WB	18	(452)	
9ZN-5124	• 9ZN-5124-WB	24	(609)	

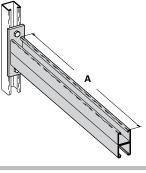
Se
eries
Ste

Cantilever B	racket (1	2" - 42")
--------------	-----------	-----------

- Finishes available: ZN GRN or HDG
- Safety Load Factor 2.5

Bottom brace is B42 channel on B494-24 and smaller and B22 channel on B494-30 and larger

Catalog	Uniform Load	Tray Width	'A'	Ή′
No.	lbs (kN)	in. (mm)	in. (mm)	in. (mm)
• B494-12	2500 (11.12)	6 & 9 (152 & 229)	12 (305)	8 ³ / ₄ (222)
• B494-18	1700 (7.56)	12 (305)	18 (457)	8 ³ / ₄ (222)
• B494-24	1300 (5.78)	18 (457)	24 (610)	8 ³ / ₄ (222)
B494-30	1600 (7.11)	24 (610)	30 (762)	11 ¹ / ₄ (286)
B494-36	1100 (4.89)	30 (762)	36 (914)	11 ¹ / ₄ (286)
B494-42	980 (4.36)	36 (914)	42 (1067)	16 (406)


For more dimensional data see Strut Systems catalog

Green = Fastest shipped items
 Black = Normal lead-time items
 Red = Normally long lead-time items

Cantilever Bracket								
• Finishes available:	~	Catalog No.	Unifo	rm Load	Tra	y Width		'Α'
ZN GRN HDG SS4 or SS6			lbs	(kN)	in.	(mm)	in.	(mm)
Safety Load Factor 2.5	0	B409-12	960	(4.27)	6&9	(152 & 229)	12	(304.8)
		B409-18	640	(2.84)	12	(305)	18	(457.2)
		B409-24	480	(2.13)	18	(457)	24	(609.6)

Cantilever Bracket

- Finishes available: ZN GRN (HDG) or SS4
- Safety Load Factor 2.5

Catalog No.	Uniform Load		Tray Width		'A'	
	lbs	(kN)	in.	(mm)	in. (mm)	
B297-30	665	(2.95)	24	(609.6)	30 (762.0)	
B297-36	550	(2.44)	30	(762.0)	36 (914.4)	
B297-42	465	(2.06)	36	(914.4)	42 (1066.8)	

Underfloor Support (U-Bolts not included)

.841 - 1.050

1.051 - 1.315

1.316 - 1.660

1.661 - 1.900

1.901 - 2.375

2.376 - 2.875

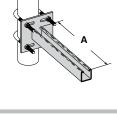
- Finishes available: ZN
- Safety Load Factor 2.5
- Order properly sized U-Bolts separately.

U-Bolt Size Fits Pipe O.D.

Beam Clamp

B501-3/4

B501-1

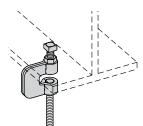

B501-11/4

B501-11/2

B501-21/2

B501-2

- Finishes available: **ZN** or **HDG**
- Sold in pieces with hardware.
- Design load when used in pairs. Safety Load Factor 5.0


Catalog No.	Uniform Load		Tray Width		'A'	
	lbs	(kN)	in.	(mm)	in.	(mm)
B409UF-12	800	(3.55)	6&9(152 & 229)	12	(304.8)
B409UF-21	450	(2.00)	12 & 18(305 & 457)	21	(533.4)

Catalog No.	Design		
	lbs	(kN)	in.
B441-22	1200	(5.34)	33/8
B441-22A	1200	(5.34)	5

Steel C-Clamp With Locknut

(ll)

- Finishes available:
- **ZN** for ³/₈ & ¹/₂ **ZN** for ⁵/₈ & ³/₄
- SS4 all sizes
- Safety Load Factor 5.0

Catalog Number	Rod Size	Design Load Ibs (kN)
B351L- ³ /8	³ /8"-16	300 (0.89)
B351L- ¹ / ₂	¹ /2"-13	380 (1.69)
B351L-5/8	⁵ /8"-11	550 (2.44)
B351L-3/4	³ /4"-10	630 (2.80)

• Green = Fastest shipped items • Black = Normal lead-time items • Red = Normally long lead-time items

All dimensions in parentheses are millimeters unless otherwise specified.

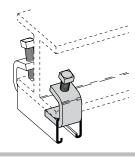
'A'

(mm)

(86)

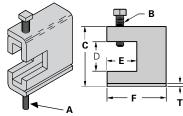
(127)

Beam Clamp


- Finishes available: ZN GRN or HDG
- Setscrew included.
- Sold in pieces.
- Design load when used in pairs. Safety Load Factor 5.0

Cat. No.	B210	B210A
Design Load	800 lbs.(3.56kN)	300 lbs. (1.33kN)
Tap Size	¹ /2"-13	³ /8"-16
Mat'l. Thickness	³ /8" (9.5mm)	¹ /4" (6.4mm)

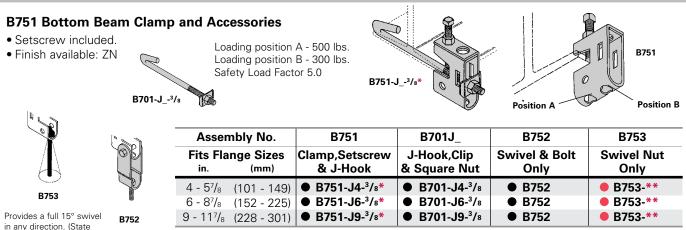
Beam Clamp


- Finishes available: ZN GRN or HDG
- Setscrew included.
- Sold in pieces.
- Design load when used in pairs. Safety Load Factor 5.0

Cat. No.	B212- ¹ / ₄		B212- ¹ / ₄		B21	2- ³ / ₈
Design Load	800 lbs	s.(3.56kN)	1000 lb	s.(4.45kN)		
Max. Flange Thick.	³ /4"	(19.0mm)	1 ¹ /8"	(28.6mm		
Mat'l. Thickness	¹ /4"	(6.4mm)	³ /8"	(9.5mm)		

B305 Thru B308 & B321 Series Beam Clamps

- Finishes available: ZN or HDG
- Setscrew included.
- Safety Load Factor 5.0


Cat.	Α	В	C	D	E	F	Т	Design Load
No.			in. (mm)	in. (mm)	in. (mm)	in. (mm)	in. (mm)	lbs (kN)
B305	3/8"-16	³ /8"-16	25/16 (58.7)	7/8 (22.2)	11/8 (28.6)	21/2 (63.5)	11 Ga. (3.0)	600 (2.67)
B306	3/8"-16	1/2"-13	2 7/16 (61.9)	7/8 (22.2)	11/8 (28.6)	21/2 (63.5)	7 Ga. (4.5)	1100 (4.90)
B307	1/2"-13	1/2"-13	27/16 (61.9)	7/8 (22.2)	11/8 (28.6)	21/2 (63.5)	7 Ga. (4.5)	1100 (4.90)
B308	1/2"-13	1/2"-13	2º/16 (65.1)	7/8 (22.2)	11/8 (28.6)	2 ¹ / ₂ (63.5)	1/4 (6.3)	1500 (6.68)
B321-1	3/8"-16	1/2"-13	3º/16 (90.5)	111/16 (42.8)	15/8 (41.3)	31/4 (82.5)	1/4 (6.3)	1300 (5.79)
B321-2	1/2"-13	1/2"-13	3º/16 (90.5)	111/16 (42.8)	15/8 (41.3)	31/4 (82.5)	1/4 (6.3)	1400 (6.23)

B312 Anchor Strap

- Finishes available: ZN or HDG
- For a maximum beam thickness of 3/4".
- For thicker beams, step up one flange width size.

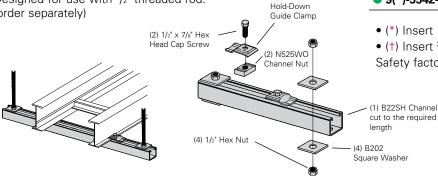
Cat. No.	Flange Width in. (mm)				
B312-6	Up to 6	(up to 152.4)			
B312-9	6 - 9	(152.4 to 228.6)			
B312-12	9 - 12	(228.6 to 304.8)			

* Clamp Assembly complete with J-Hook Assembly. Setscrew included. ** Insert 1/4, 3/8 or 1/2 for the desired rod size.

Green = Fastest shipped items

Black = Normal lead-time items
Red = Normally long lead-time items

Series 1 Steel - Accessories


Trapeze Support Kit

Trapeze kits provide the components required for a single trapeze support in one package. These kits are available in pre-galvanized steel with zinc-plated hardware or hot dip galvanized steel with 316 stainless steel hardware.

The SH channel provides the convenience of pre-punched slots, which eliminate the need for field drilling.

The illustrated hardware is sealed in a plastic bag and boxed with the channel, which is pre-cut to the appropriate length as shown in the chart.

Designed for use with 1/2" threaded rod. (order separately)

Catalog No.		ray idth (mm)		annel ngth (mm)	Uniform Load Ibs (kN)		
9(*)-5506-22SH(†)	6	(152)	16	(406)	1600	(7.11)	
9(*)-5509-22SH(†)	9	(229)	18	(457)	1250	(5.56)	
9(*)-5512-22SH(†)	12	(305)	22	(559)	1125	(5.00)	
9(*)-5518-22SH(†)	18	(457)	28	(711)	865	(3.85)	
9(*)-5524-22SH(†)	24	(610)	34	(864)	700	(3.11)	
9(*)-5530-22SH(†)	30	(762)	40	(1016)	590	(2.62)	
9(*)-5536-22SH(†)	36	(914)	46	(1168)	510	(2.27)	
9(*)-5542-22SH(†)	42	(1067)	52	(1321)	450	(2.00)	

• (*) Insert **P** or **G**

Catalog

No.

9(*)-5506-22SHA

9(*)-5509-22SHA

• (†) Insert ³/₈ for ³/₈" threaded rod hardware. Safety factor of 3.0 on all loads.

Tray

Width

in. (mm)

6 (152)

9 (229)

Channel

Length

(mm)

(406)

(457)

in.

16

18

Uniform

Load

1350 (6.01)

1350 (6.01)

(kN)

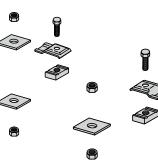
lbs

Heavy Duty Trapeze Support Kit

Trapeze kits provide the components required for a single trapeze support in one package. These kits are available in Dura Green[™] epoxy coated steel with zinc-plated hardware or hot dip galvanized steel with 316 stainless steel hardware.

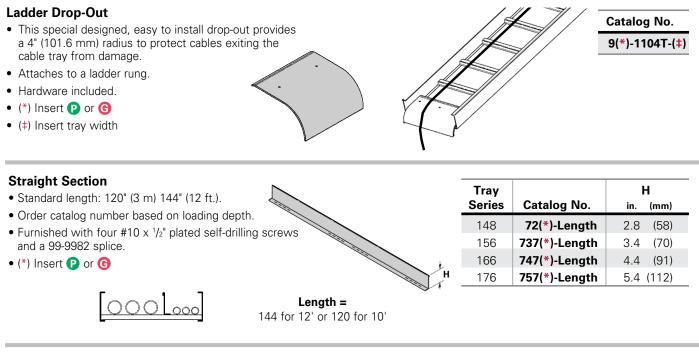
The SH channel provides the convenience of pre-punched slots, which eliminates the need for field drilling.

(4) B202


Square Washer

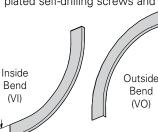
(2) 97N-1205

Designed for use with 1/2" threaded rod. (order rod separately)



• Kit sold in plastic bag.

Catalo	g No.
9ZN-5500- ¹ / ₂	9G-5500- ¹ / ₂
(1) pr. 9ZN-1205	(1) pr. 9G-1205
(2) HHC Screw 1/2" x 7/8" ZN	(2) HHC Screw 1/2" x 7/8" SS6
(2) N525 WO ZN	(2) N525 WO SS6
(4) B202 ZN ¹ / ₂ " sq washer	(4) B202 HDG 1/2" sq washer
(4) HN ¹ / ₂ " ZN	(4) HN 1/2" SS6


Green = Fastest shipped items Black = Normal lead-time items
Red = Normally long lead-time items

- **Horizontal Bend**
- · Horizontal Bend Barriers are flexible in order to conform to any horizontal fitting radius. Cut to length.
- Order catalog number based on loading depth.
- Furnished with three #10 x 1/2" zinc plated self-drilling screws and a 99-9982 Barrier Strip Splice.
- Standard length is 72" [6 ft.] (1829mm), sold individually.
- (*) Insert P or G

Vertical Bend Barriers

- · Vertical Bend Barriers are preformed to conform to a specific vertical fitting.
- Furnished with three #10 x 1/2" plated self-drilling screws and a 99-9982 Barrier Strip Splice.
- (*) Insert **P** or **G**
- (**) Insert 30, 45, 60 or 90 for degrees
- (†) Insert 12, 24, or 36 for radius

2	Tray	Catalo	og No.		н
	Series	Inside Bend	Outside Bend	in.	(mm)
4	148	72(*)-(**)VI(†)	72(*)-(**)VO(†)	2.8	(58)
H	156	737(*)-(**)VI(†)	737(*)-(**)VO(†)	3.4	(70)
	166	747(*)-(**)VI(†)	747(*)-(**)VO(†)	4.4	(91)
	176	757(*)-(**)VI(†)	757(*)-(**)VO(†)	5.4	(112)
e					

Tray

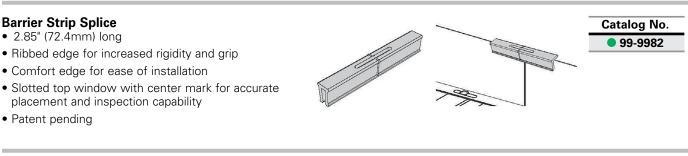
Series

148

156

166

176


Catalog No.

72(*)-90HBFL

737(*)-90HBFL

747(*)-90HBFL

757(*)-90HBFL

Black = Normal lead-time items Red = Normally long lead-time items

All dimensions in parentheses are millimeters unless otherwise specified.

• Green = Fastest shipped items

н

2.8

3.4

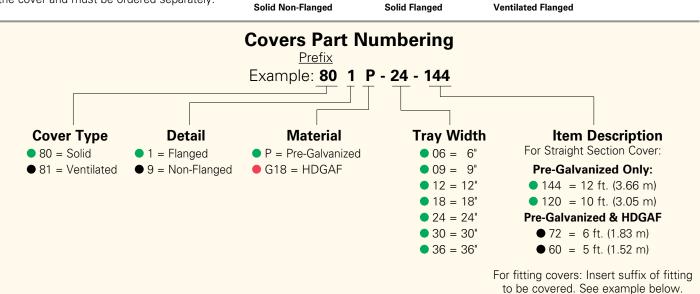
4.4

(mm) in.

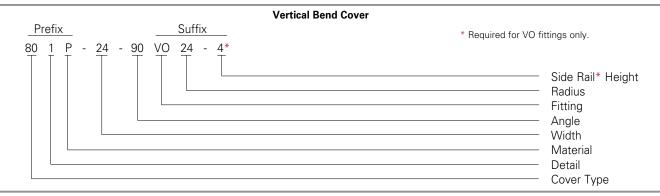
(58)

(70)

(91)


5.4 (112)

Covers


Solid covers should be used when maximum enclosure of the cables is desired and no accumulation of heat is expected. Ventilated covers provide an overhead cable shield yet allow heat to escape.

Flanged covers have a .30 in. (7.6 mm) flange.

We recommend that covers on vertical cable tray runs to a height of 6 ft. (1.83 m) to 8 ft. (2.44 m) above the floor to both isolate cables and personnel. Cover clamps are <u>not included</u> with the cover and must be ordered separately.

Example of Catalog Number for Fitting Cover:

Quantity of Standard Cover Clamps Required

Straight Section 60" or 72"4 pcs.Straight Section 120" or 144"6 pcs.Horizontal/Vertical Bends4 pcs.Tooc6 pcs.	
Tees 6 pcs. Crosses 8 pcs.	
Reducers	
Note: When using the Heavy Duty Cover Clamp, only one-half the number of clamps stated above is required.	

Check with B-Line Technical Support (<u>blinetechnicalsupport@eaton.com</u>) if there are questions/concerns about environmental loads for covers (wind, snow, sleet, rain, etc.).

• Green = Fastest shipped items • Black = Normal lead-time items • Red = Normally long lead-time items

Cover Joint Strip Used to join covers.						talog No.
Plastic. Only for use on flat covers. Color - gray. (‡) Insert tray width.					•	99-9980-(‡
Standard Cover Clamp		_	Tray	C	atalog	ı No.
Sold per piece For indoor service only			eries	Znplt		HDGAF
T of indoor service only			148	9ZN-90	019	9G-9019
			156	9ZN-9	014	🛑 9G-9014
			166	9ZN-9	015	9G-901
			176	9ZN-9	016	🛑 9G-9016
Combination Hold Down & Cover Class	y					
Sold per piece	J 		Tray Series	Ci Znplt/Pre-	atalog Galv	j No. HDGAF
Sold per piece		s	-		Galv	HDGAF
Sold per piece		S	eries	Znplt/Pre-	Galv 243	HDGAF
Sold per piece		s	148 156 166	Znplt/Pre- 9ZN-92 9P-904 9P-905	Galv 243 43 53	HDGAF 9G-9243 9G-9043 9G-9053
Combination Hold Down & Cover Clamp • Sold per piece • For indoor service only		s	eries 148 156	Znplt/Pre- 9ZN-92 9P-904	Galv 243 43 53	HDGAF 9G-9243 9G-9043 9G-9053
Sold per piece For indoor service only Heavy Duty Cover Clamp Should not be used on overlapping sectio		s	series 148 156 166 176	Znplt/Pre- 9ZN-92 9P-904 9P-905	Galv 243 13 53 53 53 93 9 No.	HDGAF 9G-9243 9G-9043 9G-9053
Sold per piece For indoor service only Heavy Duty Cover Clamp Should not be used on overlapping sectio		S 	eries 148 156 166 176 176	Znplt/Pre- 9ZN-97 9P-904 9P-905 9P-906	Galv 243 13 53 53 53 53	HDGAF 9G-9243 9G-9043 9G-9053 9G-9063
Sold per piece For indoor service only Heavy Duty Cover Clamp Should not be used on overlapping sectio		S Tray Series	Eeries 148 156 166 176 176 Pr 9F	Znplt/Pre- 9ZN-93 9P-904 9P-905 9P-906 9P-906 Catalog e-Galv -(‡)-9040	Galv 243 43 53 53 53 93 9 9 9 9 9 9 9	HDGAF 9G-9243 9G-9043 9G-9053 9G-9063
• Sold per piece		Tray Series 148	Pr 9F	Znplt/Pre- 9ZN-93 9P-904 9P-905 9P-906 9P-906 Catalog e-Galv -(‡)-9040	Galv 243 43 53 53 53 90 90 90	HDGAF 9G-9243 9G-9043 9G-9053 9G-9063 HDGAF -(‡)-9040 -(‡)-9044

Raised Cover Clamp

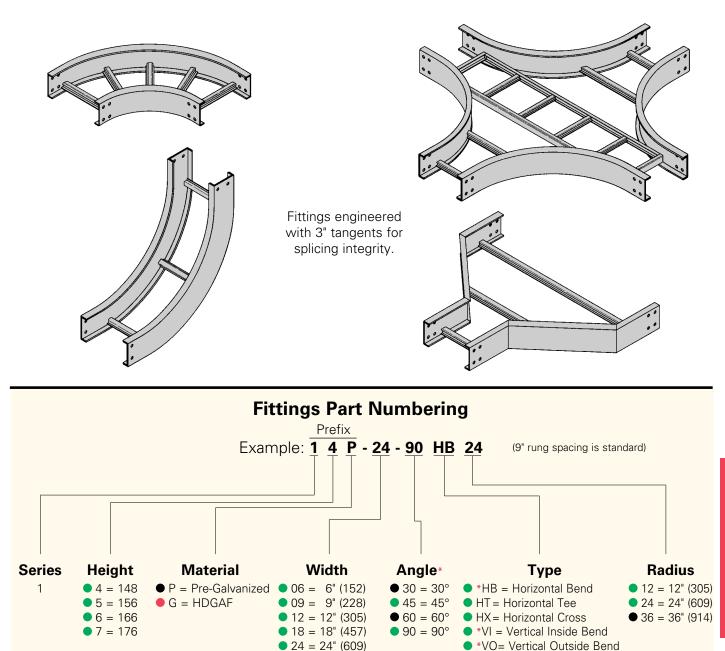
- For indoor service only.
- Sold per piece
- For use with flanged covers only.

Tray		G	ар
Series	Catalog No.	in.	(mm)
	9ZN-9101	1	(25.4)
Series 1	9ZN-9102	2	(50.8)
Selles I	9ZN-9103	3	(76.2)
	9ZN-9104	4	(101.6)

† Specify gap of 1", 2", 3" or 4".

• Green = Fastest shipped items • Black = Normal lead-time items • Red = Normally long lead-time items

Section 1- Acceptable Manufacturers

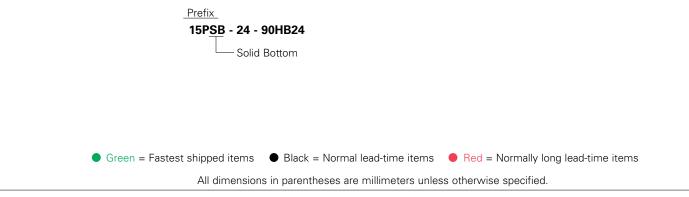

1.01 Manufacturer: Subject to compliance with these specifications, Eaton's B-Line series cable tray systems shall be as manufactured by Eaton.

Section 2- Cable Tray Sections and Components

- 2.01 General: Except as otherwise indicated, provide metal cable trays, of types, classes and sizes indicated; with splice plates, bolts, nuts and washers for connecting units. Construct units with rounded edges and smooth surfaces; in compliance with applicable standards; and with the following additional construction features. Cable tray shall be installed according to the latest revision of NEMA VE 2.
- 2.02 Pre-Galvanized Steel: Straight sections, fitting side rails, rungs, and covers shall be made from structural quality steel meeting the minimum mechanical properties and mill galvanized in accordance with ASTM A653 SS, Grade 33, coating designation G90. Hardware finish shall be electro-galvanized zinc per ASTM B633.
- 2.03 Hot dip Galvanized Steel: All side rails, covers, splice plates, and rungs shall be made from structural quality steel meeting the minimum mechanical properties of ASTM A1011 SS, Grade 33 for 14 gauge and heavier, ASTM A1008, Grade 33 Type 2 for 16 gauge and lighter, and shall be hot dip galvanized after fabrication in accordance with ASTM A123. Mill galvanized covers are not acceptable for hot dipped galvanized cable tray. Hardware finish shall be chromium zinc per ASTM F-1136-88.
- 2.04 Ladder Cable Trays shall consist of two longitudinal members (side rails) with transverse members (rungs) welded to the side rails. Rungs shall be spaced [6] [9] [12] inches apart. Rung spacing in radiused fittings shall be industry standard 9" and measured at the center of the tray's width. No portion of the rungs shall protrude below the bottom plane of the side rails.
- 2.06 Cable tray loading depth shall be [3] [4] [5] [6] inches per NEMA VE 1.
- 2.06 Straight sections shall be supplied in standard [12 foot] [10 foot (3 m)] lengths.
- 2.07 Cable tray widths shall be [6] [9] [12] [18] [24] [30] [36] inches or as shown on drawings.
- 2.08 Splice plates shall be L-shaped with 4 nuts and bolts per plate. The resistance of fixed splice connections between an adjacent section of tray shall not exceed 0.00033 ohm.
- 2.09 All fittings must have a minimum radius of [12] [24] inches.

Section 3- Loading Capacities and Testing

- 3.01 Cable tray shall be capable of carrying a uniformly distributed load of _____ lbs./ft. on a _____ ft. support span with a safety factor of 1.5 when supported as a simple span and tested per NEMA VE 1 5.2. Cable tray shall be made to manufacturing tolerances as specified by NEMA.
- 3.02 Upon request, manufacturer shall provide test reports in accordance with the latest revision of NEMA VE 1 or CSA C22.2 No. 126.

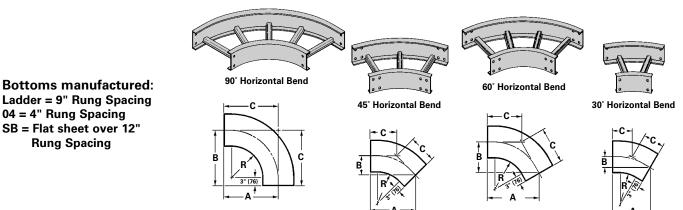


For steel 4", 5", 6", 7" non-ventilated add SB as shown below.

• 24 = 24" (609)

30 = 30" (762)

36 = 36" (914)


* Angle only required for HB, VI and VO fittings.

• LR = Left Reducer

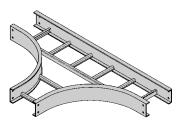
RR = Right Reducer SR = Straight Reducer

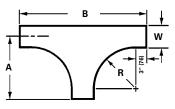
Horizontal Bends 90° 60° 45° 30° (HB)

1 pair splice plates with hardware included.

_	end dius	Tray Width	9	0° Horizonta Dimensio				60° Horizon Dimens			
	R		Catalog No.	Α	В	С	Catalog No.	Α	В	С	
in.	(mm)	in. (mm)	-	in. (mm)	in. (mm)	in. (mm)	-	in. (mm)	in. (mm)	in.	(mm)
		6 (152	(Pre)-06-90HB12	18 (457)	18 (457)	18 (457)	(Pre)-06-60HB12	17 ¹ / ₂ (445)	10 ¹ / ₈ (257)	11 ¹¹ / ₁₆	(297)
		9 (228	(Pre)-09-90HB12	191/2 (495)	19 ¹ / ₂ (495)	19 ¹ / ₂ (495)	(Pre)-09-60HB12	1813/16 (478)	107/8 (276)	12 ¹ /2	(318)
		12 (305	(Pre)-12-90HB12	21 (533)	21 (533)	21 (533)	(Pre)-12-60HB12	20 ¹ / ₁₆ (510)	115/8 (295)	13 ³ /8	(340)
12	(305)	18 (457	(Pre)-18-90HB12	24 (610)	24 (610)	24 (610)	(Pre)-18-60HB12	2211/16 (576)	13 ¹ / ₈ (333)	15 ¹ /8	(384)
		24 (609	(Pre)-24-90HB12	27 (686)	27 (686)	27 (686)	(Pre)-24-60HB12	255/16 (643)	145/8 (372)	16 ⁷ /8	(429)
		30 (762	(Pre)-30-90HB12	30 (762)	30 (762)	30 (762)	(Pre)-30-60HB12	277/8 (708)	16 ¹ /8 (410)	18 ⁹ /16	(472)
		36 (914	(Pre)-36-90HB12	33 (838)	33 (838)	33 (838)	(Pre)-36-60HB12	30 ¹ / ₂ (775)	17 ⁵ /8 (448)	20 ⁵ /16	(516)
		6 (152	(Pre)-06-90HB24	30 (762)	30 (762)	30 (762)	(Pre)-06-60HB24	277/8 (708)	16 ¹ / ₈ (410)	18 ⁹ /16	(472)
		9 (228	(Pre)-09-90HB24	311/2 (800)	311/2 (800)	311/2 (800)	(Pre)-09-60HB24	29 ³ /16 (741)	16 ⁷ /8 (429)	19 ⁷ /16	(494)
		12 (305	(Pre)-12-90HB24	33 (838)	33 (838)	33 (838)	(Pre)-12-60HB24	30 ¹ / ₂ (775)	175/8 (448)	20 ⁵ /16	(516)
24	(609)	18 (457	(Pre)-18-90HB24	36 (914)	36 (914)	36 (914)	(Pre)-18-60HB24	331/16 (840)	19 ¹ / ₈ (486)	22 ¹ /16	(560)
		24 (609	(Pre)-24-90HB24	39 (991)	39 (991)	39 (991)	(Pre)-24-60HB24	3511/16 (907)	205/8 (524)	23 ¹³ /16	(605)
		30 (762	(Pre)-30-90HB24	42 (1067)	42 (1067)	42 (1067)	(Pre)-30-60HB24	381/4 (972)	22 ¹ /8 (562)	25 ¹ /2	(648)
		36 (914	(Pre)-36-90HB24	45 (1143)	45 (1143)	45 (1143)	(Pre)-36-60HB24	407/8 (1038)	235/8 (600)	27 ¹ /4	(692
				45° Horizonta	l Bend			30° Horizon	tal Bend		
		6 (152	(Pre)-06-45HB12	15 ³ / ₄ (400)	6 ¹ / ₂ (165)	9 ³ / ₁₆ (233)	(Pre)-06-30HB12	13 ¹ / ₈ (333)	31/2 (89)	7	(175)
		9 (228	(Pre)-09-45HB12	16 ¹³ / ₁₆ (427)	6 ¹⁵ / ₁₆ (176)	913/16 (249)	(Pre)-09-30HB12	13 ⁷ /8 (352)	311/16 (94)	7 ⁷ /16	(189)
		12 (305	(Pre)-12-45HB12	17 ⁷ /8 (454)	7 ³ / ₈ (187)	107/16 (265)	(Pre)-12-30HB12	145/8 (372)	315/16 (100)	7 ¹³ / ₁₆	(198)
12	(305)	18 (457	(Pre)-18-45HB12	20 (500)	8 ¹ / ₄ (210)	1111/16 (297)	(Pre)-18-30HB12	16 ¹ /8 (410)	45/16 (135)	8 ⁵ /8	(219)
		24 (609	(Pre)-24-45HB12	22 ¹ / ₁₆ (560)	9 ¹ / ₈ (232)	1215/16 (329)	(Pre)-24-30HB12	175/8 (448)	411/16 (119)	9 ⁷ / ₁₆	(240)
		30 (762	(Pre)-30-45HB12	243/16 (614)	10 (250)	14 ³ / ₁₆ (360)	(Pre)-30-30HB12	19 ¹ / ₈ (486)	5 ¹ / ₈ (130)	10 ¹ /4	(260)
		36 (914	(Pre)-36-45HB12	265/16 (668)	10 ¹⁵ /16 (278)	157/16 (392)	(Pre)-36-30HB12	205/8 (524)	5 ¹ / ₂ (140)	11 ¹ / ₁₆	(281)
		6 (152	(Pre)-06-45HB24	243/16 (614)	10 (250)	14 ³ /16 (360)	(Pre)-06-30HB24	19 ¹ / ₈ (486)	5 ¹ / ₈ (130)	10 ¹ /4	(260)
		9 (228	(Pre)-09-45HB24	251/4 (641)	10 ¹ / ₂ (267)	14 ¹³ / ₁₆ (376)	(Pre)-09-30HB24	19 ⁷ /8 (505)	5 ⁵ /16 (135)	105/8	(270)
		12 (305	(Pre)-12-45HB24	265/16 (668)	10 ¹⁵ /16 (278)	15 ⁷ /16 (392)	(Pre)-12-30HB24	205/8 (524)	5 ¹ / ₂ (140)	11 ¹ / ₁₆	(281)
24	(609)	18 (457	(Pre)-18-45HB24	287/16 (722)	11 ¹³ /16 (300)	16 ¹¹ / ₁₆ (424)	(Pre)-18-30HB24	221/8 (562)	5 ¹⁵ /16 (151)	11 ¹³ /16	(300)
		24 (609	(Pre)-24-45HB24	30 ⁹ /16 (776)	12 ¹¹ /16 (322)	17 ¹⁵ / ₁₆ (456)	(Pre)-24-30HB24	235/8 (600)	6 ⁵ / ₁₆ (160)	12 ⁵ /8	(321)
		00 1700	(Dro) 20 454024	2211/ (020)	13 ⁹ / ₁₆ (345)	19 ¹ /8 (486)	(Pre)-30-30HB24	25 ¹ /8 (638)	6 ³ / ₄ (172)	13 ⁷ /16	(341)
		30 (762	(Pre)-30-45HB24	3211/16 (830)	13/16 (345)	1978 (400)	(Fre)-30-30HDZ4	23 /8 (030)	0/4 (1/2)	13/16	(0+1)

(Pre) See page H-18 for catalog number prefix.

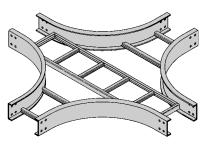

Width dimensions are to inside wall. Manufacturing tolerances apply to all dimensions.

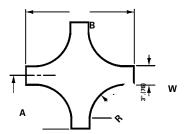

All dimensions in parentheses are millimeters unless otherwise specified.

Horizontal Tee (HT)

2 pair splice plates with hardware included.

	end dius		ray idth	Horizontal Tee Dimensions									
	R (mm)	in.	(mm)	Catalog No.	in.	A (mm)	in.	B (mm)					
		6	(152)	(Prefix)-06-HT12	18	(457)	36	(914)					
		9	(228)	(Prefix)-09-HT12	19 ¹ / ₂	(495)	39	(991)					
		12	(305)	(Prefix)-12-HT12	21	(533)	42	(1067)					
12	(305)	18	(457)	(Prefix)-18-HT12	24	(610)	48	(1219)					
		24	(609)	(Prefix)-24-HT12	27	(686)	54	(1372)					
		30	(762)	(Prefix)-30-HT12	30	(762)	60	(1524)					
		36	(914)	(Prefix)-36-HT12	33	(838)	66	(1676)					
		6	(152)	(Prefix)-06-HT24	30	(762)	60	(1524)					
		9	(228)	(Prefix)-09-HT24	31 ¹ /2	(800)	63	(1600)					
		12	(305)	(Prefix)-12-HT24	33	(838)	66	(1676)					
24	(609)	18	(457)	(Prefix)-18-HT24	36	(914)	72	(1829)					
		24	(609)	(Prefix)-24-HT24	39	(991)	78	(1981)					
		30	(762)	(Prefix)-30-HT24	42	(1067)	84	(2134)					
		36	(914)	(Prefix)-36-HT24	45	(1143)	90	(2286)					



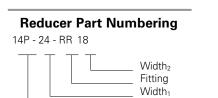

(Prefix) See page H-18 for catalog number prefix.

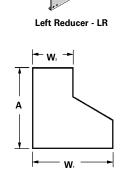
Horizontal Cross (HX)

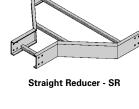
3 pair splice plates with hardware included.

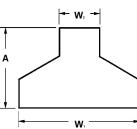
-	end dius		ray idth	Н	orizont	al Cross Dimen	sions	
	R			Catalog No.		Α		В
in.	(mm)	in.	(mm)		in.	(mm)	in.	(mm)
		6	(152)	(Prefix)-06-HX12	18	(457)	36	(914)
		9	(228)	(Prefix)-09-HX12	19 ¹ /2	(495)	39	(991)
		12	(305)	(Prefix)-12-HX12	21	(533)	42	(1067)
12	(305)	18	(457)	(Prefix)-18-HX12	24	(610)	48	(1219)
		24	(609)	(Prefix)-24-HX12	27	(686)	54	(1372)
		30	(762)	(Prefix)-30-HX12	30	(762)	60	(1524)
		36	(914)	(Prefix)-36-HX12	33	(838)	66	(1676)
		6	(152)	(Prefix)-06-HX24	30	(762)	60	(1524)
		9	(228)	(Prefix)-09-HX24	31 ¹ /2	(800)	63	(1600)
		12	(305)	(Prefix)-12-HX24	33	(838)	66	(1676)
24	(609)	18	(457)	(Prefix)-18-HX24	36	(914)	72	(1829)
		24	(609)	(Prefix)-24-HX24	39	(991)	78	(1981)
		30	(762)	(Prefix)-30-HX24	42	(1067)	84	(2134)
		36	(914)	(Prefix)-36-HX24	45	(1143)	90	(2286)

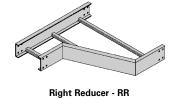
(Prefix) See page H-18 for catalog number prefix.

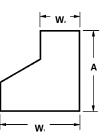

Width dimensions are to inside wall. Manufacturing tolerances apply to all dimensions.


All dimensions in parentheses are millimeters unless otherwise specified.

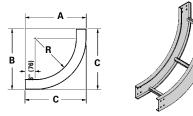

Reducers (LR, SR, RR)


1 pair splice plates with hardware included.

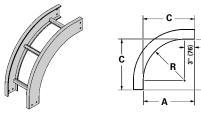

Prefix



Tray	Width		Left Redu	icer - L	R	Straight Red	ucer -	SR	Right Redu	cer - RR	
W 1	י	N ₂	Catalog No.		4	Catalog No.	4	4	Catalog No.	A	4
in. (mm)	in.	(mm)		in.	(mm)		in.	(mm)		in.	(mm)
9 (228)	6	(152)	(Prefix)-09-LR06	9 ³ / ₄	(248)	(Prefix)-09-SR06	8 ⁷ /8	(225)	(Prefix)-09-RR06	9 ³ /4	(248)
12 (305)	6	(152)	(Prefix)-12-LR06	11 ¹ /2	(292)	(Prefix)-12-SR06	9 ³ / ₄	(248)	(Prefix)-12-RR06	11 ¹ / ₂	(292)
12 (000)	9	(228)	(Prefix)-12-LR09	9 ³ /4	(248)	(Prefix)-12-SR09	8 ⁷ /8	(225)	(Prefix)-12-RR09	9 ³ /4	(248)
	6	(152)	(Prefix)-18-LR06	14 ¹⁵ /16	(379)	(Prefix)-18-SR06	11 ¹ / ₂	(292)	(Prefix)-18-RR06	14 ¹⁵ / ₁₆	(379)
18 (457)	9	(228)	(Prefix)-18-LR09	13 ³ /16	(335)	(Prefix)-18-SR09	10 ⁵ /8	(270)	(Prefix)-18-RR09	13 ³ /16	(335)
	12	(305)	(Prefix)-18-LR12	11 ¹ /2	(292)	(Prefix)-18-SR12	9 ³ / ₄	(248)	(Prefix)-18-RR12	11 ¹ / ₂	(292)
	6	(152)	(Prefix)-24-LR06	18 ³ /8	(467)	(Prefix)-24-SR06	13 ³ /16	(335)	(Prefix)-24-RR06	18 ³ /8	(467)
24 (609)	9	(228)	(Prefix)-24-LR09	16 ¹¹ /16	(424)	(Prefix)-24-SR09	12 ³ /8	(314)	(Prefix)-24-RR09	16 ¹¹ / ₁₆	(424)
24 (000)	12	(305)	(Prefix)-24-LR12	1415/16	(379)	(Prefix)-24-SR12	11 ¹ / ₂	(292)	(Prefix)-24-RR12	1415/16	(379)
	18	(457)	(Prefix)-24-LR18	11 ¹ /2	(292)	(Prefix)-24-SR18	9 ³ / ₄	(248)	(Prefix)-24-RR18	11 ¹ / ₂	(292)
	6	(152)	(Prefix)-30-LR06	21 ⁷ /8	(555)	(Prefix)-30-SR06	1415/16	(379)	(Prefix)-30-RR06	21 ⁷ /8	(555)
	9	(228)	(Prefix)-30-LR09	20 ¹ /8	(511)	(Prefix)-30-SR09	14 ¹ / ₁₆	(358)	(Prefix)-30-RR09	20 ¹ /8	(511)
30 (762)	12	(305)	(Prefix)-30-LR12	18 ³ /8	(467)	(Prefix)-30-SR12	13 ³ / ₁₆	(335)	(Prefix)-30-RR12	18 ³ /8	(467)
	18	(457)	(Prefix)-30-LR18	14 ¹⁵ /16	(379)	(Prefix)-30-SR18	11 ¹ / ₂	(292)	(Prefix)-30-RR18	14 ¹⁵ / ₁₆	(379)
	24	(609)	(Prefix)-30-LR24	11 ¹ / ₂	(292)	(Prefix)-30-SR24	9 ³ / ₄	(248)	(Prefix)-30-RR24	11 ¹ / ₂	(292)
	6	(152)	(Prefix)-36-LR06	25 ⁵ /16	(643)	(Prefix)-36-SR06	1611/16	(424)	(Prefix)-36-RR06	23 ⁵ /16	(643)
	9	(228)	(Prefix)-36-LR09	23 ⁹ /16	(598)	(Prefix)-36-SR09	15 ¹³ /16	(402)	(Prefix)-36-RR09	23 ⁹ /16	(598)
36 (914)	12	(305)	(Prefix)-36-LR12	217/8	(555)	(Prefix)-36-SR12	14 ¹⁵ / ₁₆	(379)	(Prefix)-36-RR12	21 ⁷ /8	(555)
00 (01 1/	18	(457)	(Prefix)-36-LR18	18 ³ /8	(467)	(Prefix)-36-SR18	13 ³ /16	(335)	(Prefix)-36-RR18	18 ³ /8	(467)
	24	(609)	(Prefix)-36-LR24	14 ¹⁵ /16	(379)	(Prefix)-36-SR24	11 ¹ / ₂	(292)	(Prefix)-36-RR24	14 ¹⁵ / ₁₆	(379)
	30	(762)	(Prefix)-36-LR30	11 ¹ / ₂	(292)	(Prefix)-36-SR30	9 ³ / ₄	(248)	(Prefix)-36-RR30	11 ¹ / ₂	(292)


(Prefix) See page H-18 for catalog number prefix.

Width dimensions are to inside wall. Manufacturing tolerances apply to all dimensions.


B

Vertical Bend 90° (VO, VI)

1 pair splice plates with hardware included.

90° Vertical Inside

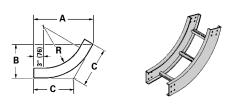
90° Vertical Outside

90° Vertical Inside Bend (VI)

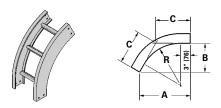
B	Bend								VII	Dimensi	ons [in. (mm)]				
R	adius	w	idth		Ser	ies 14 S	iteel	Ser	ies 15 S	teel	Sei	ries 16 S	teel	Se	ries 17 S	teel
in.	R (mm)	in.	(mm)	Catalog No.	Α	В	C	A	В	C	Α	В	C	A	В	C
		6	(152)	(Pre)-06-90VI12												,
		9	(228)	(Pre)-09-90VI12	1											
		12	(305)	(Pre)-12-90VI12	187/16	18 ⁷ /16	18 ⁷ /16	19 ³ / ₁₆	19 ³ / ₁₆	19 ³ / ₁₆	20 ³ /16	20 ³ / ₁₆	20 ³ / ₁₆	21 ³ / ₁₆	21 ³ / ₁₆	21 ³ / ₁₆
12	(305)	18	(457)	(Pre)-18-90VI12												
		24	(609)	(Pre)-24-90VI12	(468)	(468)	(468)	(487)	(487)	(487)	(513)	(513)	(513)	(538)	(538)	(538)
		30	(762)	(Pre)-30-90VI12	1											
		36	(914)	(Pre)-36-90VI12												
		6	(152)	(Pre)-06-90VI24												
		9	(228)	(Pre)-09-90VI24												
		12	(305)	(Pre)-12-90VI24	30 ⁷ / ₁₆	30 ⁷ / ₁₆	30 ⁷ / ₁₆	31 ³ / ₁₆	31 ³ / ₁₆	31 ³ / ₁₆	32 ³ /16	32 ³ /16	32 ³ / ₁₆	33 ³ /16	33 ³ /16	33 ³ / ₁₆
24	(609)	18	(457)	(Pre)-18-90VI24			-				· ·					
		24	(609)	(Pre)-24-90VI24	(773)	(773)	(773)	(792)	(792)	(792)	(817)	(817)	(817)	(843)	(843)	(843)
		30	(762)	(Pre)-30-90VI24												
		36	(914)	(Pre)-36-90VI24												

90° Vertical Outside Bend (VO)

-	end adius	w	'idth		VO Dim	n. (mm)] 1	
in.	R (mm)	in.	(mm)	Catalog No.	Α	В	C
		6	(152)	(Pre)-06-90V012			
		9	(228)	(Pre)-09-90V012			
		12	(305)	(Pre)-12-90V012	15	15	15
12	(305)	18	(457)	(Pre)-18-90V012			-
		24	(609)	(Pre)-24-90V012	(381)	(381)	(381)
		30	(762)	(Pre)-30-90V012			
		36	(914)	(Pre)-36-90V012			
		6	(152)	(Pre)-06-90V024			
		9	(228)	(Pre)-09-90V024			
		12	(305)	(Pre)-12-90V024	27	27	27
24	(609)	18	(457)	(Pre)-18-90V024			
		24	(609)	(Pre)-24-90V024	(686)	(686)	(686)
		30	(762)	(Pre)-30-90V024			
		36	(914)	(Pre)-36-90V024			


(Pre) See page H-18 for catalog number prefix.

Manufacturing tolerances apply to all dimensions.


All dimensions in parentheses are millimeters unless otherwise specified.

Vertical Bend 60° (VO, VI)

1 pair splice plates with hardware included.

60° Vertical Inside

60° Vertical Outside

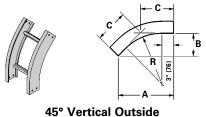
60° Vertical Inside Bend (VI)

В	end								VI C	Dimensio	ons [in. (mm)]				
Ra	adius	w	idth		Ser	ies 14 S	teel	Ser	ies 15 St	teel	Sei	ries 16 S	Steel S		eries 17 Steel	
in.	R (mm)	in.	(mm)	Catalog No.	Α	В	С	Α	в	С	Α	В	С	Α	В	С
	(11117)	6	(152)	(Pre)-06-60VI12	~		Ŭ	~	5	Ŭ			<u> </u>	<u>^</u>		•
		9	(228)	(Pre)-09-60VI12												
		12	(305)	(Pre)-12-60VI12												
12	(305)	12	(457)	(Pre)-18-60VI12	18 ¹ / ₁₆	10⁷/ 16	12	18 ¹ /2	10 ¹¹ / ₁₆	12 ³ /8	19 ³ /8	11 ³ / ₁₆	12 ¹⁵ / ₁₆	20 ¹ /4	11 ¹¹ / ₁₆	13 ¹ /2
12	2 (303)	24	(609)	(Pre)-24-60VI12	(459)	(265)	(305)	(470)	(271)	(314)	(492)	(284)	(328)	(514)	(297)	(343)
		30	(762)	(Pre)-24-00V112 (Pre)-30-60V112												
		36	(914)	(Pre)-36-60VI12												
		6	(152)	(Pre)-06-60VI24												
		9	(228)	(Pre)-09-60VI24												
		12	(305)	(Pre)-12-60VI24	28 ⁷ /16	16 ⁷ /16	18 ¹⁵ /16	28 ¹⁵ / ₁₆	18 ¹¹ /16	19 ¹ /4	29 ³ /4	17 ³ / ₁₆	19 ⁷ /8	305/8	17 ¹¹ / ₁₆	207/16
24	(609)	18	(457)	(Pre)-18-60VI24	· ·							-				
		24	(609)	(Pre)-24-60VI24	(722)	(417)	(481)	(735)	(424)	(489)	(755)	(436)	(505)	(778)	(449)	(519)
		30	(762)	(Pre)-30-60VI24												
		36	(914)	(Pre)-36-60VI24	1											

60° Vertical Outside Bend (VO)

B	end				VO Dim	ensions [i	in. (mm)]
Ra	adius R	w	/idth		4	All Series	1
in.	n (mm)	in.	(mm)	Catalog No.	Α	В	C
		6	(152)	(Pre)-06-60V012			
		9	(228)	(Pre)-09-60V012			
		12	(305)	(Pre)-12-60V012	14 ⁷ /8	8 ⁵ / ₈	Q15/10
12	(305)	18	(457)	(Pre)-18-60V012			
		24	(609)	(Pre)-24-60V012	(378)	(219)	C 9 ¹⁵ / ₁₆ (252) 16 ⁷ / ₈ (428)
		30	(762)	(Pre)-30-60V012			
		36	(914)	(Pre)-36-60V012			
		6	(152)	(Pre)-06-60V024			
		9	(228)	(Pre)-09-60V024			
		12	(305)	(Pre)-12-60V024	255/	145/8	167/-
24	(609)	18	(457)	(Pre)-18-60V024	25 ⁵ /16		9 ¹⁵ / ₁₆ (252) 16 ⁷ / ₈
		24	(609)	(Pre)-24-60V024	(643)	(371)	
		30	(762)	(Pre)-30-60V024			
		36	(914)	(Pre)-36-60V024			

(Pre) See page H-18 for catalog number prefix.


Manufacturing tolerances apply to all dimensions.

Vertical Bend 45° (VO, VI)

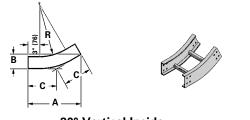
1 pair splice plates with hardware included.

45° Vertical Inside Bend (VI)

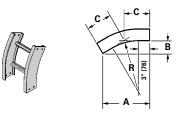
В	end								VII	Dimensio	ons [in. (mm)]				
Ra	adius	w	idth		Ser	ies 14 S	teel	Ser	ies 15 S	teel	Sei	ries 16 St	teel	Series 17 Steel		
in.	R (mm)	in.	(mm)	Catalog No.	Α	В	C	A	В	C	Α	В	C	A	В	C
		6	(152)	(Pre)-06-45VI12												
		9	(228)	(Pre)-09-45VI12	1											
		12	(305)	(Pre)-12-45VI12	16 ³ /16	6 ¹¹ /16	9 ¹ / ₂	16 ⁹ / ₁₆	67/	9 ¹¹ / ₁₆	17 ¹ /4	7 ³ / ₁₆	101/	18	77/	109/
12	2 (305)	18	(457)	(Pre)-18-45VI12					6 ⁷ /8		· ·		10 ¹ /8		7 ⁷ /16	10 ⁹ /16
		24	(609)	(Pre)-24-45VI12	(411)	(170)	(241)	(420)	(174)	(246)	(438)	(182)	(257)	(457)	(189)	(268)
		30	(762)	(Pre)-30-45VI12	1											
		36	(914)	(Pre)-36-45VI12												
		6	(152)	(Pre)-06-45VI24												
		9	(228)	(Pre)-09-45VI24												
		12	(305)	(Pre)-12-45VI24	24 ¹¹ / ₁₆	103/	1 47/	251/	103/	1 411 /	25 ³ /4	1011/	161/	261/	11	151/
24	(609)	18	(457)	(Pre)-18-45VI24		10 ³ /16	14 ⁷ /16	25 ¹ /16	10 ³ /8	14 ¹¹ / ₁₆		10 ¹¹ /16	15 ¹ /16	26 ¹ /2		15 ¹ /2
		24	(609)	(Pre)-24-45VI24	(627)	(259)	(367)	(792)	(792)	(373)	(654)	(271)	(382)	(673)	(279)	(394)
		30	(762)	(Pre)-30-45VI24												
		36	(914)	(Pre)-36-45VI24	1											

45° Vertical Outside Bend (VO)

-	end Idius	w	'idth		VO Dimensions [in. (mm)] All Series 1				
in.	R (mm)	in.	(mm)	Catalog No.	Α	В	C		
		6	(152)	(Pre)-06-45V012					
		9	(228)	(Pre)-09-45V012					
		12	(305)	(Pre)-12-45V012	135/8	55/8	Q		
12	(305)	18	(457)	(Pre)-18-45V012					
		24	(609)	(Pre)-24-45V012	(346)	(143)	(203)		
		30	(762)	(Pre)-30-45V012					
		36	(914)	(Pre)-36-45V012					
		6	(152)	(Pre)-06-45V024					
		9	(228)	(Pre)-09-45V024					
		12	(305)	(Pre)-12-45V024	22 ¹ / ₁₆	9 ¹ /8	1215/10		
24	(609)	18	(457)	(Pre)-18-45V024					
		24	(609)	(Pre)-24-45V024	(560)	(232)	1		
		30	(762)	(Pre)-30-45V024					
		36	(914)	(Pre)-36-45V024					


(Pre) See page H-18 for catalog number prefix.

Manufacturing tolerances apply to all dimensions.


All dimensions in parentheses are millimeters unless otherwise specified.

Vertical Bend 30° (VO, VI)

1 pair splice plates with hardware included.

30° Vertical Inside

30° Vertical Outside

30° Vertical Inside Bend (VI)

В	end								VII	Dimensio	ONS [in. (mm)]				
Ra	adius	w	idth		Ser	ies 14 S	teel	Ser	ies 15 S	teel	Sei	ies 16 S	teel	Ser	ries 17 St	teel
in.	R (mm)	in.	(mm)	Catalog No.	A	В	C	A	В	C	A	В	C	A	в	C
		6	(152)	(Pre)-06-30VI12												
		9	(228)	(Pre)-09-30VI12												
		12	(305)	(Pre)-12-30VI12	13 ⁷ /16	25/	73/	13 ¹¹ /16	3 ¹¹ / ₁₆	75/	1.43/	013/	75/8	1 4 11 /	015/	77/
12	2 (305)	18	(457)	(Pre)-18-30VI12	· ·	35/8	7 ³ /16	· ·		7 ⁵ /16	14 ³ /16	3 ¹³ /16		14 ¹¹ / ₁₆	3 ¹⁵ /16	7 ⁷ /8
		24	(609)	(Pre)-24-30VI12	(341)	(92)	(182)	(347)	(93)	(186)	(360)	(97)	(193)	(373)	(100)	(200)
		30	(762)	(Pre)-30-30VI12												
		36	(914)	(Pre)-36-30VI12												
		6	(152)	(Pre)-06-30VI24												
		9	(228)	(Pre)-09-30VI24												
		12	(305)	(Pre)-12-30VI24	19 ⁷ /16	5 ³ /16	10 ⁷ /16	19 ¹¹ / ₁₆	5 ⁵ /16	10 ⁹ / ₁₆	20 ³ /16	5 ⁷ /16	10 ¹³ /16	20 ¹¹ / ₁₆	5 ⁹ /16	11 ¹ /16
24	(609)	18	(457)	(Pre)-18-30VI24												
		24	(609)	(Pre)-24-30VI24	(494)	(132)	(265)	(500)	(135)	(268)	(513)	(138)	(274)	(525)	(141)	(281)
		30	(762)	(Pre)-30-30VI24												
		36	(914)	(Pre)-36-30VI24												

30° Vertical Outside Bend (VO)

	end Idius	w	'idth			ensions _{[i} All Series	
in.	R (mm)	in.	(mm)	Catalog No.	Α	В	C
		6	(152)	(Pre)-06-30V012			
		9	(228)	(Pre)-09-30V012			
		12	(305)	(Pre)-12-30V012	115/8	3 ¹ /8	63/10
2	(305)	18	(457)	(Pre)-18-30V012	(295)	(79)	
		24	(609)	(Pre)-24-30V012	(295)	(79)	6 ³ / ₁₆ (157) 9 ⁷ / ₁₆
		30	(762)	(Pre)-30-30V012			
		36	(914)	(Pre)-36-30V012			
		6	(152)	(Pre)-06-30V024			
		9	(228)	(Pre)-09-30V024			
		12	(305)	(Pre)-12-30V024	17 ⁵ /8	4 ¹¹ / ₁₆	Q7/10
24	(609)	18	(457)	(Pre)-18-30V024			
- 1		24	(609)	(Pre)-24-30V024	(448)	(119)	(157)
		30	(762)	(Pre)-30-30V024			
		36	(914)	(Pre)-36-30V024			

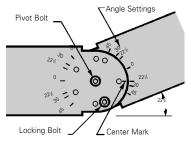
(Pre) See page H-18 for catalog number prefix.

Manufacturing tolerances apply to all dimensions.

Adjustable Vertical Bends are made up of one or more vertical bend segments and can be used as a vertical inside (VI) or vertical outside (VO) bend. This design provides for vertical changes in direction with angles 45°, 60° and 90° for 12" (305 mm) or 24" (609 mm) radius. The chart below shows the number of segments required for the various combinations of angles and radii. The VBS-1, VBS-2 and VBS-3 include one, two or three segments respectively with splice plates and hardware. Holes for setting standard angles are pre-punched in each segment. Other angles can be set by field drilling another hole for the locking bolt.

Vertical Bend Segments (VBS)

Available for 148P and 148G only.

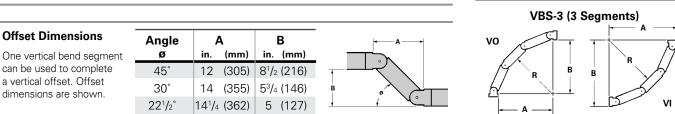

Nomina	al 🛛			Dimens	ions		
Bend	Catalog		VO			VI	
Radius	No.	A	В	R	A	В	R
in. (mm	1)	in. (mm)	in. (mm)	in. (mm)	in. (mm)	in. (mm)	in. (mm)
	90° Vertical Inside or	Outside					
12 (305) 14(*)-(‡)-VBS-1	81/4 (210)	81/4 (210)	6 ¹ / ₂ (165)	12 ¹ /8 (303)	12 ¹ / ₈ (303)	101/2 (267)
24 (609) 14(*)-(‡)-VBS-3	24 (610)	24 (610)	221/4 (565)	277/8 (708)	27 ⁷ /8 (708)	261/4 (667)
	60° Vertical Inside or	Outside					
12 (305) 14(*)-(‡)-VBS-1	113/4 (298)	6 ¹ / ₂ (165)	12 (305)	14 ³ / ₄ (375)	8 ¹ / ₂ (216)	16 (406)
24 (609) 14(*)-(‡)-VBS-2	113/4 (298)	61/2 (165)	12 (305)	14³/₄ (375)	81/2 (216)	16 (406)
	45° Vertical Inside or	Outside					
12 (305) 14(*)-(‡)-VBS-1	12 ³ / ₄ (324)	51/4 (133)	171/8 (435)	15 ¹ / ₂ (394)	6 ⁷ / ₈ (175)	21 (540)
24 (609) 14(*)-(‡)-VBS-1	12 ³ / ₄ (324)	51/4 (133)	17 ¹ /8 (435)	15 ¹ / ₂ (394)	6 ⁷ / ₈ (175)	21 (540)

Notes:

1. (*) Insert material type: P=Pre Galvanized, G=HDGAF

2. (‡) Insert width 6, 9, 12, 18, 24, 30, 36

Fitting Hole Pattern



Setting the Angle

To find correct angle setting, divide angle of offset by the number of segments plus one. The result is equal to the angle setting stamped on the vertical bend segment and the splice plate. After inserting center pivot bolt, align the mark at the end of the segment or splice plate with the angle and insert locking bolt in the pre-punched hole. **Example:** 90° bend, 24" radius requires 3 segments

Solution 3 segments + 1 = 4 90° divided by 4 = $22^{1/2}$ °

Set all vertical segments at 221/2°

• Green = Fastest shipped items

Black = Normal lead-time items

All dimensions in parentheses are millimeters unless otherwise specified.

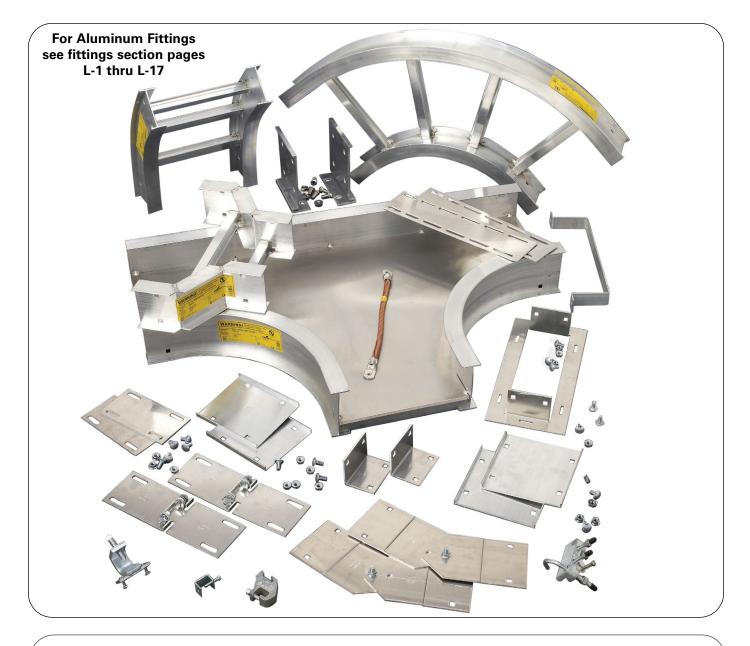
VBS-1 (1 Segment)

VBS-2 (2 Segments)

R

vo

vo


Δ

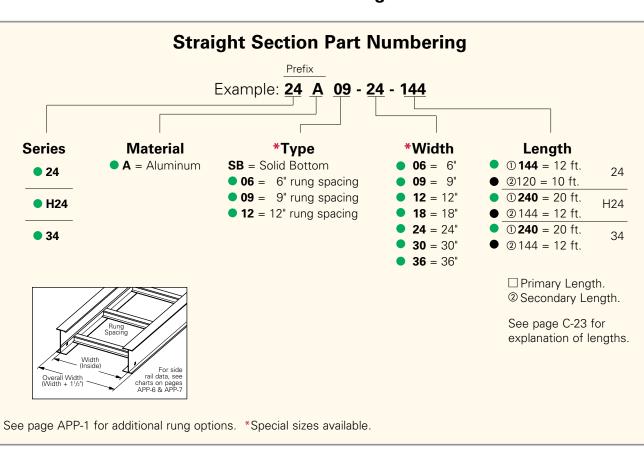
Red = Normally long lead-time items

vi

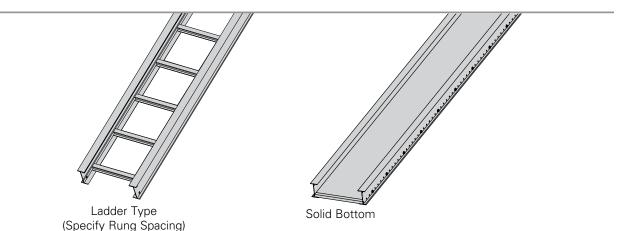
vi

How The Service Advisor Works

We know that your time is important! That's why the color-coding system in this catalog is designed to help you select products that fit your service needs. Products are marked to indicate the typical lead time for orders of 50 pieces or less.


Customer: How do I select my straight sections. covers, or fittings so that I get the quickest turnaround?

Service Advisor: Each part of our selection chart is shown in colors. If any section of a part number is a different color, the part will typically ship with the longer lead time represented by the colors.



Part will have a normal lead time because of the 144" length.

Changing the part number from -144 to -240 will change the coding to green and reduce lead time.

• Green = Fastest shipped items • Black = Normal lead-time items • Red = Normally long lead-time items

3" NEMA VE 1 Loading Depth 4" Side Rail Height

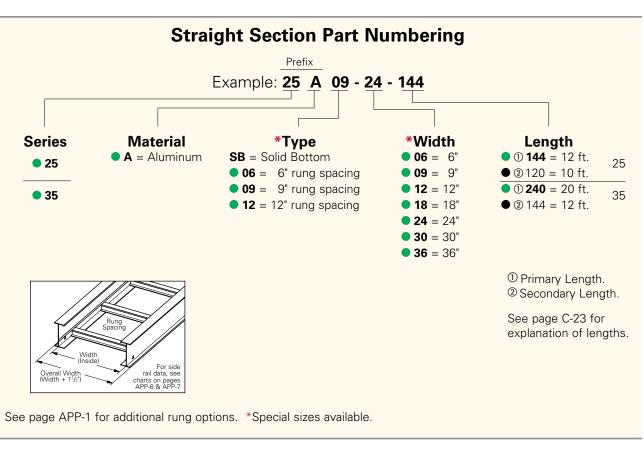
Values are based on simple beam tests per NEMA VE 1 on 36" wide cable tray with rungs spaced on 12" centers. Cable trays will support without collapse a 200 lb. (90.7 kg) concentrated load over and above published loads. Published load safety factor is 1.5. To convert 1.5 safety factor to 2.0, multiply the published load by 0.75. To obtain mid-span deflection, multiply a load by the deflection multiplier. Cable tray must be supported on spans shorter than or equal to the length of the cable tray being installed.

Individual rungs will support without collapse a 200 lb. (90.7 kg) concentrated load applied at the mid-span of the rung, over and above the NEMA rated cable load with a 1.5 safety factor for highlighted NEMA spans and loads.

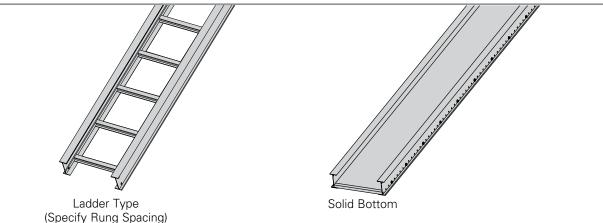
B-Line Series	Side F Dimens	-	NEMA, CSA & UL Classifications	Span ft	Load lbs/ft	Deflection Multiplier	Design Factors for Two Rails	Span meters	Load kg/m	Deflection Multiplier	Design Factors for Two Rails
	- 1.75	+	NEMA: 16A, <mark>12C</mark>	6	487*	0.001		1.8	725*	0.017	
		- †	CSA: 277 kg/m 3.0m	8	284	0.003	Area = 1.05 in ²	2.4	422	0.055	Area = 6.77 cm ²
24		3.05	D-3m	10	181	0.008	Sx = 1.34 in ³	3.0	270	0.136	Sx = 21.96 cm ³
	4.12	0.00	UL Cross-Sectional	12	126	0.016	lx = 2.85 in₄	3.7	187	0.279	lx = 118.63 cm₄
			Area: 1.00 in ²	14	93	0.030		4.3	138	0.618	
	<u> </u>	-		16	71	0.052		4.9	105	0.883	

When trays are used in continuous spans, the deflection of the tray is reduced by as much as 50%.

Design factors: Ix = Moment of Inertia, Sx = Section Modulus.


* When using 18" rung spacing, load capacity is limited to 394 lbs/ft (586.27 kg/m) for 30" tray width and 325 lbs/ft (483.6 kg/m) for 36" tray width.

B-Line Series	Side Rail Dimensions	NEMA, CSA & UL Classifications	Span ft	Load Ibs/ft	Deflection Multiplier	Design Factors for Two Rails	Span meters	Load kg/m	Deflection Multiplier	Design Factors for Two Rails
	→ 1.75 ←	NEMA: 20A	10	225	0.006		3.0	330	0.106	
		CSA: 84 kg/m 6.1m	12	156	0.013	Area = 1.32 in ²	3.7	226	0.222	Area = 8.52 cm ²
H24	2.98	D-6m	14	115	0.023	Sx = 1.57 in³	4.3	171	0.400	Sx = 25.73 cm ³
	4.19	UL Cross-Sectional	16	88	0.040	lx = 3.69 in⁴	4.9	129	0.693	lx = 153.59 cm⁴
	 	Area: 1.00 in ²	18	70	0.064		5.5	103	1.093	
	╵╌╾┹───		20	56	0.098		6.1	83	1.682	


When trays are used in continuous spans, the deflection of the tray is reduced by as much as 50%. Design factors: Ix = Moment of Inertia, Sx = Section Modulus.

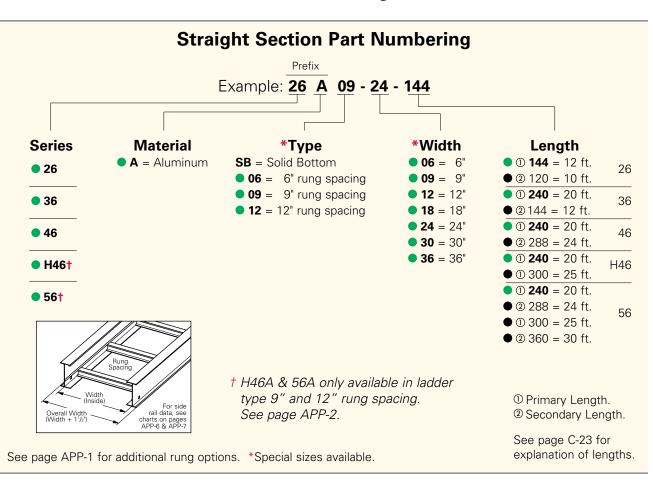
B-Line Series		e Rail ensions	NEMA, CSA & UL Classifications	Span ft	Load Ibs/ft	Deflection Multiplier	Design Factors for Two Rails	Span meters	Load kg/m	Deflection Multiplier	Design Factors for Two Rails
	_ → _1	1.75 +	NEMA: 20B, 16C	10	320	0.005		3.0	476	0.077	
			CSA: 112 kg/m 6.0m	12	222	0.009	Area = 1.82 in ²	3.7	331	0.160	Area = 11.74 cm ²
34		3.08	E-6m	14	163	0.017	Sx = 2.10 in ³	4.3	243	0.296	Sx = 34.41 cm ³
54	4.20	0.00	UL Cross-Sectional	16	125	0.030	lx = 4.98 in⁴	4.9	186	0.505	lx = 207.28 cm ⁴
			Area: 1.50 in ²	18	99	0.047		5.5	147	0.810	
	╵┼╍┛			20	80	0.072		6.1	119	1.234	

When trays are used in continuous spans, the deflection of the tray is reduced by as much as 50%. Design factors: Ix = Moment of Inertia, Sx = Section Modulus.

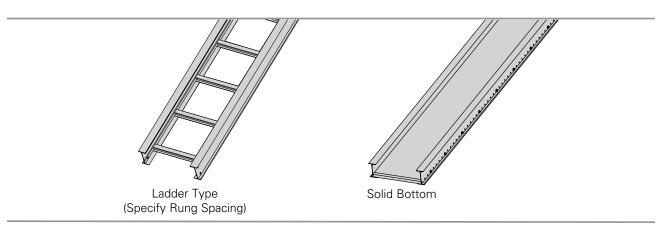
• Green = Fastest shipped items • Black = Normal lead-time items • Red = Normally long lead-time items

4" NEMA VE 1 Loading Depth 5" Side Rail Height

Values are based on simple beam tests per NEMA VE 1 on 36" wide cable tray with rungs spaced on 12" centers. Cable trays will support without collapse a 200 lb. (90.7 kg) concentrated load over and above published loads. Published load safety factor is 1.5. To convert 1.5 safety factor to 2.0, multiply published load by 0.75. To obtain mid-span deflection, multiply a load by the deflection multiplier. Cable tray must be supported on spans shorter than or equal to the length of the cable tray being installed.


Individual rungs will support without collapse a 200 lb. (90.7 kg) concentrated load applied at the mid-span of the rung, over and above the NEMA rated cable load with a 1.5 safety factor for highlighted NEMA spans and loads.

B-Line Series	Side Rail Dimensions	NEMA, CSA & UL Classifications	Span ft	Load Ibs/ft	Deflection Multiplier	Design Factors for Two Rails	Span meters	Load kg/m	Deflection Multiplier	Design Factors for Two Rails
	- 1.75 -	NEMA: <mark>20A,</mark> 12C	10	200	0.0049		3.0	298	0.083	
		CSA: 67 kg/m 6.0m	12	139	0.010	Area = 1.24 in ²	3.7	207	0.172	Area = 8.00 cm ²
25	3.93	D-6m	14	102	0.019	Sx = 1.80 in ³	4.3	152	0.319	Sx = 29.50 cm ³
	5.00	UL Cross-Sectional	16	78	0.032	lx = 4.62 in₄	4.9	116	0.545	lx = 192.30 cm₄
	▶+	Area: 1.00 in ²	18	62	0.051		5.5	92	0.873	
	<u>+</u>		20	50	0.078		6.1	74	1.330	


When trays are used in continuous spans, the deflection of the tray is reduced by as much as 50%. Design factors: Ix = Moment of Inertia, Sx = Section Modulus.

B-Line Series	Side Rail Dimensions	NEMA, CSA & UL Classifications	Span ft	Load lbs/ft	Deflection Multiplier	Design Factors for Two Rails	Span meters	Load kg/m	Deflection Multiplier	Design Factors for Two Rails
	→ 1.75 ←	NEMA: 20B, 16C	10	310	0.0036		3.0	461	0.060	
		CSA: 112 kg/m 6.0m	12	215	0.0073	Area = 1.67 in ²	3.7	320	0.125	Area = 10.77 cm ²
35	3.96	E-6m	14	158	0.014	Sx = 2.35 in ³	4.3	235	0.232	Sx = 38.51 cm ³
	5.06	UL Cross-Sectional	16	121	0.023	lx = 6.37 in₄	4.9	180	0.395	lx = 265.14 cm₄
		Area: 1.50 in ²	18	96	0.037		5.5	142	0.633	
			20	77	0.057		6.1	115	0.965	

When trays are used in continuous spans, the deflection of the tray is reduced by as much as 50%. Design factors: Ix = Moment of Inertia, Sx = Section Modulus.

5" NEMA VE 1 Loading Depth 6" Side Rail Height

• Green = Fastest shipped items • Black = Normal lead-time items • Red = Normally long lead-time items

5" NEMA VE 1 Loading Depth 6" Side Rail Height

Values are based on simple beam tests per NEMA VE 1 on 36" wide cable tray with rungs spaced on 12" centers. Cable trays will support, without collapse, a 200 lb. (90.7 kg) concentrated load over and above published loads. Published load safety factor is 1.5. To convert 1.5 safety factor to 2.0, multiply the published load by 0.75. To obtain mid-span deflection, multiply a load by the deflection multiplier. Cable tray must be supported on spans shorter than or equal to the length of the cable tray being installed.

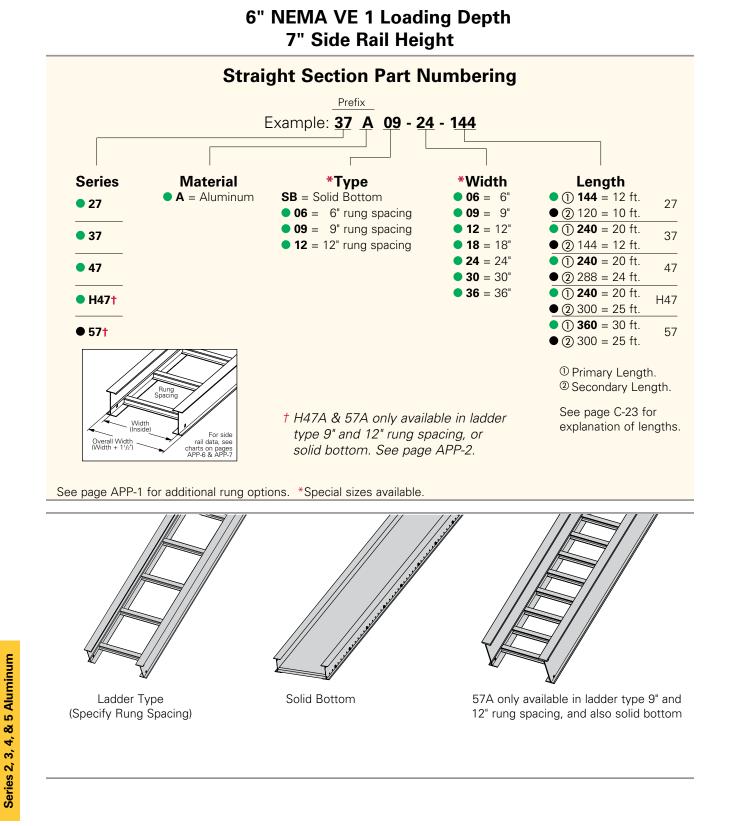
Individual rungs will support without collapse a 200 lb. (90.7 kg) concentrated load applied at the mid-span of the rung, over and above the NEMA rated cable load with a 1.5 safety factor for highlighted NEMA spans and loads.

B-Line Series		e Rail ensions	NEMA, CSA & UL Classifications	Span ft	Load Ibs/ft	Deflection Multiplier	Design Factors for Two Rails	Span meters	Load kg/m	Deflection Multiplier	Design Factors for Two Rails
		2.00	NEMA: <mark>20A,</mark> 16B	10	204	0.0028		3.0	304	0.049	
			CSA: 67 kg/m 6.0m	12	142	0.006	Area = 1.41 in ²	3.7	211	0.101	Area = 9.10 cm ²
26		5.04	D-6m	14	104	0.011	Sx = 2.53 in ³	4.3	155	0.186	Sx = 41.46 cm ³
	6.12		UL Cross-Sectional	16	80	0.019	lx = 7.915 in₄	4.9	119	0.318	lx = 329.45 cm₄
			Area: 1.00 in ²	18	63	0.030		5.5	94	0.509	
				20	51	0.045		6.1	76	0.776	

When trays are used in continuous spans, the deflection of the tray is reduced by as much as 50%. Design factors: Ix = Moment of Inertia, Sx = Section Modulus.

B-Line Series		le Rail ensions	NEMA, CSA & UL Classifications	Span ft	Load Ibs/ft	Deflection Multiplier	Design Factors for Two Rails	Span meters	Load kg/m	Deflection Multiplier	Design Factors for Two Rails
	-	2.00	NEMA: 20B, 16C	12	233	0.0043		3.7	347	0.073	
			CSA: 112 kg/m 6.0m	14	171	0.008	Area = 1.81 in ²	4.3	255	0.136	Area = 11.68 cm ²
36		5.06	E-6m	16	131	0.014	Sx = 3.36 in ³	4.9	195	0.232	Sx = 55.06 cm ³
	6.17	0.00	UL Cross-Sectional	18	104	0.022	lx = 10.85 in₄	5.5	154	0.372	lx = 451.61 cm⁴
		•ł	Area: 1.50 in ²	20	84	0.033		6.1	125	0.566	
	_ <u>+</u>	<u> </u>		22	69	0.049		6.7	103	0.829	

When trays are used in continuous spans, the deflection of the tray is reduced by as much as 50%. Design factors: Ix = Moment of Inertia, Sx = Section Modulus.


B-Line Series	Side Rail Dimensions	NEMA, CSA & UL Classifications	Span ft	Load Ibs/ft	Deflection Multiplier	Design Factors for Two Rails	Span meters	Load kg/m	Deflection Multiplier	Design Factors for Two Rails
	→ 2.00 ←	NEMA: 20C	14	210	0.0071		4.3	313	0.121	
	│ │ · · · · · · · │	CSA: 168 kg/m 6.1m	16	161	0.012	Area = 2.06 in ²	4.9	239	0.207	Area = 13.29 cm ²
46	5.08	E-6m	18	127	0.019	Sx = 3.59 in ³	5.5	189	0.331	Sx = 58.83 cm ³
	6.19	UL Cross-Sectional	20	103	0.030	lx = 12.18 in₄	6.1	153	0.505	lx = 506.97 cm₄
		Area: 1.50 in ²	22	85	0.043		6.7	127	0.739	
			24	72	0.061		7.3	106	1.046	

When trays are used in continuous spans, the deflection of the tray is reduced by as much as 50%. Design factors: Ix = Moment of Inertia, Sx = Section Modulus.

B-Line Series	Side Rail Dimensions	NEMA, CSA & UL Classifications	Span ft	Load Ibs/ft	Deflection Multiplier	Design Factors for Two Rails	Span meters	Load kg/m	Deflection Multiplier	Design Factors for Two Rails
	- 2.00 -	NEMA: 20C+	16	261	0.0085		4.9	388	0.145	
		CSA: 131 kg/m 7.6m	18	206	0.014	Area = 2.95 in ²	5.5	307	0.233	Area = 19.03 cm
H46	5.09	E-6m	20	167	0.021	Sx = 5.33 in ³	6.1	248	0.355	Sx = 87.34 cm ³
	6.24 5.09	UL Cross-Sectional	22	138	0.030	lx = 17.30 in₄	6.7	205	0.520	lx = 720.08 cm₄
		Area: 2.00 in ²	24	116	0.043		7.3	173	0.737	
			25	88	0.051		7.6	131	0.867	
Vhen trays	are used in cont	inuous spans, the deflecti	on of the t	tray is redu	iced by as muc	h as 50%. Design f	actors: lx =	Moment	of Inertia, Sx =	Section Modulus.
B-Line Series	Side Rail Dimensions	NEMA, CSA & UL Classifications	Span ft	Load lbs/ft	Deflection Multiplier	Design Factors for Two Rails	Span meters	Load kg/m	Deflection Multiplier	Design Factors for Two Rails

B-Line Series	Side Rail Dimensions	NEMA, CSA & UL Classifications	Span ft	Load Ibs/ft	Deflection Multiplier	Design Factors for Two Rails	Span meters	Load kg/m	Deflection Multiplier	Design Factors for Two Rails
	2.12	NEMA: 20C+	20	169	0.016		6.1	251	0.272	
		CSA: 112 kg/m 9.1m	22	139	0.023	Area = 3.63 in ²	6.7	208	0.398	Area = 23.42 cm ²
56	5.26	E-6m	24	117	0.033	Sx = 6.12 in ³	7.3	174	0.563	Sx = 100.29 cm ³
	6.43	UL Cross-Sectional	26	100	0.045	lx = 22.63 in₄	7.9	149	0.776	lx = 941.86 cm₄
		Area: 2.00 in ²	28	86	0.061		8.5	128	1.043	
			30	75	0.081		9.1	112	1.375	

When trays are used in continuous spans, the deflection of the tray is reduced by as much as 50%. Design factors: Ix = Moment of Inertia, Sx = Section Modulus.

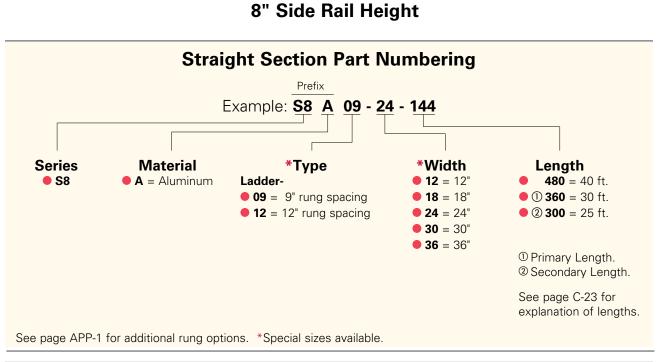
• Green = Fastest shipped items • Black = Normal lead-time items • Red = Normally long lead-time items

6" NEMA VE 1 Loading Depth 7" Side Rail Height

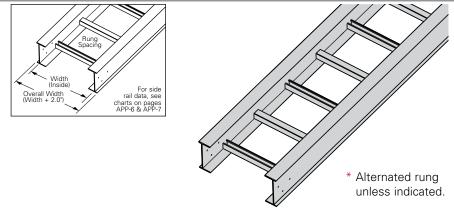
Values are based on simple beam tests per NEMA VE 1 on 36" wide cable tray with rungs spaced on 12" centers. Cable trays will support without collapse a 200 lb. (90.7 kg) concentrated load over and above published loads. Published load safety factor is 1.5. To convert 1.5 safety factor to 2.0, multiply the published load by 0.75. To obtain mid-span deflection, multiply a load by the deflection multiplier. Cable tray must be supported on spans shorter than or equal to the length of the cable tray being installed.

Individual rungs will support without collapse a 200 lb. (90.7 kg) concentrated load applied at the mid-span of the rung, over and above the NEMA rated cable load with a 1.5 safety factor for highlighted NEMA spans and loads.

B-Line Series	Side Rail Dimensions	NEMA, CSA & UL Classifications	Span ft	Load Ibs/ft	Deflection Multiplier	Design Factors for Two Rails	Span meters	Load kg/m	Deflection Multiplier	Design Factors for Two Rails
	→ 2.00 ←	NEMA: 12C	10	177	0.006		3.0	269	0.033	
	│	CSA: 68 kg/m 6.0m	12	123	0.013	Area = 1.63 in ²	3.7	177	0.073	Area = 10.52 cm^2
27	6.00	D-6m	14	90	0.023	Sx = 2.93 in ³	4.3	134	0.131	Sx = 48.01 cm ³
	7.14	UL Cross-Sectional	16	69	0.040	lx = 11.28 in₄	4.9	101	0.227	lx = 469.51 cm ⁴
		Area: 1.50 in ²	18	54	0.064		5.5	81	0.357	
	↓		20	44	0.098		6.1	67	0.534	


B-Line Series		le Rail ensions	NEMA, CSA & UL Classifications	Span ft	Load Ibs/ft	Deflection Multiplier	Design Factors for Two Rails	Span meters	Load kg/m	Deflection Multiplier	Design Factors for Two Rails
	-	2.00	NEMA: <mark>20B,</mark> 16C	12	222	0.0035		3.7	331	0.059	
			CSA: 101 kg/m 6.1m	14	163	0.0064	Area = 1.81 in ²	4.3	243	0.109	Area = 11.68 cm ²
37		6.05	D-6m	16	125	0.011	Sx = 3.77 in ³	4.9	186	0.186	Sx = 61.78 cm ³
•	7.14		UL Cross-Sectional	18	99	0.017	lx = 13.50 in₄	5.5	147	0.299	lx = 561.91 cm₄
			Area: 1.50 in ²	20	80	0.027		6.1	119	0.455	
	┤╵╌╍┙			22	66	0.039		6.7	98	0.666	

_	B-Line Series		de Rail ensions	NEMA, CSA & UL Classifications	Span ft	Load Ibs/ft	Deflection Multiplier	Design Factors for Two Rails	Span meters	Load kg/m	Deflection Multiplier	Design Factors for Two Rails
_		+	2.00	NEMA: 20C	14	204	0.0048		4.3	305	0.083	
		⊤⁼		CSA: 142 kg/m 6.1m	16	156	0.0082	Area = 2.38 in ²	4.9	233	0.141	Area = 15.35 cm ²
	47		6.13	E-6m	18	123	0.0132	Sx = 4.94 in ³	5.5	184	0.225	Sx = 80.95 cm ³
		7.24		UL Cross-Sectional	20	100	0.0201	lx = 17.88 in₄	6.1	149	0.344	lx = 744.22 cm ⁴
				Area: 2.00 in ²	22	83	0.0295		6.7	123	0.503	
		'-	<u> </u>		24	69	0.0418		7.3	103	0.713	


B-Line Series		e Rail ensions	NEMA, CSA & UL Classifications	Span ft	Load Ibs/ft	Deflection Multiplier	Design Factors for Two Rails	Span meters	Load kg/m	Deflection Multiplier	Design Factors for Two Rails
	- ²	2.00	NEMA: 20C+	16	233	0.0064		4.9	346	0.110	
			CSA: 241 kg/m 6.1m	18	184	0.010	Area = 3.04 in ²	5.4	274	0.176	Area = 19.61 cm ²
H47		6.09	E-6m	20	149	0.016	Sx = 6.10 in ³	6.1	222	0.268	Sx = 99.96 cm ³
	7.24		UL Cross-Sectional	22	123	0.023	lx = 22.91 in₄	6.7	183	0.393	lx = 953.59 cm₄
			Area: 2.00 in ²	24	103	0.033		7.3	154	0.556	
	╎╵╌╍┹			25	95	0.038		7.6	142	0.655	

B-Line Series	Side Rail Dimensions	NEMA, CSA & UL Classifications	Span ft	Load lbs/ft	Deflection Multiplier	Design Factors for Two Rails	Span meters	Load kg/m	Deflection Multiplier	Design Factors for Two Rails
	2.00	NEMA: 20C+	20	232	0.011		6.1	345	0.187	
		CSA: 151 kg/m 9.1m	22	192	0.016	Area = 4.22 in ²	6.7	285	0.274	Area = 27.73 cm ²
57	6.23	E-6m	24	161	0.023	Sx = 7.73 in ³	7.3	240	0.388	Sx = 126.67 cm ³
•	7.40	UL Cross-Sectional	26	136	0.031	lx = 32.86 in₄	7.9	202	0.534	lx = 1367.74 cm ⁴
		Area: 2.00 in ²	28	117	0.042		8.5	174	0.718	
	│ [▲] ╼┹╼╸		30	102	0.055		9.1	152	0.947	

When trays are used in continuous spans, the deflection of the tray is reduced by as much as 50%. Design factors: Ix = Moment of Inertia, Sx = Section Modulus.

6" NEMA VE 1 Loading Depth

Values are based on simple beam tests per NEMA VE 1 on 36" wide cable tray with rungs spaced on 12" centers. Cable trays will support without collapse a 200 lb. (90.7 kg) concentrated load over and above published loads. Published load safety factor is 1.5. To convert 1.5 safety factor to 2.0, multiply the published load by 0.75. To obtain mid-span deflection, multiply a load by the deflection multiplier. Cable tray must be supported on spans shorter than or equal to the length of the cable tray being installed.

Individual rungs will support without collapse a 200 lb. (90.7 kg) concentrated load applied at the mid-span of the rung, over and above the NEMA rated cable load with a 1.5 safety factor for highlighted NEMA spans and loads.

B-Line Series	Side Rail Dimensions	NEMA, CSA & UL Classifications	Span ft	Load Ibs/ft	Deflection Multiplier	Design Factors for Two Rails	Span meters	Load kg/m	Deflection Multiplier	Design Factors for Two Rails
	3.00	NEMA: 20C+	20	363	0.007		6.1	540	0.111	
	│ ┬└┳╼╼┘ ┬	CSA: 240 kg/m 9.1m	22	300	0.010		6.7	446	0.163	
S8A	6.175		24	252	0.013	Area=5.50 in ²	7.3	375	0.230	Area=35.48 cm ²
	8.00	UL Cross-Sectional	26	215	0.019	Sx=15.39 in ³	7.9	320	0.317	Sx=252.20 cm ³
	 *	Area: 2.00 in ²	28	185	0.025	lx=55.35 in₄	8.5	276	0.427	lx=2303.84 cm4
	│ [↓] _ <mark>┹</mark> ━━		30	161	0.033		9.1	240	0.562	
			40	101	0.146		12.2	151	2.488	

Green = Fastest shipped items
Black = Normal lead-time items
Red = Normally long lead-time items

The following is a list of accessories and fittings that can be provided with S8A tray. For more information on these items, contact our Engineering Department.

• Fittings

Horizontal Bends

30° Bends with 24", 36", or 48" radius 45° Bends with 24", 36", or 48" radius 60° Bends with 24", 36", or 48" radius 90° Bends with 24", 36", or 48" radius

Horizontal Tees & Crosses

With 24", 36", or 48" radius

Vertical Outside Bends

30° Bends with 24", 36", or 48" radius 45° Bends with 24", 36", or 48" radius 60° Bends with 24", 36", or 48" radius 90° Bends with 24", 36", or 48" radius

Vertical Inside Bends

30° Bends with 24", 36", or 48" radius 45° Bends with 24", 36", or 48" radius 60° Bends with 24", 36", or 48" radius 90° Bends with 24", 36", or 48" radius

Reducing Fittings

• Accessories - (standard hardware is stainless steel Type 316)

Splice Plate - 9A-1008 Expansion Splice Plate - 9A-1018 Horizontal Adjustable Splice Plate - 9A-1038 Vertical Adjustable Splice Plate - 9A-1028 Hold Down Clamps - 9ZN-1281, 9G-1281, 9A-1281 Guides - S9ZN-1202, S9G-1202 Step Down Splice Plate -

> 9A-1048 = 8" to 4" 9A-1051 = 8" to 5" 9A-1050 = 8" to 6" 9A-1078 = 8" to 7"

Other Accessories Include: Offset Splice Plates

Blind Ends

Covers - Standard aluminum cover number with S in front (Example: S807A40)

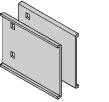
• Green = Fastest shipped items • Black = Normal lead-time items • Red = Normally long lead-time items

Wedge Lock Splice Plates

- Furnished in pairs with 3/8" hardware.
- UL Classified as equipment grounding conductor.
 Standard 4 hole pattern
- Standard 4-hole pattern.
- One pair provided with each straight section. (Expansion splice quantity subtracted)
- For field installation drill ¹³/₃₂" hole.

H46A, H47A, 56A and 57A Mid-Span Splice

- Furnished in pairs with 3/8" hardware.
- UL Classified as equipment grounding conductor.
- Standard for H46A, H47A, 56A and 57A straight sections.
- Six bolt design ³/⁸" Stainless Steel Type 316 hardware standard.
- Available on ladder bottoms only. 09 and 12" rung spacing.
- One pair provided with each straight section. (Expansion splice quantity subtracted)


Expansion Splice Plates

- Expansion plates allow for one inch expansion or contraction of the cable tray, or where expansion joints occur in the supporting structure.
- Furnished in pairs with hardware.
- Bonding Jumpers are required on each siderail. Order Separately.

For heavy duty expansion splice plates see page APP-3.

Universal Splice Plates

- Furnished in pairs with 3/8" hardware.
- UL Classified as equipment grounding conductor.

Catalog No.	Height

9A-1014	4 (101)
9A-1015	5 (127)
9A-1016	6 (152)
9A-1017	7 (178)

Requires supports within 24" on both sides, per NEMA VE 2.

Catalog No.	Height in. mm
9A-1004- ¹ / ₂	4 (101)
9A-1005- ¹ / ₂	5 (127)
9A-1006- ¹ / ₂	6 (152)
9A-1007- ¹ / ₂	7 (178)

Step Down Splice Plates

- These splice plates are offered for connecting cable tray sections having side rails of different heights.
- UL Classified as equipment grounding conductor.
- Furnished in pairs with hardware.

Catalog No.	Height		
	in. mm		
9A-1045	5 to 4 (127 to 101)		
9A-1046	6 to 4 (152 to 101)		
9A-1060	6 to 5 (152 to 127)		
• 9A-1047	7 to 4 (178 to 101)		
9A-1061	7 to 5 (178 to 127)		
9A-1062	7 to 6 (178 to 152)		

Catalog No.

9A-1024

9A-1025

9A-1026

9A-1027

	· · · · · · · · · · · · · · · · · · ·	
•	These plates provide for changes in elevation that	
	do not conform to standard vertical fittings.	B

- UL Classified as equipment grounding conductor.
- Furnished in pairs with hardware.

Vertical Adjustable Splice Plates

• Bonding Jumpers not required.

Green = Fastest shipped items
Black = Normal lead-time items
Red = Normally long lead-time items

All dimensions in parentheses are millimeters unless otherwise specified.

Height in. mm

6 (152)

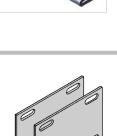
7 (178)

4 (101)

5 (127)

Catalog No.	Height in. mm
9A-1004	4 (101)
9A-1005	5 (127)
9A-1006	6 (152)
9A-1007	7 (178)

Tray Series

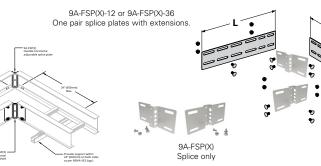

H46A, 56A

H47A, 57A

Catalog No.

9A-6006

9A-6007



Series 2, 3, 4, & 5 Aluminum

Horizontal Adjustable Splice Plates

- Offered to adjust a cable tray run for changes in direction in a horizontal plane that do not conform to standard horizontal fittings.
- UL Classified as equipment grounding conductor.
- Furnished in pairs with hardware.
- Bonding jumpers <u>not</u> required.
- (X) Insert 4, 5, 6 or 7 for side rail height.

Catalog No.	Width (in.)	Height (in.)	Depth (in.)	Weight (lbs.)
9A-FSP4	8.575	3.891	.820	0.253
9A-FSP5	8.575	4.781	.820	0.312
9A-FSP6	8.575	5.891	.820	0.386
9A-FSP7	8.575	6.891	.820	0.456

Catalog	Cable Tray	Thru Tray Width	Ľ
No.	End Cut	in. mm	in. mm
9A-FSP(X)	Mitered	36 (914)	N/A N/A
9A-FSP(X)-12	Not mitered	12 (305)	16 (406)
• 9A-FSP(X)-36	Not mitered	36 (914)	41 (1041)

Requires supports within 24" on both sides, per NEMA VE 2.

Branch Pivot Connectors

- Branch from existing cable tray runs at any point.
- Pivot to any required angle.
- UL Classified as equipment grounding conductor (bonding jumpers not required).
- Furnished in pairs with hardware.

Catalog No.	Height	
	in. mm	
9A-2044	4 (101)	
9A-2045	5 (127)	
9A-2046	6 (152)	
9A-2047	7 (178)	

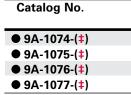
Offset Reducing Splice Plate

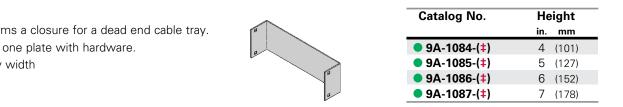
- This plate is used for joining cable trays having different widths. When used in pairs they form a straight reduction; when used singly with a standard splice plate, they form an offset reduction.
- Furnished as one plate with hardware.
- (‡) Insert reduction

Т

Catalog No. Height in. mm • 9A-1064-(‡) 4 (101) 9A-1065-(‡) 5 (127) 9A-1066-(‡) 6 (152) 9A-1067-(‡) 7 (178)

Tray-to-Box Splice Plates	Catalog No.	Height
• Used to attach the end of a cable tray run to a distribution		in. mm
box or control panel.	9A-1054	4 (101)
 Furnished in pairs with hardware 	9A-1055	5 (127)
	9A-1056	6 (152)
	9A-1057	7 (178)


Frame Type Box Connector


- Designed to attach the end of a cable tray run to a distribution cabinet or control center to help reinforce the box at the point of entry.
- · Furnished with tray connection hardware.
- (‡) Insert tray width

Blind End

- This plate forms a closure for a dead end cable tray.
- Furnished as one plate with hardware.
- (‡) Insert tray width

Green = Fastest shipped items
Black = Normal lead-time items
Red = Normally long lead-time items

All dimensions in parentheses are millimeters unless otherwise specified.

Height

in. mm

4 (101)

5 (127)

6 (152)

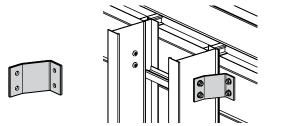
7 (178)

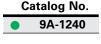
Standard Tray Hardware (for field installation drill ¹³/₃₂" hole)

• Finish: Zinc Plated ASTM B633 SC1

Catalog No.	Description
SNCB ³ / ₈ " x ³ / ₄ " ZN	Square Neck Carriage Bolt ASTM A307 Grade A
SFHN ³ / ₈ "-16 ZN	Serrated Flange Hex Nut ASTM A563 Grade A

Optional Tray Hardware (for field installation drill ¹³/₃₂" hole)


• To order 316 stainless steel hardware add SS6 suffix to catalog number - Example: 9A1004SS6


Catalog No.DescriptionSNCB ³/8" x ³/4" SS6Square Neck Carriage Bolt AISI 316 Stainless SteelSFHN ³/8"-16 SS6Serrated Flange Hex Nut AISI 316 Stainless Steel

Cross Connector Bracket

- For field connecting crossing section.
- Furnished in pairs with ³/₈" hardware.

Aluminum I-Beam

Conduit Size

¹/₂, ³/₄ (15, 20)

1, $1^{1}/_{4}$ (25, 32)

 $1^{1}/_{2}$, 2 (40, 50)

 $2^{1}/_{2}$, 3 (65, 80)

31/2, 4 (90, 100)

Catalog No. 9ZN-1150-(‡)

mm

in.

Conduit-to-Cable Tray Adaptor

- For easy attachment of conduit terminating at a cable tray.
- Use on aluminum or steel cable trays.
- Will not fit on S8A.

Conduit-to-Cable Tray Adaptor

- Assembly required.
- Mounting hardware included.
- Conduit clamps provided.
- (‡) = Insert conduit size $(1/2^{"} \text{ thru } 4^{"})$.

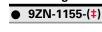
Conduit-to-Cable Tray Adaptor

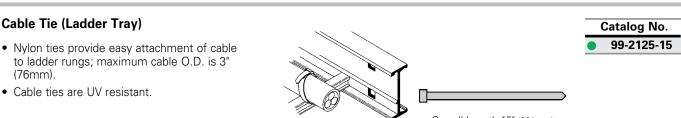
- Assembly required.
- Conduit clamps included.
- Will not fit on S8A.
- (\ddagger) = Insert conduit size (1/2" thru 4").

(Nr

Catalog No.

9G-1158-1/2 & 3/4


9G-1158-1 & 1¹/4


9G-1158-1¹/₂ & 2

9G-1158-2¹/₂ & 3

• 9G-1158-3¹/₂ & 4

Overall Length 15" (381mm)

• Green = Fastest shipped items • Black = Normal lead-time items • Red = Normally long lead-time items

Ladder Drop-Out

- Specially-designed Ladder Drop-Outs provide a rounded surface with 4" (101 mm) radius to protect cable as it exits from the cable tray, preventing damage to insulation. The drop-out will attach to any desired rung.
- (‡) Insert tray width

Trough Drop-Out

- This device provides a rounded surface to protect cable as it exits from the cable tray.
- Hardware is included for bottom drop-out.
- (‡) Insert tray width

Trough-Type Drop-Out

Catalog

No.

73A-90HBFL

74A-90HBFL

75A-90HBFL

76A-90HBFL

Catalog

No.

73A-(*)VO(†)

Barrier - Straight Section

- Length: Insert 120 for [120" 10 ft.] (3.0 m) or 144 for [144" - 12 ft.] (3.6 m)
- Order catalog number based on loading depth.
- Furnished with four #10 x 1/2" plated self-drilling screws and a 99-9982 Barrier Strip Splice.

Catalog No.	Side Rail Height in. mm	Loading Depth 'H' in. mm
73A-Length	4 (101)	3 (76)
74A-Length	5 (127)	4 (101)
75A-Length	6 (152)	5 (127)
76A-Length	7 (178)	6 (152)

Side Rail

Height

4 (101)

5 (127)

6 (152)

7 (178)

Side Rail

Height

4 (101)

5 (127)

6 (152)

7 (178)

in. mm

in. mm Catalog No.

9A-1104-(‡)

Catalog No.

9A-1104T-(‡)

Loading

Depth 'H'

in. mm

4 (101)

5 (127)

6 (152)

Loading

Depth 'H'

3 (76)

4 (101)

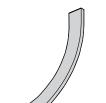
5 (127)

6 (152)

in. mm

3 (76)

Barrier - Horizontal Bend


- Horizontal Bend Barriers are flexible in order to conform to any horizontal fitting radius. Can be cut to desired length.
- Standard length is 72" [6 ft.] (1.8 m) sold individually
- Order catalog number based on loading depth.
- Furnished with three #10 x 1/2" plated self-drilling screws and a 99-9982 Barrier Strip Splice.

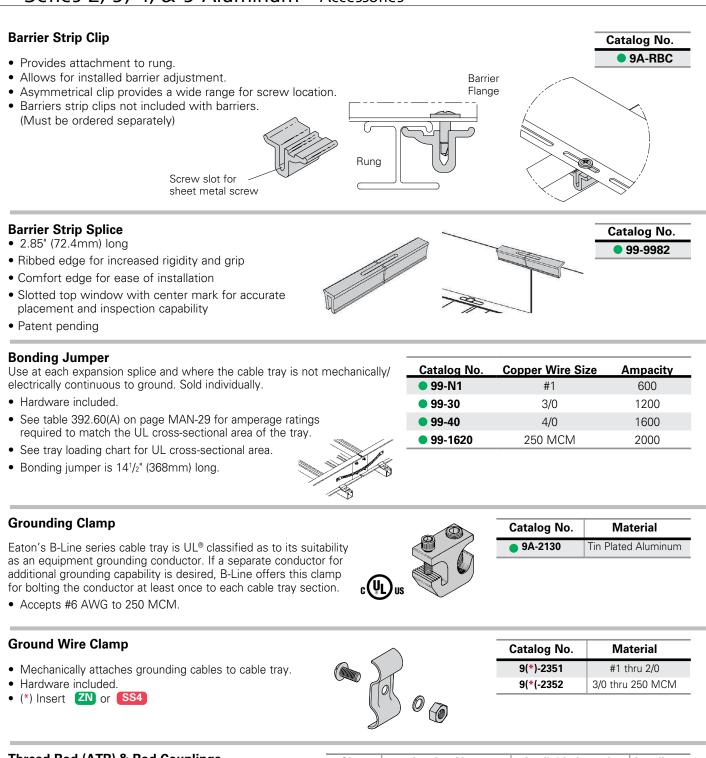
Barrier - Vertical Outside Bend

- Vertical Outside Bend Barriers are preformed to conform to a specific vertical outside bend fitting.
- Furnished with three #10 x 1/2" plated self-drilling screws and a 99-9982 Barrier Strip Splice.
- (*) Insert 30, 45, 60 or 90 for degrees
- (†) Insert 12, 24, 36 or 48 for radius

Barrier - Vertical Inside Bend

- Vertical Inside Bend Barriers are preformed to conform to a specific vertical inside bend fitting.
- Furnished with three #10 x 1/2" plated self-drilling screws and a 99-9982 Barrier Strip Splice.
- (*) Insert 30, 45, 60 or 90 for degrees
- (†) Insert 12, 24, 36 or 48 for radius

н


<u>ToooL....</u>

/ Outside Bend (VO)	 74A-(*)VO(†) 75A-(*)VO(†) 76A-(*)VO(†) 	
•		

Catalog No.	Side Rail Height ^{in. mm}	Loading Depth 'H' in. mm
73A-(*)VI(†)	4 (101)	3 (76)
74A-(*)VI(†)	5 (127)	4 (101)
75A-(*)VI(†)	6 (152)	5 (127)
76A-(*)VI(†)	7 (178)	6 (152)

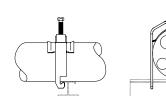
Green = Fastest shipped items Black = Normal lead-time items Red = Normally long lead-time items

Inside Bend (VI)

•	Inread Rod (ATR) & Rod Couplings	
•	Loading based on safety factor 5. Standard Finish: Zinc plated	

See B-Line series Strut Systems Catalog for other sizes and finishes.

B655 Rod Coupling


Series 2, 3, 4, & 5 Aluminum

uplings	Size	Catalog No.	Available Length	Loading
5.	All Threa	aded Rod		
	³ /8"-16	ATR ³ / ₈ " x Length	36", 72", 120", 144"	730 lbs.
s Catalog	¹ /2"-13	ATR ¹ / ₂ " x Length	36", 72", 120", 144"	1350 lbs.
	Rod Cou	pling		
	³ /8"-16	● B655-³/ଃ"	NA	730 lbs.
ATR	¹ /2"-13	B655- ¹ / ₂ "	NA	1350 lbs.
All Threaded Rod				

Green = Fastest shipped items
Black = Normal lead-time items
Red = Normally long lead-time items

Stainless Steel Cable Clamp 'P'

- Fits with series 2, 3, & 4 rungs.
- Attaches to rung at any point.
- 14 gauge Type 316 stainless steel material to minimize corrosion and induction heating.
- Plated steel and aluminum also available.

Refer to pages N2-N5

Catalog No.	Cable Size			
BP081SS	.250840	(6.4 - 21.3)		
BP110SS	.810 - 1.100	(20.6 - 28.0)		
BP135SS	.850 - 1.350	(21.6 - 34.8)		
BP175SS	1.250 - 1.750	(31.8 - 44.5)		
BP205SS	1.550 - 2.050	(39.4 - 52.1)		
BP250SS	2.000 - 2.500	(50.8 - 63.5)		
BP300SS	2.500 - 3.000	(63.5 - 76.2)		
BP325SS	2.750 - 3.250	(69.9 - 82.6)		
BP375SS	3.250 - 3.750	(82.6 - 95.3)		
BP425SS	3.750 - 4.250	(95.3 - 108.0)		
BP475SS	4.250 - 4.750	(108.0 - 120.7)		

Height in. mm

4 (101)

5 (127)

6 (152)

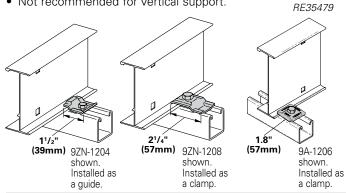
7 (178)

Catalog No.

9(*)-5324

9(*)-5325

9(*)-5326


9(*)-5327

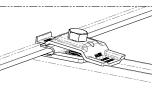
Hanger Rod Clamp

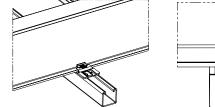
- For 1/2" ATR.
- Furnished in pairs.
- Order ATR and hex nuts separately.
- Two-piece "J"-hanger design.
- 1500 lbs./pair capacity safety factor 3.
- (*) Insert ZN or G

Cable Tray Clamp/Guide

- · Features a no-twist design.
- Has four times the strength of the traditional design.
- Each side is labeled to ensure proper installation.
- Furnished in pairs, with or without hardware (9A-1206 sold individually). Patent #
- Not recommended for vertical support.

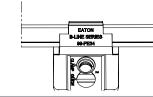
Hardware	With Hardware	Overall Length in. (mm)	Hardware Size in.	Finish
9ZN-1204	9ZN-1204NB	1 ¹ / ₂ (38)	¹ /4"	G90
9ZN-1208	9ZN-1208NB	21/4 (57)	³ /8"	G90
●9A-1206	9A-1206NB	2 ¹ / ₄ (57)	³ /8″	Alum.
9A-1205	9A-1205NB	2 ¹ / ₄ (57)	¹ /2"	Alum.
9 G-1205	9G-1205NB	21/4 (57)	¹ /2"	HDGAF
9 SS6-1205	9SS6-1205NB	2 ¹ / ₄ (57)	¹ /2"	316SS
• 9ZN-1205	9ZN-1205NB	2 ¹ / ₄ (57)	¹ /2"	G90

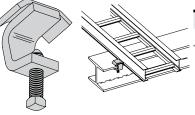

Note: For heavy duty or vertical applications see 9(*)-1241 or 9(*)-1242 page I-22


Catalog No.

Isolator Pad

- Use as a friction reducer and/or as a dissimilar metal isolator barrier.
- UV resistant HDPE.
- Temperature range: -100 to 160° F.
- Designed to use with 9(*)-1205 or 9(*)-1208 clamp/guide.
- Color White




Catalog No.

Green = Fastest shipped items Black = Normal lead-time items Red = Normally long lead-time items

Cable Tray Clamp

- Hold-down clamps for single or double cable tray runs.
- No drilling of support I-beam or channel is required.
- Sold in pieces two clamps are required per tray.
- Maximum beam flange thickness 11/8" (28.58 mm).

6" (152mm)

Catalog No.	Finish
9ZN-1249HD	Znplt
9 G-1249HD	HDGAF

Finish

Znplt

HDGAF

Catalog No. 99-PE36

Catalog No.

9ZN-1249

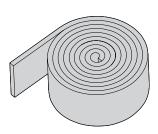
9G-1249

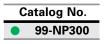
Cable Tray Guide

- Expansion guide for single or double cable tray runs.
- Guide allows for longitudinal movement of the cable tray.
- No field drilling of support I-beam or channel is required.
- Guides are required on both sides of cable tray to prevent lateral movement can be placed on either the inside or outside flange of cable tray.
- Guides are sold in pieces two guides are required per tray.

¹/8" (3mm)

(76mm)


• Maximum flange thickness 1¹/₈" (28.58 mm).


Nylon Pad

- Use for friction reduction.
- Hardness: Shore D80.
- Low friction coefficient.
- UV resistant.
- Excellent weatherability.
- UL 94HB.

Neoprene Roll

- Use for material isolation.
- 1/8" x 2" x 25' roll.
- Hardness: Shore A60.
- Good weatherability.

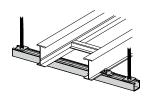
DURA-BLOK[™] Rooftop Support Bases with B22 Channel

- Designed as a superior rooftop support for cable tray,
- UV resistant and approved for most roofing material or other flat surfaces.
- Can be used with any of B-Line series cable tray clamps and guides.
- Ultimate Load Capacity: 1,000 lbs. (uniform load)

Catalog No.	Height x Width x Length	
	in.	(mm)
• DB10-28	5 ⁵ / ₈ x 6 x 28.0	(143 x 152 x 711)
• DB10-36	5 ⁵ / ₈ x 6 x 36.0	(143 x 152 x 914)
• DB10-42	5 ⁵ / ₈ x 6 x 42.0	(143 x 152 x 1067)
• DB10-50	5 ⁵ /8 x 6 x 50.0	(143 x 152 x 1270)
• DB10-60	5 ⁵ / ₈ x 6 x 60.0	(143 x 152 x 1524)

LEEDS credit available, base made from 100% recycled material.

General Note: Consult roofing manufacturer or engineer for roof load capacity. The weakest point may be the insulation board beneath the rubber membrane.


• Green = Fastest shipped items • Black = Normal lead-time items • Red = Normally long lead-time items

Trapeze Support Kit

- Eaton's B-Line series trapeze kits provide the components required for a single trapeze support in one package. These kits are available in pre-galvanized steel with zinc-plated hardware, hot dip galvanized steel with 316 stainless steel hardware, or DURA GREEN[™] painted steel with zinc-plated hardware.
- The SH channel provides the convenience of pre-punched slots, which eliminate the need for field drilling.
- The illustrated hardware is sealed in a plastic bag and boxed with the channel, which is pre-cut to the appropriate length as shown in the chart.

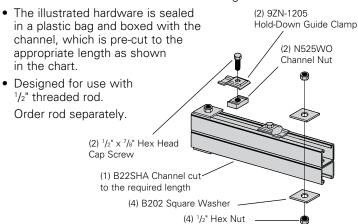
(4) B202 Square Washer

(2) 1/2" x 7/8" Hex Head • Designed for use with Cap Screw 1/2" threaded rod. (2) 9ZN-1205 Hold-Down Guide Clamp Order rod separately. -(4) 1/2" Hex Nut (2) N525WO Channel Nut

Catalog	Tray Width ^{in. mm}	Channel Length ^{in. mm}	Uniform Load Ibs kN
9(*)-5506-22SH(†)	6 (152)	16 (406)	1350 (6.00)
9(*)-5509-22SH(†)	9 (229)	18 (457)	1250 (5.56)
9(*)-5512-22SH(†)	12 (305)	22 (559)	1125 (5.00)
9(*)-5518-22SH(†)	18 (457)	28 (711)	865 (3.85)
9(*)-5524-22SH(†)	24 (610)	34 (864)	700 (3.11)
9(*)-5530-22SH(†)	30 (762)	40 (1016)	590 (2.62)
9(*)-5536-22SH(†)	36 (914)	46 (1168)	510 (2.27)
9(*)-5542-22SH(†)	42 (1067)	52 (1321)	450 (2.00)

• (*) Insert P Gor GRN

• (†) Insert 3/8 for 3/8" threaded rod hardware.


Safety factor of 3.0 on all loads.

Heavy Duty Trapeze Support Kit

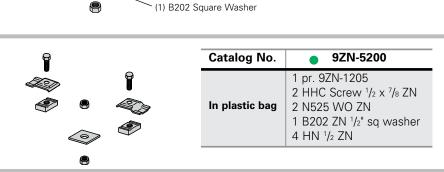
the required length

(1) B22SH Channel cut to

- Eaton's B-Line series trapeze kits provide the components required for a single trapeze support in one package. These kits are available in pre-galvanized steel with zinc-plated hardware, hot dip galvanized steel with 316 stainless steel hardware, or DURA GREEN[™] painted steel with zinc-plated hardware.
- The SH channel provides the convenience of pre-punched slots, which eliminates the need for field drilling.

Catalog No.	Tray Width ^{in. mm}	Channel Length in. mm	Uniform Load Ibs kN	
• 9(*)-5506-22SHA	6 (152)	16 (406)	1350 (6.00)	
9(*)-5509-22SHA	9 (229)	18 (457)	1350 (6.00)	
• 9(*)-5512-22SHA	12 (305)	22 (559)	1350 (6.00)	
9(*)-5518-22SHA	18 (457)	28 (711)	1350 (6.00)	
• 9(*)-5524-22SHA	24 (610)	34 (864)	1350 (6.00)	
9(*)-5530-22SHA	30 (762)	40(1016)	1350 (6.00)	
• 9(*)-5536-22SHA	36 (914)	46(1168)	1350 (6.00)	
• 9(*)-5542-22SHA	42(1067)	52(1321)	1350 (6.00)	

• (*) Insert (P) (G) or (GRN)


Safety factor of 3.0 on all loads.

Trapeze Hardware Kit	Catalog No.	• 9ZN-5500-1/2	● 9G-5500- ¹ /₂
	In plastic bag	1 pr. 9ZN-1205 2 HHC Screw ¹ / ₂ x ⁷ / ₈ ZN 2 N525 WO ZN 4 B202 ZN ¹ / ₂ " sq washer 4 HN ¹ / ₂ ZN	1 pr. 9G-1205 2 HHC Screw ¹ / ₂ x ⁷ / ₈ SS6 2 N525 WO SS6 4 B202 HDG ¹ / ₂ " sq washer 4 HN ¹ / ₂ " SS6
8 () ()			

Center Hung Tray Support

- Center Hung Cable Tray Support allows cable to be laid-in from both sides.
- Eliminates costly cable pulling and field cutting of cable tray supports. Labor costs are dramatically reduced.
- Required hardware and threaded rod material for trapeze assemblies are reduced by up to 50%.
- Designed for use with 1/2" threaded rod. (Order rod separately)
- Use with all aluminum and steel cable trays through 24" width.
- Load capacity is 700 lbs. (311kN) per support. Safety factor of 3.0. Eccentric loading is not to exceed a 60% vs. 40% load differential.
- The maximum recommended unsupportedspan length is 144"/12 ft. (3.66 m).
- Hardware shown is furnished.
- Finish available: Zinc Plated

Center Hung Support Hardware Kit

Tray Width

(mm)

(305)

(457)

(610)

(762)

(914)

(1067)

6 & 9 (152 & 229)

in.

12

18

24

30

36

42

Catalog

No.

9ZN-5212

9ZN-5224

(2) 1/2" Hex Nut

9

Tray

Width

6", 9", 12" (152, 228, 305)

(mm)

(457, 609)

'A'

(mm)

(305)

(457)

(610)

(762)

(914)

42 (1067)

48 (1219)

in.

12

18

24

30

36

Ή'

 $8^{3}/_{4}$ (222)

 $8^{3}/_{4}$ (222)

83/4 (222)

111/4 (286)

11¹/₄ (286)

(406)

(406)

16

16

(mm)

in.

in

18", 24"

(1) B22 Channel cut to

the required length

(2) 1/2" x 7/8" Hex Head Cap Screw

(1) 9/16" Inside diameter steel

tubing welded to strut

(2) 9ZN-1205

Hold-Down Guide Clamp

(2) N525WO

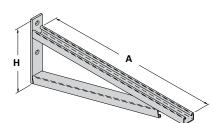
Channel Nut

Channel

Lenath

30" (762)

(mm)


(457)

in.

18"

Bracket (12" - 48")

- (*) Insert available finish: ZN GRN or HDG
- Safety Load Factor 2.5

Bottom brace is B42 channel on B494-24 and smaller and B22 channel on B494-30 and larger

Cantilever Bracket

- (*) Insert available finish: ZN GRN (HDG) SS4 or SS6
- Safety Load Factor 2.5

Catalog

No.

B494-12

•B494-18

B494-24

B494-30

B494-36

B494-42

B494-48

Uniform Load

lbs

2500

1700

1300

1600

1100

980

980

(kN)

(11.12)

(7.56)

(5.78)

(7.11)

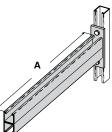
(4.89)

(4.36)

(4.36)

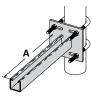
For more dimensional data see Strut Systems catalog

Catalog No.	Uniform Load	Tray Width	'A' in. mm	
B409-12	960 (4.27)	6 & 9 (152 & 229)	12 (305)	
B409-18	640 (2.84)	12 (305)	18 (457)	
B409-24	480 (2.13)	18 (457)	24 (610)	


• Green = Fastest shipped items • Black = Normal lead-time items • Red = Normally long lead-time items

Uniform Load

Catalog No.

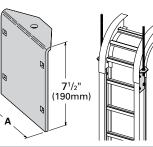

Cantilever Bracket

- (*) Insert available finish: ZN GRN HDG or SS4
- Safety Load Factor 2.5

Underfloor Support (U-Bolts not included)

- Finishes available: ZN
- Safety Load Factor 2.5

U-Bolt Size	Fits Pipe O.D.
B501- ³ /4	.841 - 1.050
B501-1	1.051 - 1.315
B501-1 ¹ /4	1.316 - 1.660
B501-1 ¹ /2	1.661 - 1.900
B501-2	1.901 - 2.375
B501-2 ¹ / ₂	2.376 - 2.875


outding No.	lbs kN	in. mm	in. mm
B297-12	1660 (7.38)	6 & 9 (152 & 229)	12 (305)
B297-18	1100 (4.89)	12 (305)	18 (457)
B297-24	835 (3.71)	18 (457)	24 (610)
B297-30	665 (2.93)	24 (610)	30 (762)
B297-36	550 (2.44)	30 (762)	36 (914)
B297-42	465 (2.06)	36 (914)	42 (1067)

Tray Width

'Δ'

Catalog No.	Uniform Load	Tray Width	'Α'		
	lbs (kN)	in. (mm)	in. (mm)		
B409UF-12	800 (3.56)	6 & 9 (152 & 229)	12 (305)		
B409UF-21	450 (2.00)	12 & 18(305 & 457)	21 (533)		

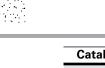
- Design load is 1500 lbs (6.67kN) per pair.
- Safety Factor of 2.5
- Furnished in pairs.
- Hole size: ⁹/₁₆" (14mm) for ¹/₂" threaded rod.

Catalog No.	Outside	'A' in. (mm)		
	Cable Tray Ht.			
• 9A-1224	4"	3.84	(97.54)	
• 9A-1225	5"	4.73	(120.14)	
• 9A-1226	6"	5.84	(148.34)	
• 9A-1227	7"	6.84	(173.74)	

Heavy Duty Hold Down Bracket

- Design load is 2000 lbs (8.89kN) per pair.
- Two bolt design.
- Sold in pairs.
- ³/₈" cable tray attachment hardware provided.
- ³/₈" support attachment hardware <u>**not**</u> provided.
- (*) Insert ZN SS4 or SS6
- Recommended for support of vertical trays.

Heavy Duty Hold Down Bracket


- Design load is 4000 lbs (17.79kN) per pair.
- Four bolt design.
- Sold in pairs.
- ³/₈" cable tray attachment hardware provided
- 3/8" support attachment hardware **not** provided.
- (*) Insert ZN SS4 or SS6
- Recommended for support of vertical trays.

Beam Clamp

- Finishes available: ZN GRN HDG or SS4
- Sold in pieces.
- Design load is 1200 lbs (5.34kN) per pair.
- Safety Load Factor 5.0.
- Order HHCS and Channel Nuts separately.

• Green = Fastest shipped items • Black = Normal lead-time items • Red = Normally long lead-time items

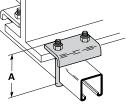
All dimensions in parentheses are millimeters unless otherwise specified.

Catalog No.

9(*)-1241

Catalog No.

9(*)-1242

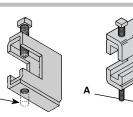


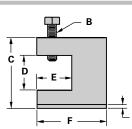
Beam Clamp

- Finishes available: ZN or HDG
- Sold in pieces.
- *Design load when used in pairs. Safety Load Factor 5.0

Beam Clamp

- Finishes available: ZN or HDG
- Sold in pieces.
- *Design load when used in pairs. Safety Load Factor 5.0


Catalog No.	Design Load Ibs (kN)	'A' in. (mm)
B441-22	1200 (5.34)	3 ³ /8 (86)
B441-22A	1200 (5.34)	5 (127)

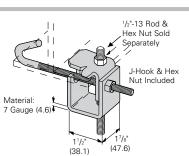

R

Catalog No.	B212-1/4	B212- ³ /8			
Design Load *	600 lbs. (2.67kN)	1000 lbs. (4.45 kN)			
Max. Flange Thick	³ /4" (19 mm)	1 ¹ /8" (28.6 mm)			
Mat'l. Thickness	1/4" (6.3 mm)	³ /8" (9.5 mm)			

B305 Thru B308 & B321 Series Beam Clamps

- Finishes available: ZN or HDG
- Setscrew included.
- Safety Load Factor 5.0

Catalog	Rod	В	С	D	E	F	Т	Design Load
No.	Size A		in. (mm)	in. (mm)	in. (mm)	in. (mm)	in. (mm)	lbs (kN)
B305	³ /8"-16	³ /8"-16	2 ⁵ / ₁₆ (58.7)	⁷ / ₈ (22.2)	1 ¹ / ₈ (28.6)	21/2 (63.5)	11 Ga. (3.0)	600 (2.67)
B306	³ /8"-16	¹ /2"-13	2 ⁷ / ₁₆ (61.9)	7/8 (22.2)	1 ¹ / ₈ (28.6)	21/2 (63.5)	7 Ga. (4.5)	1100 (4.90)
B307	¹ /2"-13	¹ /2"-13	27/16 (61.9)	⁷ / ₈ (22.2)	1 ¹ / ₈ (28.6)	21/2 (63.5)	7 Ga. (4.5)	1100 (4.90)
B308	¹ /2"-13	¹ /2"-13	2 ⁹ / ₁₆ (65.1)	⁷ / ₈ (22.2)	1 ¹ / ₈ (28.6)	21/2 (63.5)	¹ / ₄ (6.3)	1500 (6.68)
B321-1	³ /8"-16	¹ /2"-13	3 ⁹ / ₁₆ (90.5)	111/16 (42.9)	1 ⁵ /8 (41.3)	31/4 (82.5)	¹ / ₄ (6.3)	1300 (5.79)
B321-2	¹ /2"-13	¹ /2"-13	3 ⁹ / ₁₆ (90.5)	111/16 (42.9)	15/8 (41.3)	31/4 (82.5)	¹ / ₄ (6.3)	1400 (6.23)


Anchor Strap - for B305 thru B308 & B321 Series

- Finish available: ZN
- For a maximum beam thickness of ³/₄" (19mm).
- For thicker beams, step up one flange width size.

Beam Clamp

Series 2, 3, 4, & 5 Aluminum

- Finish available: ZN
- Design Load 500 lbs. (2.22 kN)
- Safety Load Factor 5.0
- Recommended torque: 'J'-Hook Nut 125 In.-Lbs. (14.1 kN/m)
- Maximum flange thickness of ³/₄" (19mm).

Catalog	For Fl	ange Width	Wt./C		
No.	in.	(mm)	lbs	(kg)	
B750-J4	3 - 6	(76.2 - 152.4)	109	(49.4)	
B750-J6	5 - 9	(127.0 - 288.6)	124	(56.2)	
B750-J9	8 - 12	(203.2 - 304.8)	135	(61.,2)	
B750-J12	11 - 15	(279.4 - 381.0)	147	(66.7)	

Catalog No.

B312-6

B312-9

B312-12

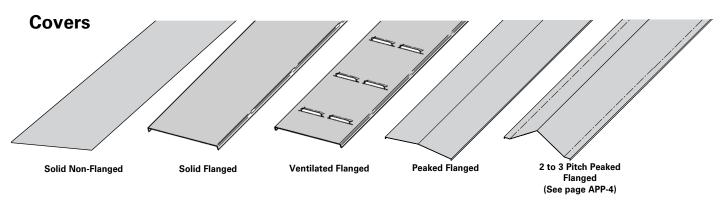
'J'-Hook	Catalog	'A'	'TL'	Wt./C
• Finishes available: ZN	No.	in. (mm)	in. (mm)	lbs (kg)
Hex Nut included.	B700-J4	8 ¹ / ₂ (215.9)	5 (127.0)	44 (19.9)
	B700-J6	111/2 (292.1)	6 (152.4)	53 (24.0)
Thread Length	B700-J9	121/4 (368.3)	6 (152.4)	63 (28.6)
	B700-J12	17 ¹ / ₂ (444.5)	6 (152.4)	78 (35.4)

• Green = Fastest shipped items • Black = Normal lead-time items • Red = Normally long lead-time items

All dimensions in parentheses are millimeters unless otherwise specified.

Flange Width

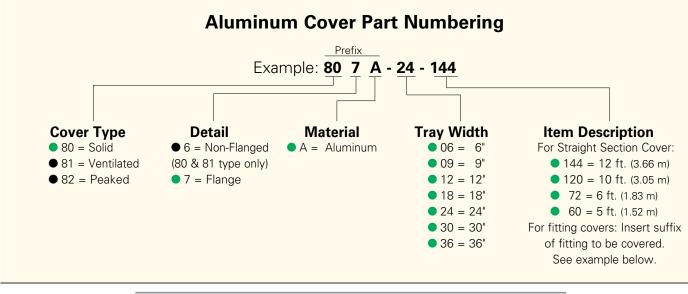
Up to 6 (Up to 152)

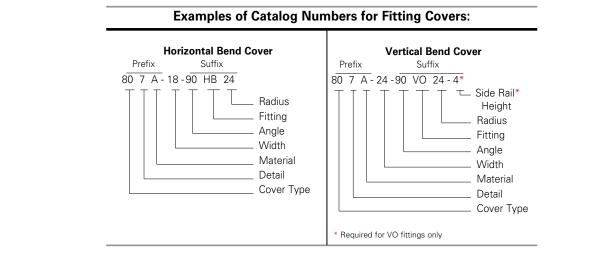

9 - 12 (228 to 305)

in.

6 - 9

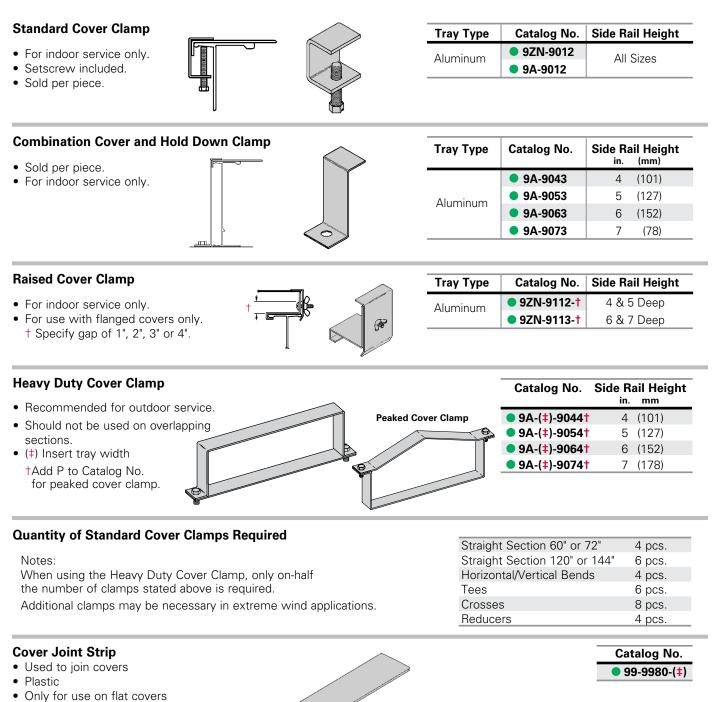
(mm)


(152 to 228)



A full range of covers is available for straight sections and fittings.

Solid covers should be used when maximum enclosure of the cable is desired and no accumulation of heat is expected. Ventilated covers provide an overhead cable shield, yet allow heat to escape. Flanged covers have a 1/2 in. (13 mm) flange.


We recommend that covers be placed on vertical cable tray runs to a height of 6 ft. (1.83 m) to 8 ft. (2.44 m) above the floor to both isolate cables and personnel. Cover clamps are <u>not included</u> with the cover and must be ordered separately. All **peaked covers** are flanged. Standard peaked covers have $\frac{1}{2}$ peak. Special purpose peaked covers, having a 2 to 3 pitch, provide additional slope and material thickness. The 2 to 3 pitch fitting covers are of multiple piece, welded construction.

Note: Covers may not be suitable for all environmental loads. Check with B-Line Technical Support (<u>blinetechnicalsupport@eaton.com</u>) if there are questions/concerns about environmental loads for covers (wind, snow, sleet, rain, etc.).

• Green = Fastest shipped items • Black = Normal lead-time items • Red = Normally long lead-time items

Color - gray.
(‡) Insert tray width

 Cable Cleats

 (see pages N-1 thru N-5) Standard

 Trefoil Cable Cleats

 Cable Cleats

• Green = Fastest shipped items • Black = Normal lead-time items • Red = Normally long lead-time items

Section 1- Acceptable Manufacturers

1.01 Manufacturer: Subject to compliance with these specifications, Eaton's B-Line series cable tray systems shall be as manufactured by Eaton.

Section 2- Cable Tray Sections and Components

- 2.01 General: Except as otherwise indicated, provide metal cable trays, of types, classes and sizes indicated; with splice plates, bolts, nuts and washers for connecting units. Construct units with rounded edges and smooth surfaces; in compliance with applicable standards; and with the following additional construction features. Cable tray shall be installed according to the latest revision of NEMA VE 2.
- 2.02 Materials and Finish: Straight section and fitting side rails and rungs shall be extruded from Aluminum Association Alloy 6063. All fabricated parts shall be made from Aluminum Association Alloy 5052.
- 2.03 Ladder Cable Trays shall consist of two longitudinal members (side rails) with transverse members (rungs) welded to the side rails. Rungs shall be spaced [6] [9] [12] inches apart. Rung spacing in radiused fittings shall be industry standard 9" and measured at the center of the tray's width. Each rung must be capable of supporting a 200 lb. concentrated load at the center of the cable tray over and above the cable load with a safety factor of 1.5.
- 2.04 Cable tray loading depth shall be [3] [4] [5] [6] inches per NEMA VE 1.
- 2.05 Straight sections shall have side rails fabricated as I-beams. Straight sections shall be supplied in standard [12 foot] [24 foot] [10 foot (3 m)] [20 foot (6 m)] lengths.
- 2.06 Cable tray widths shall be [6] [9] [12] [18] [24] [30] [36] inches or as shown on drawings.
- 2.06 Splice plates shall be the Wedge-Lock design with 4 nuts and bolts per plate. The resistance of fixed splice connections between an adjacent section of tray shall not exceed 0.00033 ohm.
- 2.08 All fittings must have a minimum radius of [12] [24] [36] [48] inches.

Section 3- Loading Capacities and Testing

- 3.01 Cable tray shall be capable of carrying a uniformly distributed load of _____ lbs./ft. on a _____ ft. support span with a safety factor of 1.5 when supported as a simple span and tested per NEMA VE 1 5.2. In addition to the uniformly distributed load the cable tray shall support 200 lbs. concentrated load at mid-point of span. Load and safety factors specified are applicable to both the side rails and rung capacities. Cable tray shall be made to manufacturing tolerances as specified by NEMA.
- 3.02 Upon request, manufacturer shall provide test reports in accordance with the latest revision of NEMA VE 1 or CSA C22.2 No. 126.

How The Service Advisor Works

We know that your time is important! That's why the color-coding system in this catalog is designed to help you select products that fit your service needs. Products are marked to indicate the typical lead time for orders of 50 pieces or less.

Customer: How do I select my straight sections. covers, or fittings so that I get the quickest turnaround?

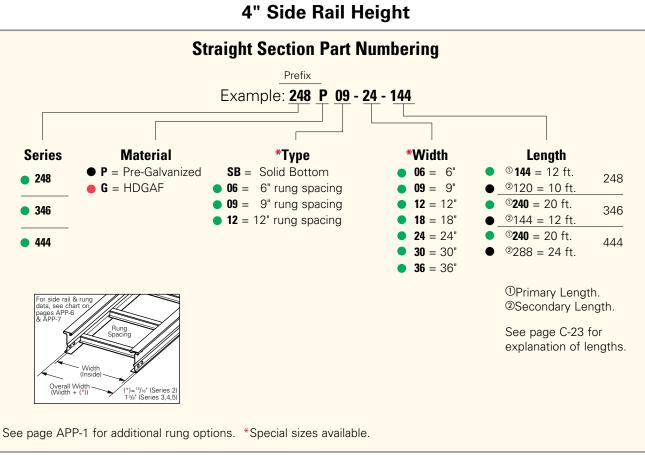
Service Advisor: Each part of our selection chart is shown in colors. If any section of a part number is a different color, the part will typically ship with the longer lead time represented by the colors.

144

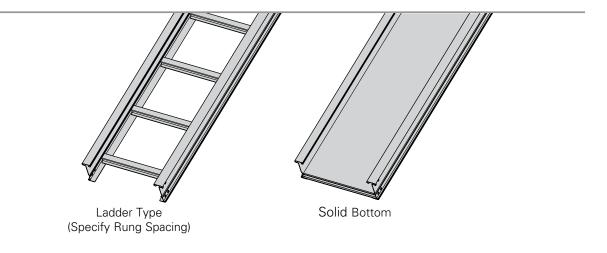
- Green = Fastest shipped items
- Black = Normal lead-time items

12

258G


Red = Normally long lead-time items

24


Example:

Part will have a long lead time because of the 258G material.

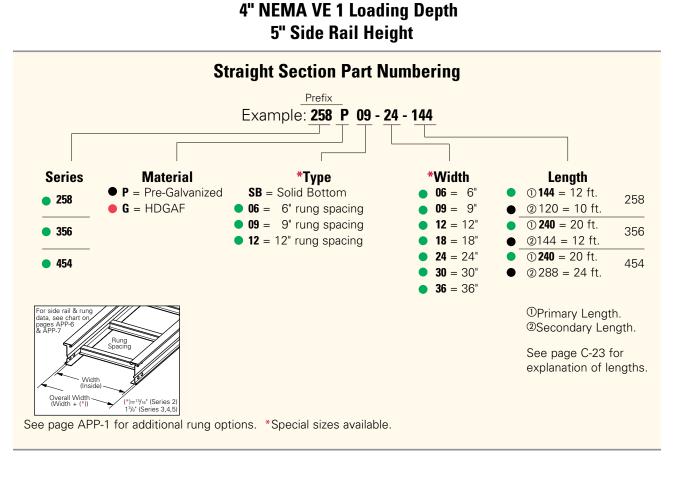
Changing the part number from 258G to 258P will change the coding to black and reduce lead time.

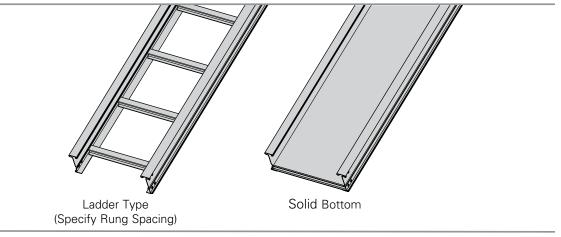
3" NEMA VE 1 Loading Depth

Green = Fastest shipped items

3" NEMA VE 1 Loading Depth 4" Side Rail Height

Values are based on simple beam tests per NEMA VE 1 on 36" wide cable tray with rungs spaced on 12" centers. Cable trays will support without collapse a 200 lb. (90.7 kg) concentrated load over and above published loads. Published load safety factor is 1.5. To convert 1.5 safety factor to 2.0, multiply publish load by 0.75. To obtain mid-span deflection, multiply a load by the deflection multiplier. Cable tray must be supported on spans shorter than or equal to the length of the cable tray being installed.


Individual rungs will support without collapse a 200 lb. (90.7 kg) concentrated load applied at the mid-span of the rung, over and above the NEMA rated cable load with a 1.5 safety factor for highlighted NEMA spans and loads.


B-Line series	Side Rail Dimensions	NEMA, CSA & UL Classifications	Span ft	Load Ibs/ft	Deflection Multiplier	Design Factors for Two Rails	Span meters	Load kg/m	Deflection Multiplier	Design Factors for Two Rails
	-+ +-1.00	NEMA: 16A, <mark>12C</mark>	6	412*	0.0007		1.8	613*	0.012	
		CSA: D1-3m	8	232	0.0022	Area = 0.62 in ²	2.4	345	0.038	Area = 4.00 cm ²
248	3.14		10	148	0.0054	Sx = 0.64 in ³	3.0	221	0.093	Sx = 10.49 cm ³
210	4.188	UL Cross-Sectional	12	103	0.011	lx = 1.43 in₄	3.7	153	0.192	lx = 59.52 cm₄
	│	Area: 0.40 in ²	14	76	0.021		4.3	113	0.356	
	18 gauge		16	58	0.036		4.9	86	0.607	

B-Line series	Side Rail Dimensions	NEMA, CSA & UL Classifications	Span ft	Load Ibs/ft	Deflection Multiplier	Design Factors for Two Rails	Span meters	Load kg/m	Deflection Multiplier	Design Factors for Two Rails
	- 1.50	NEMA: <mark>20A,</mark> 16B	10	252	0.0036		3.0	375	0.060	
		CSA: D1-6m	12	175	0.0072	Area = 0.89 in ²	3.7	260	0.124	Area = 5.74 cm ²
346	3.13		14	129	0.013	Sx = 0.96 in³	4.3	191	0.229	Sx = 15.73 cm ³
010	4.188	UL Cross-Sectional	16	98	0.023	lx = 2.22 in₄	4.9	146	0.391	lx = 92.40 cm₄
	}	Area: 0.70 in ²	18	78	0.037		5.5	116	0.626	
	16 gauge		20	63	0.056		6.1	94	0.955	

B-Line series	Side Rail Dimensions	NEMA, CSA & UL Classifications	Span ft	Load Ibs/ft	Deflection Multiplier	Design Factors for Two Rails	Span meters	Load kg/m	Deflection Multiplier	Design Factors for Two Rails
		NEMA: 20B, 16C	12	253	0.0055		3.7	376	0.093	
	ר ד'רף ד	CSA: E-3m	16	142	0.027	Area = 1.19 in ²	4.9	212	0.295	Area = 7.68 cm ²
444	3.11		18	112	0.028	Sx = 1.27 in³	5.5	167	0.473	Sx = 20.81 cm ³
	4.188	UL Cross-Sectional	20	91	0.042	lx = 2.94 in₄	6.1	135	0.721	lx = 122.37 cm₄
	}_∔	Area: 1.00 in ²	22	75	0.062		6.7	112	1.055	
	14 gauge		24	63	0.088		7.3	94	1.495	

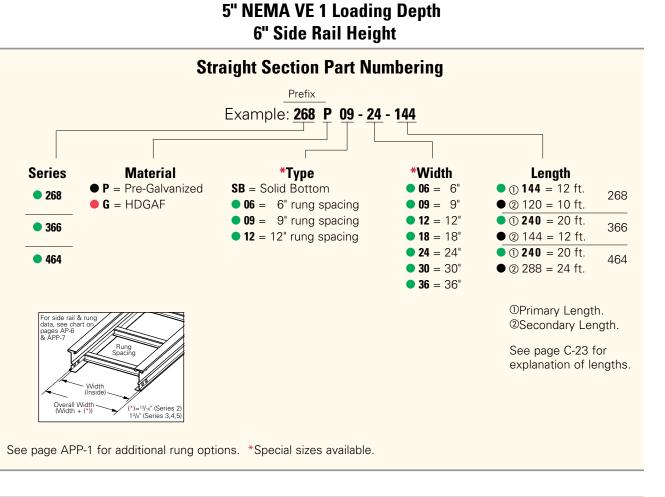
*When using 18" rung spacing, load capacity is limited to 394 lbs/ft (586.272 kg/m) for 30" cable tray width and 325 lbs/ft (483.6 kg/m) for 36" cable tray width. When cable trays are used in continuous spans, the deflection of the cable tray is reduced by as much as 50%. Design factors: Ix = Moment of Inertia, Sx = Section Modulus.

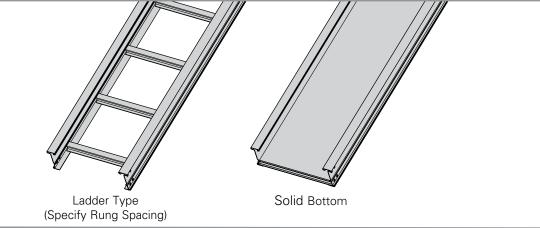
Green = Fastest shipped items
Black = Normal lead-time items
Red = Normally long lead-time items

4" NEMA VE 1 Loading Depth 5" Side Rail Height

Values are based on simple beam tests per NEMA VE 1 on 36" wide cable tray with rungs spaced on 12" centers. Cable trays will support without collapse a 200 lb. (90.7 kg) concentrated load over and above published loads. Published load safety factor is 1.5. To convert 1.5 safety factor to 2.0, multiply publish load by 0.75. To obtain mid-span deflection, multiply a load by the deflection multiplier. Cable tray must be supported on spans shorter than or equal to the length of the cable tray being installed.

Individual rungs will support without collapse a 200 lb. (90.7 kg) concentrated load applied at the mid-span of the rung, over and above the NEMA rated cable load with a 1.5 safety factor for highlighted NEMA spans and loads.


B-Line series	Side Rail Dimensions	NEMA, CSA & UL Classifications	Span ft	Load Ibs/ft	Deflection Multiplier	Design Factors for Two Rails	Span meters	Load kg/m	Deflection Multiplier	Design Factors for Two Rails
	-+ + 1.00	NEMA: 16A, <mark>12C</mark>	6	436*	0.0004		1.8	649*	0.007	
		CSA: D1-3m	8	245	0.0013	Area = 0.71 in ²	2.4	365	0.022	Area = 4.58 cm ²
258	4.14		10	157	0.0032	Sx = 0.89 in ³	3.0	234	0.054	Sx = 14.58 cm ³
	5.188	UL Cross-Sectional	12	109	0.0066	lx = 2.44 in ⁴	3.7	162	0.113	lx = 101.56 cm⁴
	│ │ }──┼	Area: 0.40 in ²	14	80	0.012		4.3	119	0.209	
	18 gauge		16	61	0.021		4.9	91	0.356	


B-Line series	Side Rail Dimensions	NEMA, CSA & UL Classifications	Span ft	Load Ibs/ft	Deflection Multiplier	Design Factors for Two Rails	Span meters	Load kg/m	Deflection Multiplier	Design Factors for Two Rails
	- 1.50	NEMA: <mark>20A,</mark> 16C	10	276	0.0021		3.0	411	0.036	
		CSA: D1-6m	12	192	0.0043	Area = 1.00 in ²	3.7	285	0.074	Area = 6.45 cm ²
356	4.13		14	141	0.0080	Sx = 1.31 in ³	4.3	210	0.136	Sx = 21.47 cm ³
	5.188 4.13	UL Cross-Sectional	16	108	0.014	lx = 3.73 in₄	4.9	160	0.233	lx = 155.25 cm₄
		Area: 0.70 in ²	18	85	0.022		5.5	127	0.373	
	16 gauge		20	69	0.033		6.1	103	0.568	

B-Line series	Side Rail Dimensions	NEMA, CSA & UL Classifications	Span ft	Load Ibs/ft	Deflection Multiplier	Design Factors for Two Rails	Span meters	Load kg/m	Deflection Multiplier	Design Factors for Two Rails
		NEMA: 20C	12	294	0.0032		3.7	438	0.055	
		CSA: E-6m	16	166	0.010	Area = 1.34 in ²	4.9	246	0.175	Area = 8.65 cm ²
454	4.11		18	131	0.016	Sx = 1.75 in³	5.5	195	0.280	Sx = 28.68 cm ³
	5.188	UL Cross-Sectional	20	106	0.026	lx = 4.96 in₄	6.1	158	0.427	lx = 206.45 cm ⁴
		Area: 1.00 in ²	22	88	0.037		6.7	130	0.625	
	14 gauge		24	74	0.052		7.3	110	0.886	

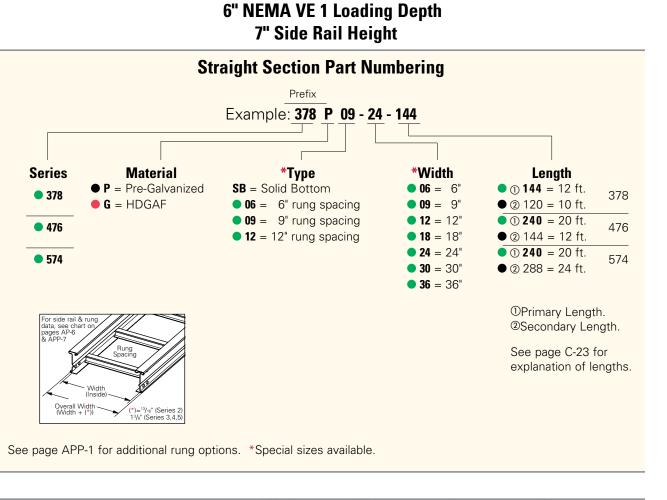
*When using 18" rung spacing, load capacity is limited to 394 lbs/ft (586.272 kg/m) for 30" cable tray width and 325 lbs/ft (483.6 kg/m) for 36" cable tray width. When cable trays are used in continuous spans, the deflection of the cable tray is reduced by as much as 50%. Design factors: Ix = Moment of Inertia, Sx = Section Modulus.

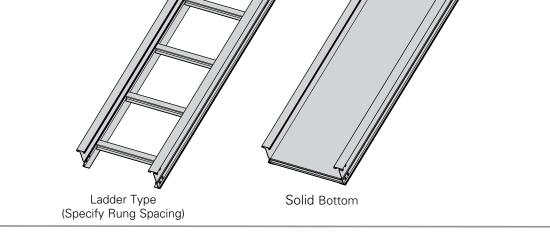
Series 2, 3, 4, & 5 Steel

Green = Fastest shipped items
 Black = Normal lead-time items
 Red = Normally long lead-time items

5" NEMA VE 1 Loading Depth 6" Side Rail Height

Values are based on simple beam tests per NEMA VE 1 on 36" wide cable tray with rungs spaced on 12" centers. Cable trays will support without collapse a 200 lb. (90.7 kg) concentrated load over and above published loads. Published load safety factor is 1.5. To convert 1.5 safety factor to 2.0, multiply publish load by 0.75. To obtain mid-span deflection, multiply a load by the deflection multiplier. Cable tray must be supported on spans shorter than or equal to the length of the cable tray being installed.


Individual rungs will support without collapse a 200 lb. (90.7 kg) concentrated load applied at the mid-span of the rung, over and above the NEMA rated cable load with a 1.5 safety factor for highlighted NEMA spans and loads.


B-Line series	Side Rail Dimensions	NEMA, CSA & UL Classifications	Span ft	Load Ibs/ft	Deflection Multiplier	Design Factors for Two Rails	Span meters	Load kg/m	Deflection Multiplier	Design Factors for Two Rails
	-+ +-1.00	NEMA: 16A, <mark>12C</mark>	6	440 *	0.0003		1.8	655 *	0.005	
		CSA: D1-3m	8	248	0.0008	Area = 0.80 in ²	2.4	368	0.014	Area = 5.16 cm ²
268	5.14		10	158	0.0020	Sx = 1.18 in ³	3.0	236	0.035	Sx = 19.34 cm ³
200	6.188	UL Cross-Sectional	12	110	0.0042	lx = 3.81 in₄	3.7	164	0.072	lx = 158.58 cm ⁴
		Area: 0.70 in ²	14	81	0.0078		4.3	120	0.134	
	18 gauge		16	62	0.013		4.9	92	0.228	

B-Line series	Side Rail Dimensions	NEMA, CSA & UL Classifications	Span ft	Load Ibs/ft	Deflection Multiplier	Design Factors for Two Rails	Span meters	Load kg/m	Deflection Multiplier	Design Factors for Two Rails
	- 1.50	NEMA: <mark>20B,</mark> 16C	10	300	0.0014		3.0	446	0.023	
		CSA: E-6m	12	208	0.0028	Area = 1.11 in ²	3.7	310	0.048	Area = 7.16 cm ²
366	5.14		14	153	0.0052	Sx = 1.71 in ³	4.3	228	0.089	Sx = 28.02 cm ³
	6.188 5.14	UL Cross-Sectional	16	117	0.0089	lx = 5.74 in₄	4.9	174	0.151	lx = 238.92 cm₄
		Area: 1.00 in ²	18	93	0.014		5.5	138	0.242	
	16 gauge		20	75	0.022		6.1	112	0.369	

B-Line series	Side Rail Dimensions	NEMA, CSA & UL Classifications	Span ft	Load Ibs/ft	Deflection Multiplier	Design Factors for Two Rails	Span meters	Load kg/m	Deflection Multiplier	Design Factors for Two Rails
	- 1.50	NEMA: 20C	12	342 *	0.002		3.7	508*	0.035	
		CSA: E-6m	16	192	0.007	Area = 1.49 in ²	4.9	286	0.113	Area = 9.61 cm ²
464	5.11		18	152	0.011	Sx = 2.27 in ³	5.5	226	0.182	Sx = 37.36 cm ³
101	6.188	UL Cross-Sectional	20	123	0.016	lx = 7.65 in₄	6.1	183	0.277	lx = 318.42 cm⁴
		Area: 1.00 in ²	22	102	0.024		6.7	151	0.406	
	14 gauge		24	85	0.034		7.3	127	0.574	

*When using 18" rung spacing, load capacity is limited to 394 lbs/ft (586.272 kg/m) for 30" cable tray width and 325 lbs/ft (483.6 kg/m) for 36" cable tray width. When cable trays are used in continuous spans, the deflection of the cable tray is reduced by as much as 50%. Design factors: Ix = Moment of Inertia, Sx = Section Modulus.

Green = Fastest shipped items
 Black = Normal lead-time items
 Red = Normally long lead-time items

6" NEMA VE 1 Loading Depth 7" Side Rail Height

Values are based on simple beam tests per NEMA VE 1 on 36" wide cable tray with rungs spaced on 12" centers. Cable trays will support without collapse a 200 lb. (90.7 kg) concentrated load over and above published loads. Published load safety factor is 1.5. To convert 1.5 safety factor to 2.0, multiply publish load by 0.75. To obtain mid-span deflection, multiply a load by the deflection multiplier. Cable tray must be supported on spans shorter than or equal to the length of the cable tray being installed.

Individual rungs will support without collapse a 200 lb. (90.7 kg) concentrated load applied at the mid-span of the rung, over and above the NEMA rated cable load with a 1.5 safety factor for highlighted NEMA spans and loads.

B-Line series	Side Rail Dimensions	NEMA, CSA & UL Classifications	Span ft	Load Ibs/ft	Deflection Multiplier	Design Factors for Two Rails	Span meters	Load kg/m	Deflection Multiplier	Design Factors for Two Rails
	- 1.50		8	319	0.0006		2.4	474	0.009	
		NEMA: <mark>20A,</mark> 16B	10	204	0.0014		3.0	304	0.023	
378	6,14	CSA: D1-3m	12	142	0.0028	Area = 1.01 in ²	3.7	211	0.048	Area = 6.52 cm ²
0/0	7.188		14	104	0.0052	Sx = 1.77 in ³	4.3	155	0.089	Sx = 29.01 cm ³
		UL Cross-Sectional	16	80	0.0089	lx = 6.90 in₄	4.9	119	0.151	lx = 287.20 cm₄
	18 gauge	Area: 0.70 in ²	18	63	0.014		5.5	94	0.242	
			20	51	0.022		6.1	76	0.369	

B-Line series	Side Rail Dimensions	NEMA, CSA & UL Classifications	Span ft	Load Ibs/ft	Deflection Multiplier	Design Factors for Two Rails	Span meters	Load kg/m	Deflection Multiplier	Design Factors for Two Rails
	1.50	NEMA: <mark>20B,</mark> 16C	12	214	0.0019		3.7	318	0.033	
		CSA: D1-6m	16	129	0.0061	Area = 1.22 in ²	4.9	179	0.105	Area = 7.87 cm ²
476	6,13		18	95	0.010	Sx = 2.14 in³	5.5	141	0.168	Sx = 35.07 cm³
	7.188	UL Cross-Sectional	20	77	0.015	lx = 8.30 in₄	6.1	115	0.255	lx = 345.47 cm₄
	}_+	Area: 1.00 in ²	22	64	0.022		6.7	95	0.374	
	16 gauge		24	53	0.031		7.3	80	0.529	

B-Line series	Side Rail Dimensions	NEMA, CSA & UL Classifications	Span ft	Load Ibs/ft	Deflection Multiplier	Design Factors for Two Rails	Span meters	Load kg/m	Deflection Multiplier	Design Factors for Two Rails
	1.50	NEMA: 20C	12	361	0.0014		3.7	537	0.025	
		CSA: E-6m	16	203	0.0046	Area = 1.64 in ²	4.9	302	0.078	Area = 10.58 cm ²
574	6.11		18	160	0.0073	Sx = 2.87 in ³	5.5	239	0.125	Sx = 47.03 cm ³
071	7.188	UL Cross-Sectional	20	130	0.011	lx = 11.10 in₄	6.1	193	0.191	lx = 462.02 cm₄
	↓ }_+	Area: 1.50 in ²	22	107	0.016		6.7	160	0.280	
	14 gauge		24	90	0.023		7.3	134	0.396	

When cable trays are used in continuous spans, the deflection of the cable tray is reduced by as much as 50%. Design factors: Ix = Moment of Inertia, Sx = Section Modulus.

Splice Plates

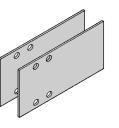
Series 2, 3, 4, & 5 Steel

- Standard 8-hole pattern for all steel splice plates.
- Furnished in pairs with hardware.
- UL Classified as equipment grounding conductor.
- ٠ One pair including hardware provided with straight section. (Expansion splice quantity subtracted)
- Bonding jumpers not required.
- (*) Insert ZN or G

Expansion Splice Plates

- · Expansion plates allow for one inch expansion or contraction of the cable tray, or where expansion joints occur in the support structure.
- Furnished in pairs with hardware.
- Bonding jumpers are required on each siderail. Order Separately.
- (*) Insert ZN or G

For heavy duty expansion splice plates see page APP-3.


Catalog No.	Height
	in. mm
9(*)-8004	4 (101)
9(*)-8005	5 (127)
9(*)-8006	6 (152)
9(*)-8007	7 (178)

Catalog No.	Height
	in. mm
9(*)-8014	4 (101)
9(*)-8015	5 (127)
9(*)-8016	6 (152)
9(*)-8017	7 (178)

Requires supports within 24" on both sides, per NEMA VE 2.

Universal Splice Plates

- Used to splice to existing cable tray systems.
- Furnished in pairs with hardware.
- Bonding jumpers not required.
- (*) Insert ZN or G

Catalog No.	Height	
	in. mm	
9(*)-8004- 1/2	4 (101)	
9(*)-8005- 1/2	5 (127)	
9(*)-8006 - ¹ /2	6 (152)	
9(*)-8007 - ¹ /2	7 (178)	

in

Heiaht

5 to 4 (127 to 101)

6 to 4 (152 to 101)

6 to 5 (152 to 127)

7 to 4 (178 to 101)

7 to 5 (178 to 127)

7 to 6 (178 to 152)

mm

Catalog No.

9(*)-8045

9(*)-8046

9(*)-8060

9(*)-8047

9(*)-8061

9(*)-8062

Step Down Splice Plates

- These splice plates are offered for connecting cable tray sections having side rails of different heights.
- UL Classified as equipment grounding conductor.
- Furnished in pairs with hardware.
- · Bonding jumpers not required.
- (*) Insert ZN or G

Vertical Adjustable Splice Plates

- These plates provide for changes in elevation that do not conform to standard vertical fittings.
- UL Classified as equipment grounding conductor.
- Furnished in pairs with hardware.
- Bonding jumpers not required.
- (*) Insert 🕒 or P

Branch Pivot Connectors

- Branch from existing cable tray runs at any point.
- Pivot to any required angle.
- UL Classified as equipment grounding conductor.
- Furnished in pairs with hardware.
- (*) Insert ZN or G

Catalog No.	Height in. mm
9(*)-8244	4 (101)
9(*)-8245	5 (127)
9(*)-8246	6 (152)
9(*)-8247	7 (178)

Green = Fastest shipped items

Black = Normal lead-time items Red = Normally long lead-time items

Catalog No.	Height in. mm
9(*)-8024	4 (101)
9(*)-8025	5 (127)
9(*)-8026	6 (152)
9(*)-8027	7 (178)

Series 2, 3, 4, & 5 Steel - Accessories

9(*)-803(X)-12 or 9(*)-803(X)-36

One pair splice plates with extensions

Cable Tray

End Cut

Mitered

Not mitered

Not mitered

14

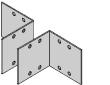
4 4

Horizontal Adjustable Splice Plates

- Offered to adjust a cable tray run for changes in direction in a horizontal plane that do not conform to standard horizontal fittings.
- UL Classified as equipment grounding conductor.
- Furnished in pairs with hardware.
- Bonding jumpers not required.
- (*) Insert ZN or G
- (X) Insert 4, 5, 6 or 7 for side rail height.

Requires supports within 24" on both sides, per NEMA VE 2.

Offset Reducing Splice Plate


- This plate is used for joining cable trays having different widths. When used in pairs they form a straight reduction; when used singly with a standard splice plate, they form an offset reduction.
- Furnished as one plate with hardware.
- · Bonding jumpers not required.
- (‡) Insert reduction
- (*) Insert **(**) or **(**)

Tray to Box Splice Plates

- Used to attach the end of a cable tray run to a distribution box or control panel.
- Furnished in pairs with hardware.

Frame Type Box Connector

• (*) Insert 🕒 or P

9(*)-803(X)

Splice only

Catalog

No.

9(*)-803(X)-12

9(*)-803(X)-36

9(*)-803(X)

Catalog No.	Height in. mm
9(*)-8057	7 (178)
9(*)-8056	6 (152)
9(*)-8055	5 (127)

Thru Tray Width

(mm)

(914)

(305)

(914)

in.

36

12

36

Catalog No.

9(*)-8064-(‡)

9(*)-8065-(‡)

9(*)-8066-(‡)

9(*)-8067-(‡)

Catalog No.

9(*)-8054

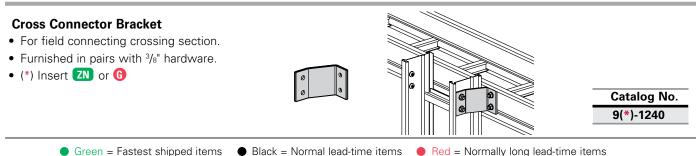
9(*)-8074-(‡)

9(*)-8075-(‡)

9(*)-8076-(‡)

9(*)-8077-(‡)

• Designed to attach the end of a cable tray run
to a distribution cabinet or control center to help
reinforce the box at the point of entry.


- · Furnished with tray connection hardware.
- (*) Insert ZN or G
- (‡) Insert tray width

Blind End

- This plate forms a closure for a dead end cable tray.
- Furnished as one plate with hardware.
- (*) Insert G or P
- (‡) Insert tray width

Catalog No. Height in. mm 9(*)-8084-(‡) 4 (101) 9(*)-8085-(‡) 5 (127) 9(*)-8086-(‡) 6 (152) 9(*)-8087-(‡) 7 (178)

Black = Normal lead-time items Red = Normally long lead-time items

All dimensions in parentheses are millimeters unless otherwise specified.

'L'

in. (mm)

N/A (NA)

16 (406)

41 (1041)

Height

4 (101)

5 (127)

6 (152)

7 (178)

Height

in. mm

4 (101)

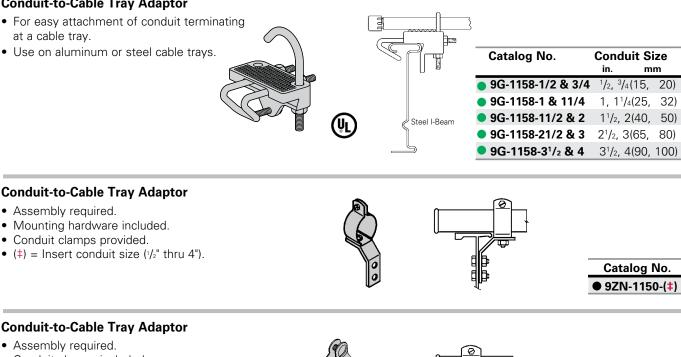
4 (101)

5 (127)

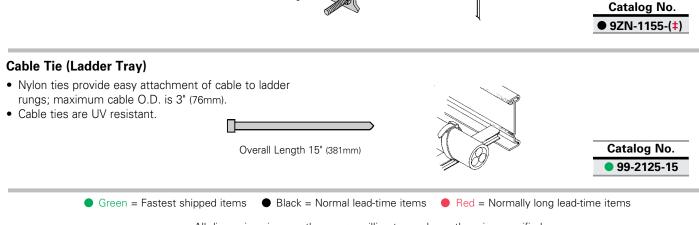
6 (152)

7 (178)

in. mm


Optional Tray Hardware (for field installation drill ¹³/₃₂" hole)

• To order 316 stainless steel hardware add SS6 suffix to ca Example: 9G-8004S


log number -		
6	Catalog No.	Description
	RNCB 3/8" x 3/4" SS6	Ribbed Neck Carriage Bolt AISI 316 Stainless Steel
	SFHN 3/8"-16 SS6	Serrated Flange Hex Nut AISI 316 Stainless Steel

Conduit-to-Cable Tray Adaptor

- · For easy attachment of conduit terminating at a cable tray.
- Use on aluminum or steel cable trays.

- · Assembly required.
- Conduit clamps included.
- (‡) = Insert conduit size (1/2" thru 4").

Ladder Drop-Out

- Specially-designed Ladder Drop-Outs provide a rounded surface with 4" (101 mm) radius to protect cable as it exits from the cable tray, preventing damage to insulation. The drop-out will attach to any desired rung.
- (*) Insert P or G
- (‡) Insert tray width

Trough Drop-Out

- These devices provide a rounded surface to protect cable as it exits.
- Hardware is included.
- (*) Insert P or G
- (‡) Insert tray width

Catalog

No.

73(*)-90HBFL

74(*)-90HBFL

75(*)-90HBFL

76(*)-90HBFL

Catalog

No.

73(*)-(**)VO(†)

74(*)-(**)VO(†)

75(*)-(**)VO(†)

76(*)-(**)VO(†)

Catalog

No.

73(*)-(**)VI(†)

74(*)-(**)VI(†)

75(*)-(**)VI(†)

76(*)-(**)VI(†)

Side Rail

Height

4 (101)

5 (127)

6 (152)

7 (178)

Side Rail

Height

in. mm

4 (101)

5 (127)

6 (152)

7 (178)

Side Rail

Height

in. mm

4 (101)

5 (127)

6 (152)

7 (178)

in. mm

Catalog No.

9(*)-1104-(‡)

Series 2, 3, 4, & 5 Steel

Catalog	Ν
0/*) 440	4 -

9(*)-1104T-(‡)

Loading

Depth 'H'

4 (101)

5 (127)

6 (152)

Loading

Depth 'H'

in. mm

4 (101)

5 (127)

6 (152)

Loading

Depth 'H'

4 (101)

5 (127)

6 (152)

in. mm

3 (76)

3

(76)

in. mm

3 (76)

Barrier - Straight Section			
Length: Insert 120 for [120" - 10 ft.] (3.0 m) or 144 for [144" - 12 ft.] (3.6 m)	Catalog No.	Side Rail Height in. mm	Loading Depth 'H' in. mm
Order catalog number based on loading depth.	73(*)-Length	4 (101)	3 (76)
• Furnished with four #10 x $\frac{1}{2}$ plated self-drilling screws and a 99-9982 Barrier Strip Splice.	74(*)-Length	5 (127)	4 (101)
• (*) Insert P or G	75(*)-Length	6 (152)	5 (127)
	76(*)-Length	7 (178)	6 (152)

Barrier - Horizontal Bend

- Horizontal Bend Barriers are flexible in order to conform to any horizontal fitting radius. Can be cut to desired length.
- Standard length is 72" [6 ft.] (1.8 m) sold individually
- Order catalog number based on loading depth.
- Furnished with three #10 x 1/2" plated self-drilling screws and a 99-9982 Barrier Strip Splice.
- (*) Insert P or G

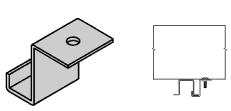
Barrier - Vertical Outside Bend

- Vertical Outside Bend Barriers are preformed to conform to a specific vertical outside bend fitting.
- Furnished with three #10 x ½" plated self-drilling screws and a 99-9982 Barrier Strip Splice.
- (*) Insert P or G
- (**) Insert 30, 45, 60 or 90 for degrees
- (†) Insert 12, 24, 36 or 48 for radius

Barrier - Vertical Inside Bend

- Vertical Inside Bend Barriers are preformed to conform to a specific vertical inside bend fitting.
- Furnished with three #10 x ½" plated self-drilling screws and a 99-9982 Barrier Strip Splice.
- (*) Insert P or G
- (**) Insert 30, 45, 60 or 90 for degrees
- (†) Insert 12, 24, 36 or 48 for radius

Inside Bend


(VI)

Outside Bend

(VO)

Barrier Strip Clip

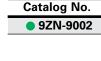
- Zinc plated steel barrier clip fastens to either aluminum or steel ladder rung.
- Furnished with one #10 x $1/2^{"}$ zinc plated self-drilling screw.

合わ

Copper Wire Size

#1

#6


Catalog No.

9A-2130

Catalog No

99-N1

99-N6

Catalog No.

99-9982

0100

10

Ampacity

600

200

Material

Tin Plated Aluminum

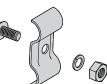
Barrier Strip Splice

- 2.85" (72.4mm) long
- Ribbed edge for increased rigidity and grip
- Comfort edge for ease of installation
- Slotted top window with center mark for accurate placement and inspection capability
- Patent pending

Bonding Jumper

Use at each expansion splice and where the cable tray is not mechanically/electrically continuous to ground. Sold individually.

- Hardware included.
- See table See table 392.60(A) on page MAN-29 for amperage ratings required to match the UL cross-sectional area of the tray.
- See tray loading chart for UL cross-sectional area.
- Bonding jumper is 141/2" (368mm) long.


Grounding Clamp

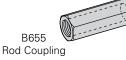
B-Line series cable tray is UL[®] classified as to its suitability as an equipment grounding conductor. If a separate conductor for additional grounding capability is desired, we offer this clamp for bolting the conductor at least once to each cable tray section.

• Accepts #6 AWG to 250 MCM.

Ground Wire Clamp

- Mechanically attaches grounding cables to cable tray.
- Hardware included.
- (*) Insert ZN or SS4

c(UL


Catalog No.	Material
9(*)-2351	#1 thru 2/0
9(*)-2352	3/0 thru 250 MCM

Thread Rod (ATR) & Rod Couplings

Loading base	ed on safety t	factor 5.
--------------	----------------	-----------

Standard Finish: Zinc plated

See B-Line series Strut Systems Catalog for other sizes and finishes

Size	Catalog No.	Available Length	Loading	
All Threaded Rod				
³ /8"-16	● ATR ³/₃" x Length	36", 72", 120", 144"	730 lbs.	
¹ /2"-13	ATR 1/2" x Length	36", 72", 120", 144"	1350 lbs.	
Rod Coupling				
³ /8"-16	● B655-³/ଃ"	NA	730 lbs.	
¹ /2"-13	● B655- ¹ /₂"	NA	1350 lbs.	

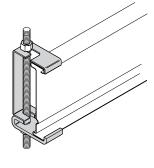
Green = Fastest shipped items

Black = Normal lead-time items
Red = Normally long lead-time items

Stainless Steel Cable Clamp

- Fits with series 2, 3, 4 & 5 standard steel rungs.
- Shipped flat. Field form around the cable at the time of installation.

\bigcirc	
	1

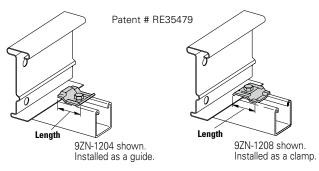

۹ľho

Z

Catalog No.	Cable Size		
	in.	mm	
9 SS4-4050	0.50 - 0.75	(13 - 19)	
9 SS4-4075	0.75 - 1.00	(19 - 25)	
9 SS4-4100	1.00 - 1.25	(25 - 32)	
9 SS4-4125	1.25 - 1.50	(32 - 38)	
9 SS4-4150	1.50 - 1.75	(38 - 45)	
9 SS4-4175	1.75 - 2.00	(45 - 51)	
9 SS4-4200	2.00 - 2.25	(51 - 57)	
9 SS4-4225	2.25 - 2.50	(57 - 64)	
9 SS4-4250	2.50 - 2.75	(64 - 70)	
9 SS4-4275	2.75 - 3.00	(70 - 76)	
9 SS4-4300	3.00 - 3.25	(76 - 82)	
9 SS4-4325	3.25 - 3.50	(82 - 89)	
9 SS4-4350	3.50 - 3.75	(89 - 95)	
9 SS4-4375	3.75 - 4.00	(95 - 100)	
9 SS4-4400	4.00 - 4.25	(100 - 106)	
9 SS4-4425	4.25 - 4.50	(106 - 113)	
9 SS4-4450	4.50 - 4.75	(113 - 121)	
9 SS4-4475	4.75 - 5.00	(121 - 125)	

Hanger Rod Clamp

- For 1/2" ATR.
- Furnished in pairs.
- Order ATR and hex nuts separately.
- Two-piece "J"-hanger design.
- 1500 lbs./pair capacity safety factor 3.
- (*) Insert ZN or G

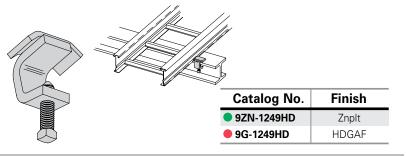


Refer to Section CF Cable Fixing

Height	
in. mm	
4 (101)	
5 (127)	
6 (152)	
7 (178)	

Cable Tray Clamp/Guide

- Features a no-twist design.
- Has four times the strength of the traditional design.
- Each side is labeled to ensure proper installation.
- Furnished in pairs, with or without hardware.
- Not recommended for vertical support.


When installing this device as an expansion guide on the outside flange of *Steel Side Rail*, use the Catalog No. **B202** Square Washer in order to properly elevate the guide.

Note: For heavy duty or vertical applications see 9(*)-1241 or 9(*)-1242 page J-20

Catalog No.				
Without Hardware	With Hardware	Overall Length in. (mm)	Hardware Size in.	Finish
9ZN-1204	9ZN-1204NB	1 ¹ / ₂ (38)	¹ /4″	G90
9ZN-1208	9ZN-1208NB	21/4 (57)	³ /8″	G90
9A-1205	9A-1205NB	21/4 (57)	¹ /2″	Alum.
9 A-1206	9A-1206NB	21/4 (57)	³ /8″	Alum.
9 G-1205	9G-1205NB	21/4 (57)	¹ /2″	HDGAF
9SS6-1205	9SS6-1205NB	21/4 (57)	¹ /2″	316SS
9ZN-1205	9ZN-1205NB	21/4 (57)	¹ /2″	G90

Green = Fastest shipped items
 Black = Normal lead-time items
 Red = Normally long lead-time items

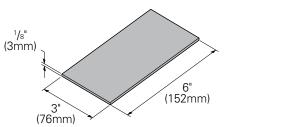
- Hold-down clamps for single or double cable tray runs.
- No drilling of support I-beam or channel is required.
- Sold in pieces two clamps are required per tray.
- Maximum beam flange thickness 11/8" (28.58 mm).

Catalog No.

9ZN-1249

9G-1249

Cable Tray Guide

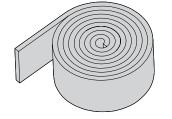

- Expansion guide for single or double cable tray runs.
- Guide allows for longitudinal movement of the cable tray.
- No field drilling of support I-beam or channel is required.
- Guides are required on both sides of cable tray to prevent lateral movement can be placed on either the inside or outside flange of cable tray.
- Guides are sold in pieces two guides are required per tray.
- Maximum flange thickness 11/8" (28.58 mm).

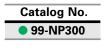
Nylon Pad

- Use for friction reduction.
- Hardness: Shore D80.
- Low friction coefficient.
- UV resistant.
- Excellent weatherability.
- UL 94HB.

Neoprene Roll

- Use for material isolation.
- 1/8" x 2" x 25' roll.
- Hardness: Shore A60.
- Good weatherability.





Finish

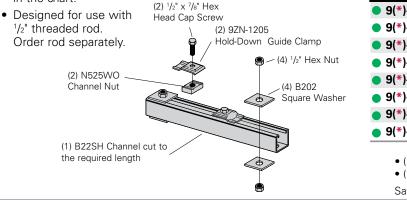
Znplt

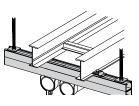
HDGAF

DURA-BLOK[™] Rooftop Support Bases with B22 Channel

- Designed as a superior rooftop support for cable tray,
- UV resistant and approved for most roofing material or other flat surfaces.
- Can be used with any of B-Line series cable tray clamps and guides.
- Ultimate Load Capacity:
- 1,000 lbs. (uniform load)

Catalog No.		Height x Width ^{in.}	x Length (mm)
٠	DB10-28	5 ⁵ /8 x 6 x 28.0	(143 x 152 x 711)
٠	DB10-36	5 ⁵ /8 x 6 x 36.0	(143 x 152 x 914)
ullet	DB10-42	5 ⁵ / ₈ x 6 x 42.0	(143 x 152 x 1067)
٠	DB10-50	5 ⁵ /8 x 6 x 50.0	(143 x 152 x 1270)
٠	DB10-60	5 ⁵ / ₈ x 6 x 60.0	(143 x 152 x 1524)


LEEDS credit available, base made from 100% recycled material.


General Note: Consult roofing manufacturer or engineer for roof load capacity. The weakest point may be the insulation board beneath the rubber membrane.

Green = Fastest shipped items
Black = Normal lead-time items
Red = Normally long lead-time items

Trapeze Support Kit

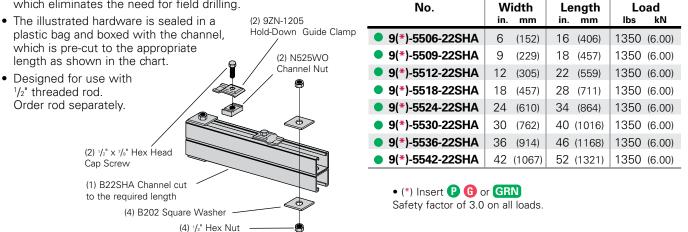
- Eaton's B-Line series trapeze kits provide the components required for a single trapeze support in one package. These kits are available in pre-galvanized steel with zinc-plated hardware,hot dip galvanized steel with 316 stainless steel hardware, or DURA GREEN[™] painted steel with zinc-plated hardware.
- The SH channel provides the convenience of pre-punched slots, which eliminate the need for field drilling.
- The illustrated hardware is sealed in a plastic bag and boxed with the channel, which is pre-cut to the appropriate length as shown in the chart.

Catalog No.	Tray Width ^{in. mm}	Channel Length ^{in. mm}	Uniform Load Ibs kN
9(*)-5506-22SH(†)	6 (152)	16 (406)	1350 (6.00)
9(*)-5509-22SH(†)	9 (229)	18 (457)	1250 (5.56)
9(*)-5512-22SH(†)	12 (305)	22 (559)	1125 (5.00)
9(*)-5518-22SH(†)	18 (457)	28 (711)	865 (3.85)
9(*)-5524-22SH(†)	24 (610)	34 (864)	700 (3.11)
9(*)-5530-22SH(†)	30 (762)	40 (1016)	590 (2.62)
9(*)-5536-22SH(†)	36 (914)	46 (1168)	510 (2.27)
9(*)-5542-22SH(†)	42 (1067)	52 (1321)	450 (2.00)

• (*) Insert P G or GRN • (†) Insert 3/8 for 3/8" threaded rod hardware.

Trav

Channel

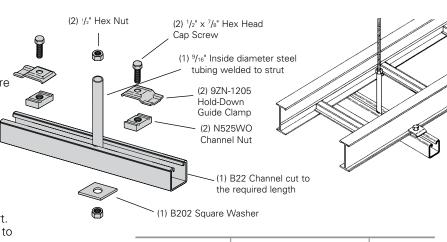

Uniform

Safety factor of 3.0 on all loads.

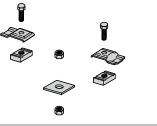
Catalog

Heavy Duty Trapeze Support Kit

- Eaton's B-Line series trapeze kits provide the components required for a single trapeze support in one package. These kits are available in pre-galvanized steel with zinc-plated hardware, hot dip galvanized steel with 316 stainless steel hardware, or DURA GREEN[™] painted steel with zinc-plated hardware.
- The SH channel provides the convenience of pre-punched slots, which eliminates the need for field drilling.

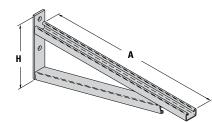

Trapeze Hardware Kit

In plastic bag 2 N525 WO ZN 2 N525 WO SS6 4 B202 ZN 1/2" sq washer 4 B202 HDG 1/2" sq washer	Ĩ	Catalog No.	9ZN-5500- ¹ / ₂	9G-5500- ¹ / ₂
		In plastic bag	2 HHC Screw 1/2 x 7/8 ZN 2 N525 WO ZN 4 B202 ZN 1/2" sq washer	2 HHC Screw 1/2 x 7/8 SS6



- Center Hung Cable Tray Support allows cable to be laid-in from both sides.
- Eliminates costly cable pulling and field cutting of cable tray supports. Labor costs are dramatically reduced.
- Required hardware and threaded rod material for trapeze assemblies are reduced by up to 50%.
- Designed for use with 1/2" threaded rod. (Order rod separately)
- Use with all aluminum and steel cable trays through 24" width.
- Load capacity is 700 lbs. (311kN) per support. Safety factor of 3.0. Eccentric loading is not to exceed a 60% vs. 40% load differential.
- The maximum recommended unsupported span length is 144"/12 ft. (3.66 m).
- Hardware shown is furnished.
- Finish available: Zinc Plated

Center Hung Support Hardware Kit


Catalog No.	in.	Tray Width (mm)		annel ngth (mm)
• 9ZN-5212	6", 9", 12"	(152, 228, 305)	18"	(457)
9ZN-5224	18", 24"	(457, 609)	30"	(762)

Catalog No.	• 9ZN-5200
In plastic bag	1 pr. 9ZN-1205 2 HHC Screw ¹ / ₂ x ⁷ / ₈ ZN 2 N525 WO ZN 1 B202 ZN ¹ / ₂ " sq washer 4 HN ¹ / ₂ ZN

Bracket (12" - 48")

- (*) Insert available finish: ZN GRN or HDG
- Safety Load Factor 2.5

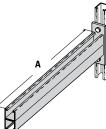
Bottom brace is B42 channel on B494-24 and smaller and B22 channel on B494-30 and larger

Catalog	Unifor	m Load	Tra	y Width		'Α'	(⊢ ′⊦	ľ
No.	lbs	(kN)	in.	(mm)	in.	(mm)	in.	(mm)
• B494-12	2500	(11.12)	6&9	(152 & 229)	12	(305)	8 ³ / ₄	(222)
B494-18	1700	(7.56)	12	(305)	18	(457)	8 ³ / ₄	(222)
• B494-24	1300	(5.78)	18	(457)	24	(610)	8³/ 4	(222)
B494-30	1600	(7.11)	24	(610)	30	(762)	11 ¹ /4	(286)
B494-36	1100	(4.89)	30	(762)	36	(914)	11 ¹ /4	(286)
B494-42	980	(4.36)	36	(914)	42	(1067)	16	(406)
B494-48	980	(4.36)	42	(1067)	48	(1219)	16	(406)

For more dimensional data see Strut Systems catalog

Cantilever Bracket

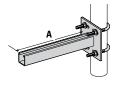
- (*) Insert available finish: ZN GRN or HDG
- Safety Load Factor 2.5


Catalog No.	Unifor Ibs	m Load ^{kN}	Tray in.	/ Width	ín.	A′ mm
B409-12	960	(4.27)	6 & 9(152 & 229)	12	(305)
B409-18	640	(2.84)	12	(305)	18	(457)
B409-24	480	(2.13)	18	(457)	24	(610)

Green = Fastest shipped items
 Black = Normal lead-time items
 Red = Normally long lead-time items

Series 2, 3, 4, & 5 Steel - Accessories

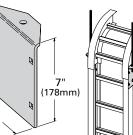
Cantilever Bracket


- (*) Insert available finish: ZN GRN or HDG
- Safety Load Factor 2.5

Catalog No.	Unifor	n Load	Tray	/ Width	,	A′
	lbs	kN	in.	mm	in.	mm
B297-12	1660	(7.38)	6&9(152 & 229)	12	(305)
B297-18	1100	(4.89)	12	(305)	18	(457)
B297-24	835	(3.71)	18	(457)	24	(610)
B297-30	665	(2.93)	24	(610)	30	(762)
B297-36	550	(2.44)	30	(762)	36	(914)
B297-42	465	(2.06)	36	(914)	42	(1067)

Underfloor Support (U-Bolts not included)

- Finishes available: ZN
- Safety Load Factor 2.5



U-Bolt Size	Fits Pipe O.D.
B501- ³ /4	.841 - 1.050
B501-1	1.051 - 1.315
B501-1 ¹ / ₄	1.316 - 1.660
B501-1 ¹ / ₂	1.661 - 1.900
B501-2	1.901 - 2.375
B501-2 ¹ / ₂	2.376 - 2.875

Catalog No.	Uniform Load			y Width	'A'	
	lbs	(kN)	in.	(mm)	ın.	(mm)
B409UF-12	800	(3.56)	6&9	(152 & 229)	12	(305)
B409UF-21	450	(2.00)	12 & 18	8(305 & 457)	21	(533)

Vertical Hanger Splice Plates

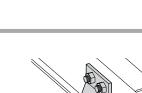
- Design load is 1500 lbs (6.67kN) per pair.
- Safety Factor of 2.5
- Furnished in pairs.
- Hole size: 9/16" (14mm) for 1/2" threaded rod.
- (*) Insert ZN or G

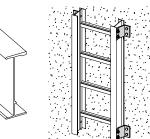
Catalog No.	Outside		'A'
	Cable Tray Ht.	in.	(mm)
●9(*)-8224	4"	3.84	(97.54)
●9(*)-8225	5"	4.73	(120.14)
●9(*)-8226	6"	5.84	(148.34)
●9(*)-8227	7"	6.84	(173.74)

Heavy Duty Hold Down Bracket

- Design load is 2000 lbs (8.89kN) per pair.
- Two bolt design.
- Sold in pairs.
- ³/₈" cable tray attachment hardware provided.
- 3/8" support attachment hardware not provided.
- (*) Insert ZN or G
- Recommended for support of vertical trays.

Heavy Duty Hold Down Bracket


- Design load is 4000 lbs (17.79kN) per pair.
- Four bolt design.
- Sold in pairs.
- ³/₈" cable tray attachment hardware provided
- 3/8" support attachment hardware **<u>not</u>** provided.
- (*) Insert ZN or G
- Recommended for support of vertical trays.


Beam Clamp

- Finishes available: ZN GRN HDG or SS4
- Sold in pieces.
- Design load is 1200 lbs (5.34kN) per pair.
- Safety Load Factor 5.0.
- Order HHCS and Channel Nuts separately.

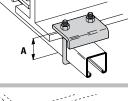
Green = Fastest shipped items
Black = Normal lead-time items
Red = Normally long lead-time items

All dimensions in parentheses are millimeters unless otherwise specified.

Catalog No.

9(*)-1241

Catalog No. 9(*)-1242

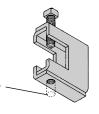

Series 2, 3, 4, & 5 Steel - Accessories

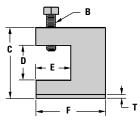
Beam Clamp

- Finishes available: ZN or HDG
- Sold in pieces.
- *Design load when used in pairs. Safety Load Factor 5.0

Beam Clamp

- Finishes available: ZN GRN or HDG
- Sold in pieces.
- *Design load when used in pairs. Safety Load Factor 5.0




Catalog No.	Design Load Ibs (kN)	'A' in. (mm)
B441-22	1200 (5.34)	3³/8 (86)
B441-22A	1200 (5.34)	5 (127)

Catalog No.	B212	2- ¹ / ₄	B212- ³ /8		
Design Load *	600 lbs.	(2.67kN)	1000 lbs. (4.45 kN)		
Max. Flange Thick	³ /4" (19	9 mm)	1¹/ଃ" (28.6 mm)		
Mat'l. Thickness	¹ /4" (6.3	3 mm)	³ /8" (9.5 mm)		

B305 Thru B308 & B321 Series Beam Clamps

- Finishes available: ZN or HDG
- · Setscrew included.
- Safety Load Factor 5.0

Catalog	Rod	В		С		D		E		F	٦	Γ	Desig	n Load
No.	Size A		in.	(mm)	in.	(mm)	in.	(mm)	in.	(mm)	in.	(mm)	lbs	(kN)
B305	³ /8"-16	³ /8"-16	25/16	(58.7)	⁷ /8	(22.2)	1 ¹ /8	(28.6)	2 ¹ / ₂	(63.5)	11 Ga	. (3.0)	600	(2.67)
B306	³ /8"-16	¹ /2"-13	27/16	(61.9)	⁷ /8	(22.2)	1 ¹ /8	(28.6)	2 ¹ / ₂	(63.5)	7 Ga.	(4.5)	1100	(4.90)
B307	¹ /2"-13	¹ /2"-13	27/16	(61.9)	⁷ /8	(22.2)	1 ¹ /8	(28.6)	2 ¹ / ₂	(63.5)	7 Ga.	(4.5)	1100	(4.90)
B308	¹ /2"-13	¹ /2"-13	2 ⁹ /16	(65.1)	⁷ /8	(22.2)	1 ¹ /8	(28.6)	2 ¹ / ₂	(63.5)	1/4	(6.3)	1500	(6.68)
B321-1	³ /8"-16	¹ /2"-13	3 ⁹ / ₁₆	(90.5)	1 ¹¹ / ₁₆	(42.9)	1 ⁵ /8	(41.3)	3 ¹ / ₄	(82.5)	1/4	(6.3)	1300	(5.79)
B321-2	¹ /2"-13	¹ /2"-13	3 ⁹ / ₁₆	(90.5)	1 ¹¹ / ₁₆	(42.9)	1 ⁵ /8	(41.3)	3 ¹ / ₄	(82.5)	1/4	(6.3)	1400	(6.23)

Anchor Strap - for B305 thru B308 & B321 Series

- Finish available: ZN
- For a maximum beam thickness of 3/4" (19mm).
- For thicker beams, step up one flange width size.

Beam Clamp

- Finish available: ZN
- Design Load 500 lbs. (2.22 kN)
- Safety Load Factor 5.0
- Recommended torque: 'J'-Hook Nut 125 In.-Lbs. (14.1 kN/m)
- Maximum flange thicknes of 3/4" (19mm).

	Catalog	For Fl	ange Width	Wt./C		
k & Hex ncluded	No.	in.	(mm)	lbs	(kg)	
Iciuded	B750-J4	3 - 6	(76.2 - 152.4)	109	(49.4)	
	B750-J6	5 - 9	(127.0 - 288.6)	124	(56.2)	
	B750-J9	8 - 12	(203.2 - 304.8)	135	(61.2)	
	B750-J12	11 - 15	(279.4 - 381.0)	147	(66.7)	

Catalog No.

B312-6

B312-9

B312-12

'J'-Hook				
Finishes available:	Catalog No.	΄Α΄ in. (mm)	'TL' in. (mm)	Wt./C Ibs (kg)
Hex Nut included.	B700-J4	8 ¹ / ₂ (215.9)	in. (mm) 5 (127.0)	44 (19.9)
TLL'	B700-J4 B700-J6	$11^{1}/_{2}$ (292.1)	6 (152.4)	53 (24.0)
Thread Length	B700-J9	$12^{1}/_{4}$ (368.3)	6 (152.4)	63 (28.6)
	B700-J12	171/2 (444.5)	6 (152.4)	78 (35.4)

17/8

(47.6)

11/2

(38.1)

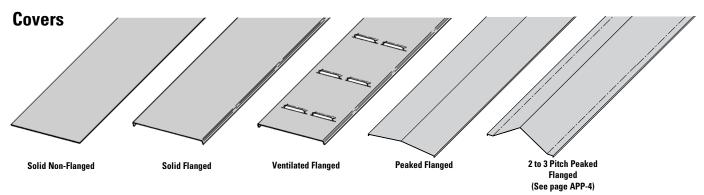
Material: 7 Gauge (4.6)

Green = Fastest shipped items

All dimensions in parentheses are millimeters unless otherwise specified.

Flange Width in.

6 - 9

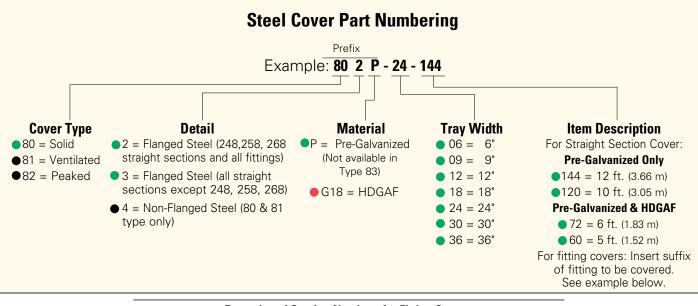

9 - 12

Up to 6 (Up to 152)

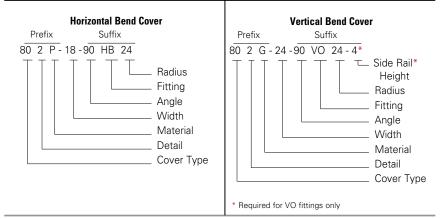
(mm)

(152 to 228)

(228 to 305)

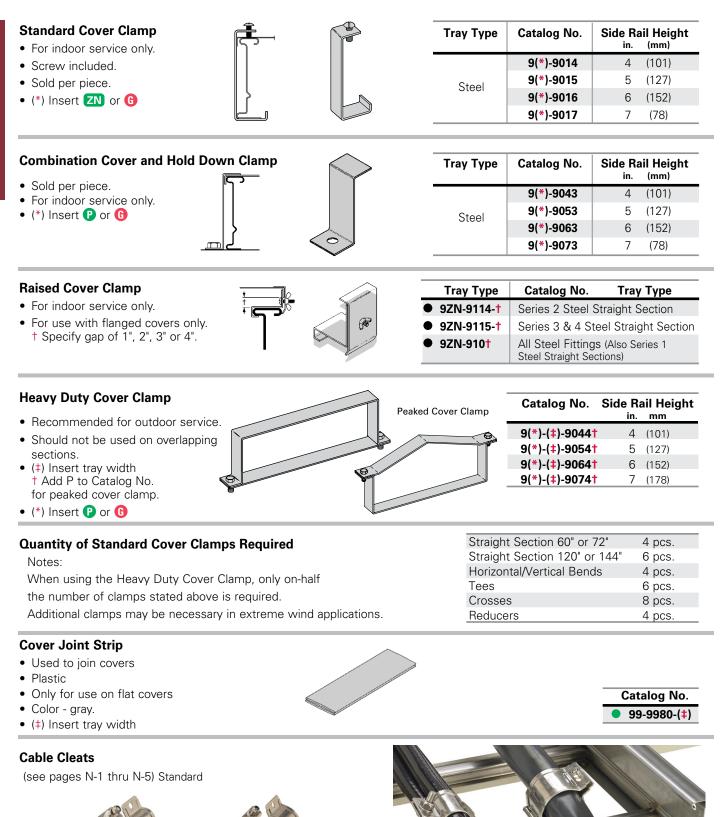

A full range of covers is available for straight sections and fittings.

Solid covers should be used when maximum enclosure of the cable is desired and no accumulation of heat is expected.


Ventilated covers provide an overhead cable shield, yet allow heat to escape.

Flanged covers have a 1/2 in. (13 mm) flange.

We recommend that covers be placed on vertical cable tray runs to a height of 6 ft. (1.83 m) to 8 ft. (2.44 m) above the floor to both isolate cables and personnel. Cover clamps are <u>not included</u> with the cover and must be ordered separately. All **peaked covers** are flanged. Standard peaked covers have $\frac{1}{2}$ peak. Special purpose peaked covers, having a 2 to 3 pitch, provide additional slope and material thickness. The 2 to 3 pitch fitting covers are of multiple piece, welded construction.



Examples of Catalog Numbers for Fitting Covers:

Note: Covers may not be suitable for all environmental loads. Check with B-Line Technical Support (blinetechnicalsupport@eaton.com) if there are questions/concerns about environmental loads for covers (wind, snow, sleet, rain, etc.).

• Green = Fastest shipped items • Black = Normal lead-time items • Red = Normally long lead-time items

Green = Fastest shipped items

Trefoil

Cable

Cleats

Single

Cable

Cleats

Black = Normal lead-time items

Red = Normally long lead-time items

Section 1- Acceptable Manufacturers

1.01 Manufacturer: Subject to compliance with these specifications, Eaton's B-Line series cable tray systems shall be as manufactured by Eaton.

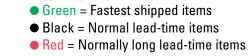
Section 2- Cable Tray Sections and Components


- 2.01 General: Except as otherwise indicated, provide metal cable trays, of types, classes and sizes indicated; with splice plates, bolts, nuts and washers for connecting units. Construct units with rounded edges and smooth surfaces; in compliance with applicable standards; and with the following additional construction features. Cable tray shall be installed according to the latest revision of NEMA VE 2.
- 2.02 Pre-Galvanized Steel: Straight sections, fitting side rails, rungs, and covers shall be made from structural quality steel meeting the minimum mechanical properties and mill galvanized in accordance with ASTM A653 SS, Grade 33, coating designation G90. Hardware finish shall be electrogalvanized zinc per ASTM B633.
- 2.03 Hot Dip Galvanized Steel: All side rails, covers, splice plates, and rungs shall be made from structural quality steel meeting the minimum mechanical properties of ASTM A1011 SS, Grade 33 for 14 gauge and heavier, ASTM A1008, Grade 33 Type 2 for 16 gauge and lighter, and shall be hot dip galvanized after fabrication in accordance with ASTM A123. Mill galvanized covers are not acceptable for hot dip galvanized cable tray. Hardware finish shall be chromium zinc per ASTM F-1136-88.
- 2.04 Ladder Cable Trays shall consist of two longitudinal members (side rails) with transverse members (rungs) welded to the side rails. Rungs shall be spaced [6] [9] [12] inches apart. Rung spacing in radiused fittings shall be industry standard 9" and measured at the center of the tray's width. No portion of the rungs shall protrude below the bottom plane of the side rails. Each rung must be capable of supporting a 200 lb. concentrated load at the center of the cable tray over and above the cable load with a safety factor of 1.5.
- 2.05 Cable tray loading depth shall be [3] [4] [5] [6] inches per NEMA VE 1.
- 2.06 Straight sections shall have side rails fabricated as I-beams. Straight sections shall be supplied in standard [12 foot] [24 foot] [10 foot (3 m)] [20 foot (6 m)] lengths.
- 2.07 Cable tray widths shall be [6] [9] [12] [18] [24] [30] [36] inches or as shown on drawings.
- 2.08 Splice plates shall be manufactured of high strength steel, meeting the minimum mechanical properties of ASTM A1011 HSLAS, Grade 50, Class 1 and be secured with 8 nuts and bolts per plate. The resistance of fixed splice connections between an adjacent section of tray shall not exceed 0.00033 ohm.
- 2.09 All fittings must have a minimum radius of [12] [24] [36] [48] inches.

Section 3- Loading Capacities and Testing

- 3.01 Cable tray shall be capable of carrying a uniformly distributed load of _____ lbs./ft. on a _____ ft. support span with a safety factor of 1.5 when supported as a simple span and tested per NEMA VE 1 5.2. In addition to the uniformly distributed load the cable tray shall support 200 lbs. concentrated load at mid-point of span. Load and safety factors specified are applicable to both the side rails and rung capacities. Cable tray shall be made to manufacturing tolerances as specified by NEMA.
- 3.02 Upon request, manufacturer shall provide test reports in accordance with the latest revision of NEMA VE 1 or CSA C22.2 No. 126.

Series 3 & 4 Stainless Steel - Straight Sections

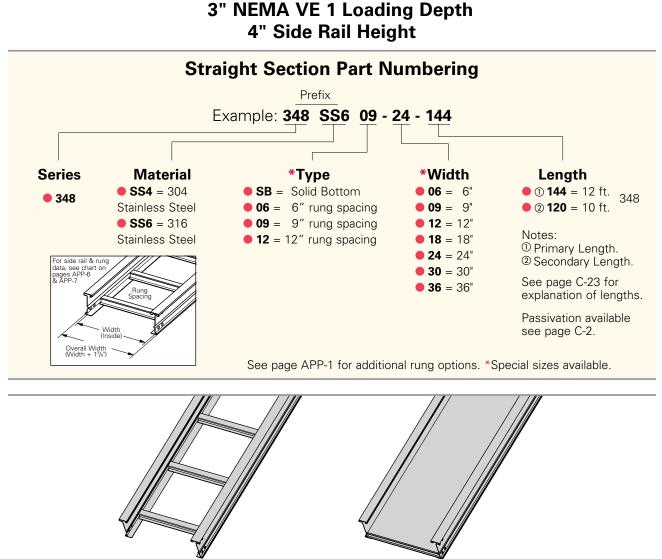

How The Service Advisor Works

We know that your time is important! That's why the color-coding system in this catalog is designed to help you select products that fit your service needs. Products are marked to indicate the typical lead time for orders of 50 pieces or less.

Customer: How do I select my straight sections. covers, or fittings so that I get the quickest turnaround?

Service Advisor: Each part of our selection chart is shown in colors. If any section of a part number is a different color, the part will typically ship with the longer lead time represented by the colors.

144


09

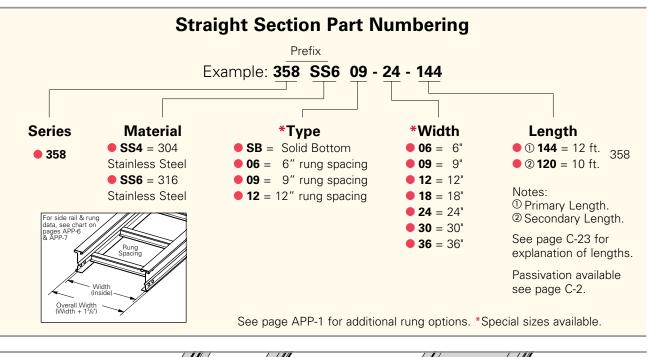
12

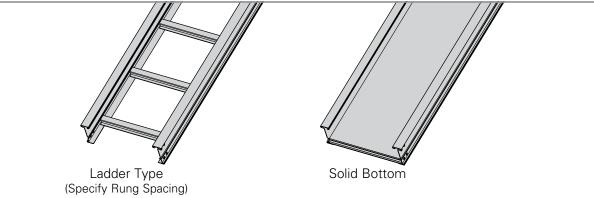
348SS4

Part will have a long lead time.

Ladder Type (Specify Rung Spacing)

Values are based on simple beam tests per NEMA VE 1 on 36" wide cable tray rungs spaced on 12" centers. Cable trays will support without collapse a 200 lb. (90.7 kg) concentrated load over and above published loads. Published load safety factor is 1.5. To convert 1.5 safety factor to 2.0, multiply published load by 0.75. To obtain mid-span deflection, multiply a load by the deflection multiplier. Cable tray must be supported on spans shorter than or equal to the length of the cable being installed. Individual rungs will support without collapse a 200 lb. (90.7 kg) concentrated load applied at the mid-span of the rung, over and above the NEMA rated cable load with a 1.5 safety factor for highlighted NEMA spans and loads.

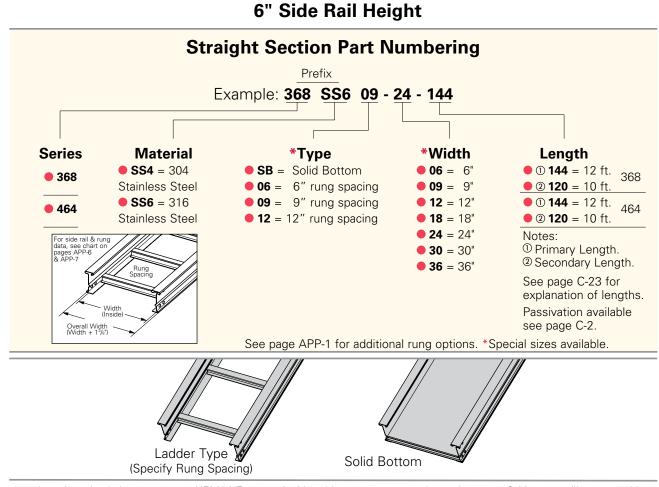

Solid Bottom


B-Line series	Side Rail Dimensions	NEMA, CSA & UL Classifications	Span ft	Load Ibs/ft	Deflection Multiplier	Design Factors for Two Rails	Span meters	Load kg/m	Deflection Multiplier	Design Factors for Two Rails
	-+ + 1.50		10	180	0.0042		3.0	268	0.072	
		12 125 0.009	Area = 0.74 in ²	3.7	186	0.148	Area = 4.77 cm ²			
348	3.13	NEMA: 16A, <mark>12C</mark>	14	92	0.016	Sx = 0.79 in ³	4.3	137	0.275	Sx = 12.95 cm ³
SS†	St 4.19	CSA: C1-3m	16	70	0.027	lx = 1.85 in₄	4.9	105	0.469	lx = 77.00 cm₄
	│ │ <u>}</u> _+ │		18	56	0.044		5.5	83	0.752	
	18 gauge		20	45	0.067		6.1	67	1.145	

When cable trays are used in continuous spans, the deflection of the cable tray is reduced by as much as 50%. Design factors: Ix = Moment of Inertia, Sx = Section Modulus. † Insert 4 for 304 stainless steel or 6 for 316 stainless steel.

• Green = Fastest shipped items • Black = Normal lead-time items • Red = Normally long lead-time items

4" NEMA VE 1 Loading Depth 5" Side Rail Height


Values are based on simple beam tests per NEMA VE 1 on 36" wide cable tray rungs spaced on 12" centers. Cable trays will support without collapse a 200 lb. (90.7 kg) concentrated load over and above published loads. Published load safety factor is 1.5. To convert 1.5 safety factor to 2.0, multiply published load by 0.75. To obtain mid-span deflection, multiply a load by the deflection multiplier. Cable tray must be supported on spans shorter than or equal to the length of the cable being installed.

Individual rungs will support without collapse a 200 lb. (90.7 kg) concentrated load applied at the mid-span of the rung, over and above the Nema rated cable load with a 1.5 safety factor for highlighted NEMA spans and loads.

B-Line series	Side Rail Dimensions	NEMA, CSA & UL Classifications	Span ft	Load Ibs/ft	Deflection Multiplier	Design Factors for Two Rails	Span meters	Load kg/m	Deflection Multiplier	Design Factors for Two Rails
	→ 1.50		10	248	0.0025		3.0	369	0.043	
			12	172	0.0052	Area = 0.83 in ²	3.7	256	0.089	Area = 5.35 cm ²
358	4.13	NEMA: <mark>20A,</mark> 16B	14	127	0.010	Sx = 1.09 in ³	4.3	188	0.164	Sx = 17.86 cm ³
SS†	5.19	CSA: 89kg/m 6.1m	16	97	0.016	lx = 3.10 in₄	4.9	144	0.280	lx = 129.03 cm₄
	↓ <u>} </u>		18	77	0.026		5.5	114	0.448	
	18 gauge		20	62	0.040		6.1	92	0.684	

When cable trays are used in continuous spans, the deflection of the cable tray is reduced by as much as 50%. Design factors: Ix = Moment of Inertia, Sx = Section Modulus. † Insert 4 for 304 stainless steel or 6 for 316 stainless steel.

● Green = Fastest shipped items ● Black = Normal lead-time items ● Red = Normally long lead-time items

5" NEMA VE 1 Loading Depth

Values are based on simple beam tests per NEMA VE 1 on 36" wide cable tray rungs spaced on 12" centers. Cable trays will support without collapse a 200 lb. (90.7 kg) concentrated load over and above published loads. Published load safety factor is 1.5. To convert 1.5 safety factor to 2.0, multiply published load by 0.75. To obtain mid-span deflection, multiply a load by the deflection multiplier. Cable tray must be supported on spans shorter than or equal to the length of the cable being installed.

Individual rungs will support without collapse a 200 lb. (90.7 kg) concentrated load applied at the mid-span of the rung, over and above the Nema rated cable load with a 1.5 safety factor for highlighted NEMA spans and loads.

B-Line series	Side Rail Dimensions	NEMA, CSA & UL Classifications	Span ft	Load Ibs/ft	Deflection Multiplier	Design Factors for Two Rails	Span meters	Load kg/m	Deflection Multiplier	Design Factors for Two Rails
	- 1.50		10	236	0.0016		3.0	351	0.028	
			12	164	0.0034	Area = 0.92 in ²	3.7	244	0.058	Area = 5.94 cm ²
368	5.13	NEMA: <mark>20A,</mark> 16B	14	120	0.0062	Sx = 1.41 in ³	4.3	179	0.107	Sx = 23.11 cm³
SST	6.19	CSA: D1-3m	16	92	0.011	lx = 4.77 in₄	4.9	137	0.182	lx = 198.54 cm ⁴
			18	73	0.017		5.5	108	0.291	
	18 gauge		20	59	0.026		6.1	88	0.444	
B-Line series	Side Rail Dimensions	NEMA, CSA & UL Classifications	Span ft	Load Ibs/ft	Deflection Multiplier	Design Factors for Two Rails	Span meters	Load kg/m	Deflection Multiplier	Design Factors for Two Rails
		Classifications	•			-	-			•
	Dimensions	Classifications	ft	lbs/ft	Multiplier	-	meters	kg/m	Multiplier	•
	Dimensions	Classifications	ft 12	lbs/ft 342	Multiplier 0.002	for Two Rails	meters 3.7	kg/m 508	Multiplier 0.036	for Two Rails
series		Classifications	ft 12 16	lbs/ft 342 192	Multiplier 0.002 0.007	for Two Rails Area = 1.49 in ²	meters 3.7 4.9	kg/m 508 286	Multiplier 0.036 0.113	for Two Rails Area = 9.61 cm ²
series 464	Dimensions	Classifications	ft 12 16 18	Ibs/ft 342 192 152	Multiplier 0.002 0.007 0.011	for Two Rails Area = 1.49 in^2 Sx = 2.28 in^3	meters 3.7 4.9 5.5	kg/m 508 286 226	Multiplier 0.036 0.113 0.182	for Two Rails Area = 9.61 cm ² Sx = 37.36 cm ³
series 464	Dimensions	Classifications	ft 12 16 18 20	Ibs/ft 342 192 152 123	Multiplier 0.002 0.007 0.011 0.016	for Two Rails Area = 1.49 in^2 Sx = 2.28 in^3	meters 3.7 4.9 5.5 6.1	kg/m 508 286 226 183	Multiplier 0.036 0.113 0.182 0.277	for Two R Area = 9.61 Sx = 37.36

When cable trays are used in continuous spans, the deflection of the cable tray is reduced by as much as 50%. Design factors: Ix = Moment of Inertia, Sx = Section Modulus. + Insert 4 for 304 stainless steel or 6 for 316 stainless steel.

• Green = Fastest shipped items • Black = Normal lead-time items • Red = Normally long lead-time items

Splice Plates

- Standard 8-hole pattern for all steel splice plates.
- Furnished in pairs with hardware.
- One pair including hardware provided with straight section. (Expansion splice quantity subtracted).
- Boxed in pairs with hardware.
- · Bonding jumpers or a ground wire required. Order separately.
- (*) Insert **SS4** or **SS6**.

Expansion Splice Plates

- Expansion plates allow for one inch expansion or contraction of the cable tray or where expansion joints occur in the support structure.
- · Furnished in pairs with hardware.
- Bonding jumpers or a ground wire required. Order separately.
- (*) Insert **SS4** or **SS6**.

Universal Splice Plates

- Used to splice to existing cable tray systems.
- Furnished in pairs with hardware.
- Bonding jumpers or a ground wire required. Order separately.
- (*) Insert **SS4** or **SS6**.

Catalog No.	Height in. mm
9(*)-8004	4 (101)
9(*)-8005	5 (127)
9(*)-8006	6 (152)

Catalog No.	Height
	in. mm
9(*)-8014	4 (101)
9(*)-8015	5 (127)
9(*)-8016	6 (152)

Requires supports within 24" or	n
both sides, per NEMA VE 2.	

Catalog No.	Height in. mm
9(*)-8004- 1/2	4 (101)
9(*)-8005-1/ ₂	5 (127)
9(*)-8006- 1/2	6 (152)

in.

9(*)-8060 6 to 5 (152 to 127)

Height

5 to 4 (127 to 101)

6 to 4 (152 to 101)

mm

Catalog No.

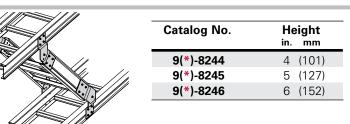
9(*)-8045

9(*)-8046

Step Down Splice Plates

- These splice plates are offered for connecting cable tray sections having side rails of different heights.
- Furnished in pairs with hardware.
- · Bonding jumpers or a ground wire required. Order separately.
- (*) Insert **SS4** or **SS6**.

Vertical Adjustable Splice Plates

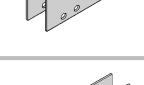

- These plates provide for changes in elevation that do not conform to standard vertical fittings.
- Furnished in pairs with hardware.
- Bonding jumpers or a ground wire required. Order separately.
- (*) Insert **SS4** or **SS6**.

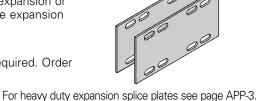
Branch Pivot Connectors

- Branch from existing cable tray runs at any point.
- Pivot to any required angle.
- Furnished in pairs with hardware.
- Bonding jumpers or a ground wire required. Order separately.
- (*) Insert SS4 or SS6.

0000	0	0	

Catalog No.	Height in. mm
9(*)-8024	4 (101)
9(*)-8025	5 (127)
9(*)-8026	6 (152)




Series 3 & 4 Stainless Stee

000	00
00000	00

Catalog No.	Height	
	in. mm	
9(*)-8024	4 (101)	
9(*)-8025	5 (127)	
0/*) 2026	6 (152)	

Horizontal Adjustable Splice Plates

- Used to adjust a cable tray run for changes in direction in a horizontal plane that do not conform to standard horizontal fittings.
- Furnished in pairs with hardware.
- Bonding jumpers or a ground wire required. Order separately.
- (*) Insert **SS4** or **SS6**.
- (X) Insert 4, 5, 6 or 7 for side rail height.

Requires supports within 24" on both sides per NEMA VE 2.

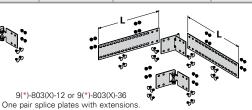
Catalog	Cable Tray	Thru Tr	ay Width	'L'
No.	End Cut	in.	(mm)	in. (mm)
9(*)-803(<mark>X</mark>)	Mitered	36	(914)	N/A (NA)
9(*)-803(<mark>X</mark>)-12	Not mitered	12	(305)	16 (406)
9(*)-803(<mark>X</mark>)-36	Not mitered	36	(914)	41 (1041)

Catalog No.

9(*)-8064-(‡)

9(*)-8065-(‡)

9(*)-8066-(‡)


Catalog No.

9(*)-8054

9(*)-8055

9(*)-8056

Height

4 (101)

5 (127)

6 (152)

Height

4 (101)

5 (127)

6 (152)

in. mm

in. mm

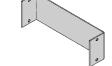
Offset Reducing Splice Plate

- This plate is used for joining cable trays having different widths. When used in pairs, they form a straight reduction. When used singly with a standard splice plate, they form an offset reduction.
- Bonding jumpers or a ground wire required. Order separately.
- Furnished as one plate with hardware.
- (‡) Insert reduction
- (*) Insert **SS4** or **SS6**.

Tray-to-Box Splice Plates

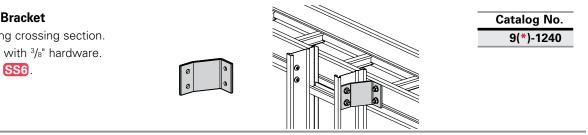
- Used to attach the end of a cable tray run to a distribution box or control panel.
- Furnished in pairs with hardware.
- (*) Insert **SS4** or **SS6**.

Frame Type Box Connector


- Used to attach the end of a cable tray run to a distribution cabinet or control center. Helps reinforce the box at the point of entry.
- Furnished with tray connection hardware.
- (*) Insert SS4 or SS6.
- (‡) Insert tray width.

Blind End

- This plate forms a closure for a dead end cable tray.
- Furnished as one plate with hardware.
- (*) Insert **SS4** or **SS6**.
- (‡) Insert tray width.


Cross Connector Bracket

- For field connecting crossing section.
- Furnished in pairs with 3/8" hardware.
- (*) Insert SS4 or SS6.

Catalog No.	Height	
	in. mm	
9(*)-8074-(<mark>‡</mark>)	4 (101)	
9(*)-8075-(‡)	5 (127)	
9(*)-8076-(‡)	6 (152)	

Catalog No.	Height
	in. mm
9(*)-8084-(‡)	4 (101)
9(*)-8085-(‡)	5 (127)
9(*)-8086-(‡)	6 (152)

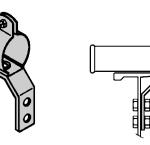
Standard Tray Hardware (for field installation drill ¹³ / ₃₂ " hole)	Catalog No.	Description
	• RNCB ³ / ₈ " x ³ / ₄ " SS6	Ribbed Neck Carriage Bolt AISI 316 Stainless Steel
	• SFHN 3/8"-16 SS6	Serrated Flange Hex Nut AISI 316 Stainless Steel

Conduit-to-Cable Tray Adaptor

• For easy attachment of conduit termination on a cable tray.

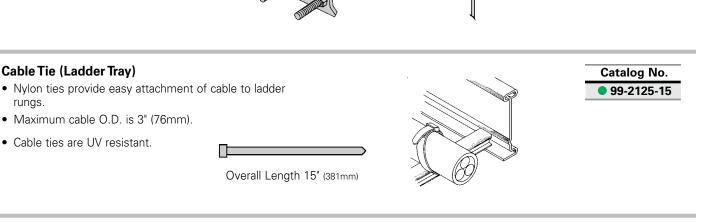
0	Catalog No.	Condu in.	uit Size
	9G-1158- ¹ / ₂ & ³ / ₄	¹ /2, ³ /4	(15, 20)
	● 9G-1158-1 & 1 ¹ /₄	1, 1 ¹ /4	(25, 32)
	9G-1158-1 ¹ /2 & 2	1 ¹ /2, 2	(40, 50)
	9G-1158-2 ¹ / ₂ & 3	2 ¹ / ₂ , 3	(65, 80)
	9G-1158-3 ¹ / ₂ & 4	3 ¹ / ₂ , 4	(90, 100)
Steel I-Beam			
Ś			

Catalog No.


9SS4-1150-(‡)

Catalog No.

9SS4-1155-(‡)


Conduit-to-Cable Tray Adaptor

- Assembly required.
- Mounting hardware included.
- Conduit clamps provided.
- (\ddagger) = Insert conduit size ($\frac{1}{2}$ " thru 4").

Conduit-to-Cable Tray Adaptor

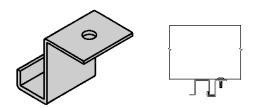
- Assembly required.
- Conduit clamps included.
- (\ddagger) = Insert conduit size ($\frac{1}{2}$ " thru 4").

Green = Fastest shipped items
 Black = Normal lead-time items
 Red = Normally long lead-time items
 All dimensions in parentheses are millimeters unless otherwise specified.

 Hadder Drop-Out Provide a rounded surface with 4" (101 mm) radius to help protect cable as it exits from the cable tray. Helps prevent damage to insulation. Attaches to any rung in the cable tray. (*) Insert SS4 or SS6. (‡) Insert tray width. 			Catalog No. 9(*)-1104-(1
Barrier - Straight Section • Length: Insert 120 for [120" - 10 ft.] (3.0 m) or 144 for [144" - 12 ft.] (3.6 m)	Catalog No.	Side Rail Height ^{in. mm}	Loading Depth 'H' in. mm
 Order catalog number based on loading depth. Furnished with four #10 x ½" plated self-drilling screws and a 99-9982 Barrier Strip Splice. (*) Insert SS4 or SS6. 	73(*)-Length 74(*)-Length 75(*)-Length	4 (101) 5 (127) 6 (152)	3 (76) 4 (101) 5 (127)
Barrier - Horizontal Bend Flexible to help conform to any horizontal fitting radius.	Catalog No.	Side Rail Height in. mm	Loading Depth 'H' in. mm
 Can be cut to desired length. Standard length is 72" [6 ft.] (1.8 m); sold individually. Order catalog number based on loading depth. Furnished with three #10 x 1/2" plated self-drilling screws and a 99-9982 Barrier Strip Splice. (*) Insert SS4 or SS6. 	73(*)-90HBFL 74(*)-90HBFL 75(*)-90HBFL	4 (101) 5 (127) 6 (152)	3 (76) 4 (101) 5 (127)
Barrier - Vertical Outside Bend • For use to help conform to a specific vertical outside bend fitting.	Catalog No.	Side Rail Height in. mm	Loading Depth 'H'
 Furnished with three #10 x ¹/₂" plated self-drilling screws and a 99-9982 Barrier Strip Splice. (*) Insert SS4 or SS6. (**) Insert 30, 45, 60 or 90 for degrees. (†) Insert 12, 24, 36 or 48 for radius. 	73(*)-(**)VO(†) 74(*)-(**)VO(†) 75(*)-(**)VO(†)	4 (101) 5 (127) 6 (152)	3 (76) 4 (101) 5 (127)
 Barrier - Vertical Inside Bend Vertical Inside Bend Barriers are preformed to conform to a specific vertical inside bend fitting. 	Catalog No.	Side Rail Height in. mm	Loading Depth 'H'
 Furnished with three #10 x ¹/₂" plated self-drilling screws and a 99-9982 Barrier Strip Splice. (*) Insert SS4 or SS6. (**) Insert 30, 45, 60 or 90 for degrees. (†) Insert 12, 24, 36 or 48 for radius. 	73(*)-(**)VI(†) 74(*)-(**)VI(†) 75(*)-(**)VI(†)	4 (101) 5 (127) 6 (152)	3 (76) 4 (101) 5 (127)

- (**) Insert 30, 45, 60 or 90 for degrees.
- (†) Insert 12, 24, 36 or 48 for radius.

K-9


• Green = Fastest shipped items • Black = Normal lead-time items • Red = Normally long lead-time items All dimensions in parentheses are millimeters unless otherwise specified.

Eaton.com/cabletray

Catalog No.	Side Rail Height ^{in. mm}	Loading Depth 'H' in. mm
73(*)-(**)VI(†)	4 (101)	3 (76)
74(*)-(**)VI(†)	5 (127)	4 (101)
75(*)-(**)VI(†)	6 (152)	5 (127)

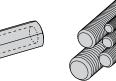
Barrier Strip Clip

- Barrier clip fastens to either aluminum or steel ladder rung.
- Furnished with one #10 x ¹/₂" zinc plated selfdrilling screw.
- (*) Insert **SS4** or **SS6**.

Catalog No. 9(*)-9002

Catalog No.

99-9982


Barrier Strip Splice

- 2.85" (72.4mm) long
- Ribbed edge for increased rigidity and grip
- Comfort edge for ease of installation
- Slotted top window with center mark for accurate placement and inspection capability
- Patent pending

Thread Rod (ATR) & Rod Couplings

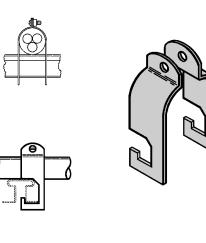
- Loading based on safety factor 5.
- Standard Finish: SS4 or SS6.

See B-Line series Strut Systems Catalog for other sizes and finishes.

Size	Catalog No.	Available Length	Loading
All Threa	aded Rod		
³ /8"-16	ATR ³ / ₈ " x Length	36", 72", 120", 144"	730 lbs.
¹ /2"-13	ATR ¹ / ₂ " x Length	36", 72", 120", 144"	1350 lbs.
Rod Cou	pling		
³ /8"-16	● B655-³/ଃ"	NA	730 lbs.
¹ /2"-13	B655- ¹ / ₂ "	NA	1350 lbs.

B655 Rod Coupling

Stainless Steel Cable Clamp

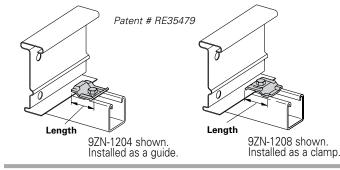

- Fits with series 2, 3, 4 & 5 standard steel rungs.
- · See cable cleats section of the cable tray catalog for more information.

ATR

Rod

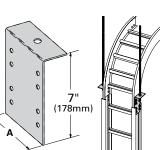
All Threaded

- Field form around the cable at the time of installation.
- Shipped flat.


Catalog No.	Cable Size	
	in.	mm
9 SS4-4050	0.50 - 0.75	(13 - 19)
9 SS4-4075	0.75 - 1.00	(19 - 25)
9 SS4-4100	1.00 - 1.25	(25 - 32)
9 SS4-4125	1.25 - 1.50	(32 - 38)
9 SS4-4150	1.50 - 1.75	(38 - 45)
9 SS4-4175	1.75 - 2.00	(45 - 51)
9 SS4-4200	2.00 - 2.25	(51 - 57)
9 SS4-4225	2.25 - 2.50	(57 - 64)
9 SS4-4250	2.50 - 2.75	(64 - 70)
9 SS4-4275	2.75 - 3.00	(70 - 76)
9 SS4-4300	3.00 - 3.25	(76 - 82)
9 SS4-4325	3.25 - 3.50	(82 - 89)
9 SS4-4350	3.50 - 3.75	(89 - 95)
9 SS4-4375	3.75 - 4.00	(95 - 100)
9 SS4-4400	4.00 - 4.25	(100 - 106)
9 SS4-4425	4.25 - 4.50	(106 - 113)
9 SS4-4450	4.50 - 4.75	(113 - 121)
9 SS4-4475	4.75 - 5.00	(121 - 125)

Green = Fastest shipped items
Black = Normal lead-time items
Red = Normally long lead-time items All dimensions in parentheses are millimeters unless otherwise specified.

B-Line series Cable Tray Systems


Cable Tray Clamp/Guide

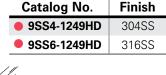
- Features a no-twist design.
- Has four times the strength of the traditional design.
- Each side is labeled to ensure proper installation.
- Furnished in pairs without hardware.
- Not recommended for vertical support.

Vertical Hanger Splice Plates

- Design load is 1500 lbs (6.67kN) per pair.
- Safety Factor of 2.5.
- Furnished in pairs.
- Hole size: ⁹/₁₆" (14mm) for ¹/₂" threaded rod.
- (*) Insert **SS4** or **SS6**.

Catal	og No.				
Without Hardware	With Hardware	Overall Length in. (mm)	Hardware Size in.	Finish	
9 SS6-1205	9SS6-1205NB	2 ¹ / ₄ (57)	1/2"	316SS	

When installing this device as an expansion guide on the outside flange of *Steel Side Rail*, use the Catalog No. **B202** Square Washer in order to properly elevate the guide.


Note: For heavy duty or vertical applications see 9(*)-1241 or 9(*)-1242 page K-15

0	Catalog No.	Outside	'A'			
-		Cable Tray Ht.	in.	(mm)		
	9(*)-8224	4"	3.84	(97.54)		
/	9(*)-8225	5"	4.73	(120.14)		
	9(*)-8226	6"	5.84	(148.34)		
	9(*)-8227	7"	6.84	(173.74)		

Cable Tray Clamp

- Hold-down clamps for single or double cable tray runs.
- No drilling of support I-beam or channel is required.
- Sold in pieces; two clamps are required per tray.
- Maximum beam flange thickness 1¹/₈" (28.58 mm).
- (*) Insert SS4 or SS6.

Catalog No.

9SS4-1249

9SS6-1249

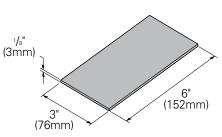
Finish

304SS

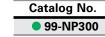
316SS

Cable Tray Guide

- Expansion guide for single or double cable tray runs.
- Guide allows for longitudinal movement of the cable tray.
- No field drilling of support I-beam or channel is required.
- Guides are required on both sides of cable tray to prevent lateral movement; can be placed on either the inside or outside flange of cable tray.
- Guides are sold in pieces two guides are required per tray.
- Maximum flange thickness 1¹/₈" (28.58 mm).
- (*) Insert SS4 or SS6.

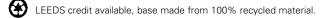

Green = Fastest shipped items
 Black = Normal lead-time items
 Red = Normally long lead-time items
 All dimensions in parentheses are millimeters unless otherwise specified.

Nylon Pad


- Use for friction reduction.
- Hardness: Shore D80.
- Low friction coefficient.
- UV resistant.
- Excellent weatherability.
- UL 94HB.

Neoprene Roll

- Use for material isolation.
- 1/8" x 2" x 25' roll.
- Hardness: Shore A60.
- Good weatherability.

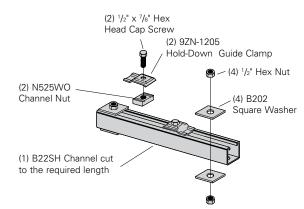

Catalog No. 99-PE36

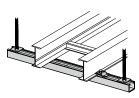
DURA-BLOK[™] Rooftop Support Bases with B22 Channel

- Designed as a superior rooftop support for cable tray.
- UV resistant and approved for most roofing material or other flat surfaces.
- Can be used with any of B-Line series cable tray clamps and guides.
- Ultimate Load Capacity: 1,000 lbs. (uniform load).

Catalog No.	Height x Width x Length							
	in.	(mm)						
• DB10-28	5 ⁵ /8 x 6 x 28.0	(143 x 152 x 711)						
• DB10-36	5 ⁵ / ₈ x 6 x 36.0	(143 x 152 x 914)						
• DB10-42	5 ⁵ / ₈ x 6 x 42.0	(143 x 152 x 1067)						
• DB10-50	5 ⁵ /8 x 6 x 50.0	(143 x 152 x 1270)						
• DB10-60	5 ⁵ / ₈ x 6 x 60.0	(143 x 152 x 1524)						

General Note: Consult roofing manufacturer or engineer for roof load capacity. The weakest point may be the insulation board beneath the rubber membrane.




Green = Fastest shipped items
 Black = Normal lead-time items
 Red = Normally long lead-time items
 All dimensions in parentheses are millimeters unless otherwise specified.

Trapeze Support Kit

- Kit includes components for a single trapeze support in one package.
- The SH channel provides the convenience of pre-punched slots, which helps eliminate the need for field drilling.
- The illustrated hardware is (shown below) sealed in a plastic bag and boxed with the channel, which is pre-cut to the appropriate length as shown in the chart.
- Designed for use with 1/2" threaded rod. Order rod separately.
- Available in type 304 or Type 316 stainless steel.

Catalog No.	Tray Width ^{in. mm}		Channel Length in. mm		Uniform Load Ibs kN	
9(*)-5506-22SH(†)	6	(152)	16	(406)	1350	(6.00)
9(*)-5509-22SH(†)	9	(229)	18	(457)	1250	(5.56)
9(*)-5512-22SH(†)	12	(305)	22	(559)	1125	(5.00)
9(*)-5518-22SH(†)	18	(457)	28	(711)	865	(3.85)
9(*)-5524-22SH(†)	24	(610)	34	(864)	700	(3.11)
9(*)-5530-22SH(†)	30	(762)	40	(1016)	590	(2.62)
9(*)-5536-22SH(†)	36	(914)	46	(1168)	510	(2.27)
9(*)-5542-22SH(†)	42 (1067)	52	(1321)	450	(2.00)

• (*) Insert **SS4** or **SS6**.

• (†) Insert ³/₈ for ³/₈" threaded rod hardware. Safety factor of 3.0 on all loads.

Heavy Duty Trapeze Support Kit

- Kit includes components for a single trapeze support in one package.
- The SH channel provides the convenience of pre-punched slots, which helps eliminates the need for field drilling.
- The illustrated hardware (shown below) is sealed in a plastic bag and boxed with the channel, which is pre-cut to the appropriate length as shown in the chart.
- Designed for use with 1/2" threaded rod. Order rod separately. • Available in type 304 or
- (2) 97N-1205 Hold-Down Guide Clamp (2) N525WO Channel Nut Type 316 stainless steel. (2) 1/2" x 7/8" Hex Head Cap Screw (1) B22SHA Channel cut to the required length (4) B202 Square Washer

(4) 1/2" Hex Nut

Catalog No.	Tray Width ^{in. mm}		Channel Length in. mm			form bad _{kN}
9(*)-5506-22SHA	6	(152)	16	(406)	1350	(6.00)
9(*)-5509-22SHA	9	(229)	18	(457)	1350	(6.00)
9(*)-5512-22SHA	12	(305)	22	(559)	1350	(6.00)
9(*)-5518-22SHA	18	(457)	28	(711)	1350	(6.00)
9(*)-5524-22SHA	24	(610)	34	(864)	1350	(6.00)
9(*)-5530-22SHA	30	(762)	40	(1016)	1350	(6.00)
• 9(*)-5536-22SHA	36	(914)	46	(1168)	1350	(6.00)
• 9(*)-5542-22SHA	42	(1067)	52	(1321)	1350	(6.00)

• (*) Insert **SS4** or **SS6**. Safety factor of 3.0 on all loads.

Trapeze Hardware I	Kit		Description	Catalo	og No.
 Hardware shipped in plastic bag. 				9 \$\$4-5500-1/2	9SS6-5500- ¹ / ₂
in plastic bag.		 	ltems included in the kit.	1 pr. 9SS6-1205 2 HHC Screw ¹ / ₂ x ⁷ / ₈ SS4 2 N525 WO SS6 4 B202 SS4 ¹ / ₂ " sq washer 4 HN ¹ / ₂ SS4	1 pr. SS6-1205 2 HHC Screw ¹ / ₂ x ⁷ / ₈ SS6 2 N525 WO SS6 4 B202 SS6 ¹ / ₂ " sq washer 4 HN ¹ / ₂ " SS6
					

Green = Fastest shipped items
Black = Normal lead-time items
Red = Normally long lead-time items All dimensions in parentheses are millimeters unless otherwise specified.

'A'

(mm)

(305)

(457)

(610)

(762)

(914)

(1067)

48 (1219)

in.

12

18

24

30

36

42

Ή'

8³/₄ (222)

83/4 (222)

83/4 (222)

 $11^{1}/_{4}$ (286)

 $11^{1}/_{4}$ (286)

(406)

(406)

16

16

(mm)

in.

Tray Width

in.

12

18

24

30

36

42

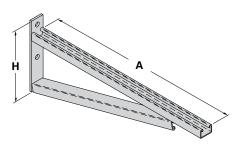
(mm)

(305)

(457)

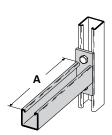
(610)

(762)


(914)

(1067)

6 & 9 (152 & 229)


Bracket (12"- 42")

- Bottom brace is B42 channel on B494-24 and smaller and B22 channel on B494-30 and larger.
- For more dimensional data see Strut Systems catalog.
- Safety Load Factor 2.5.
- (*) Insert available finish: SS4 or SS6.
- Safety Load Factor 2.5.

Cantilever Bracket

- (*) Insert available finish: **SS4** or **SS6**.
- Safety Load Factor 2.5.

Catalog

No.

B494-12

B494-18

B494-24

B494-30

B494-36

B494-42

B494-48

Uniform Load

(kN)

(11.12)

(7.56)

(5.78)

(7.11)

(4.89)

(4.36)

(4.36)

lbs

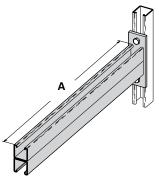
2500

1700

1300

1600

1100

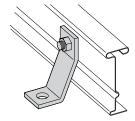

980

980

			_					
Catalog No.	Uniform Load Ibs kN		Tray	y Width	in.	A′ mm		
B409-12(*)	960	(4.27)	6&9(152 & 229)	12	(305)		
B409-18(*)	640	(2.84)	12	(305)	18	(457)		
B409-24(*)	480	(2.13)	18	(457)	24	(610)		

Cantilever Bracket

- (*) Insert available finish: **SS4** or **SS6**.
- Safety Load Factor 2.5.



Catalog No.	Uniform Load	Tray Width	Ϋ́Α΄ in. mm
B297-12(*)	1660 (7.38)	6 & 9 (152 & 229)	12 (305)
B297-18(*)	1100 (4.89)	12 (305)	18 (457)
B297-24(*)	835 (3.71)	18 (457)	24 (610)
B297-30(*)	665 (2.93)	24 (610)	30 (762)
B297-36(*)	550 (2.44)	30 (762)	36 (914)
B297-42(*)	465 (2.06)	36 (914)	42 (1067)

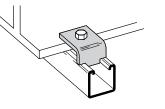
Green = Fastest shipped items
 Black = Normal lead-time items
 Red = Normally long lead-time items
 All dimensions in parentheses are millimeters unless otherwise specified.

Heavy Duty Hold Down Bracket

- Design load is 2000 lbs (8.89kN) per pair.
- Two bolt design.
- Sold in pairs.
- ³/₈" cable tray attachment hardware provided.
- 3/8" support attachment hardware **not** provided.
- Recommended for support of vertical trays.
- (*) Insert SS4 or SS6.

Catalog No.

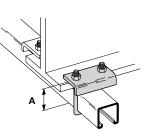
9(*)-1242


Series 3 & 4 Stainless Steel

Heavy Duty Hold Down Bracket

- Design load is 4000 lbs (17.79kN) per pair.
- Four bolt design.
- Sold in pairs.
- 3/8" cable tray attachment hardware provided
- ³/₈" support attachment hardware **not** provided.
- Recommended for support of vertical trays.
- (*) Insert **SS4** or **SS6**.

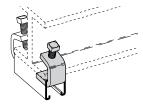
Beam Clamp


- Sold in pieces.
- Design load is 1200 lbs (5.34kN) per pair.
- Safety Load Factor 5.0.
- Order HHCS and Channel Nuts separately.
- Finishes available: **SS4**.

Catalog No.	
B355SS4	

Beam Clamp

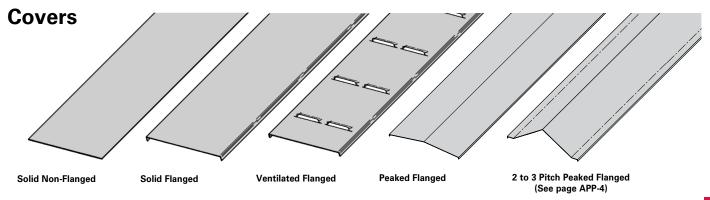
- Sold in pieces.
- (*) Insert SS4 or SS6.



Catalog No.	Design Load	'A'
_	lbs (kN)	in. (mm)
B441-22(*)	1200 (5.34)	3³/8 (86)
B441-22A(*)	1200 (5.34)	5 (127)

*Design load when used in pairs. Safety Load Factor 5.0.

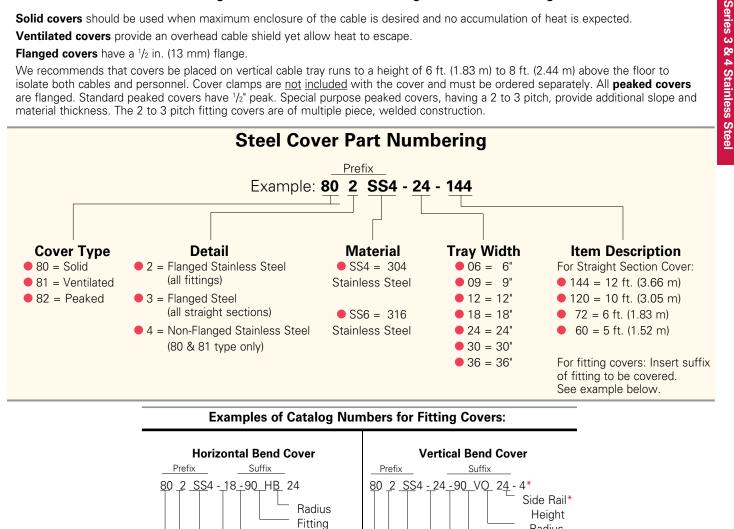
Beam Clamp


- Sold in pieces.
- Finishes available: **SS4**.

Description	Catalog No.					
	B212- ¹ / ₄ SS4	B212- ³ /8SS6				
Design Load *	600 lbs. (2.67kN)	1000 lbs. (4.45 kN)				
Max. Flange Thick	³ /4" (19 mm)	1 ¹ /8" (28.6 mm)				
Mat'l. Thickness	1/4" (6.3 mm)	³ /8" (9.5 mm)				

*Design load when used in pairs. Safety Load Factor 5.0.

• Green = Fastest shipped items • Black = Normal lead-time items • Red = Normally long lead-time items


A full range of covers is available for straight sections and fittings.

Solid covers should be used when maximum enclosure of the cable is desired and no accumulation of heat is expected.

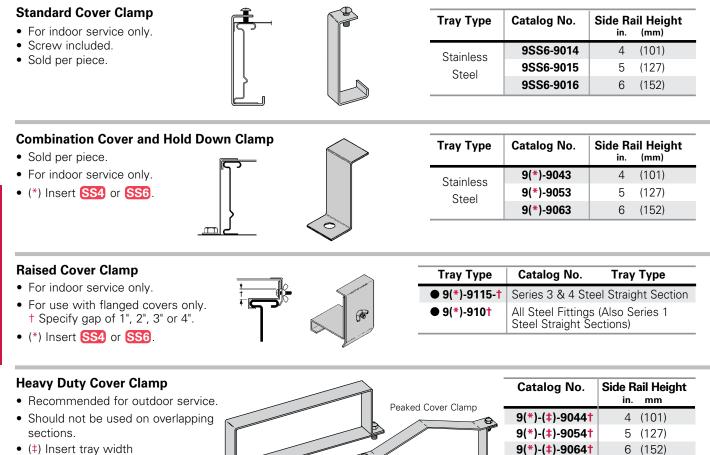
Ventilated covers provide an overhead cable shield yet allow heat to escape.

Flanged covers have a 1/2 in. (13 mm) flange.

We recommends that covers be placed on vertical cable tray runs to a height of 6 ft. (1.83 m) to 8 ft. (2.44 m) above the floor to isolate both cables and personnel. Cover clamps are not included with the cover and must be ordered separately. All peaked covers are flanged. Standard peaked covers have 1/2" peak. Special purpose peaked covers, having a 2 to 3 pitch, provide additional slope and material thickness. The 2 to 3 pitch fitting covers are of multiple piece, welded construction.

Angle

Width


Green = Fastest shipped items
Black = Normal lead-time items
Red = Normally long lead-time items

All dimensions in parentheses are millimeters unless otherwise specified.

Radius

Fitting

Angle

- (‡) Insert tray width
 † Add P to Catalog No.
 for peaked cover clamp.
- (*) Insert SS4 or SS6.

Quantity of Standard Cover Clamps Required

Notes:

When using the Heavy Duty Cover Clamp, only on-half the number of clamps stated above is required.

Additional clamps may be necessary in extreme wind applications.

Cover Joint Strip

- Used to join covers.
- Plastic.
- Only for use on flat covers
- Color gray.
- (‡) Insert tray width.

Cable Cleats

• For additional information, see pages N-1 to N-5 in this catalog.

Straight Section 60" or 72"

Horizontal/Vertical Bends

Tees

Crosses

Reducers

Straight Section 120" or 144"

Green = Fastest shipped items
 Black = Normal lead-time items
 Red = Normally long lead-time items
 All dimensions in parentheses are millimeters unless otherwise specified.

Single

Cable

Cleats

Series 3 & 4 Stainless Steel

4 pcs.

6 pcs.

4 pcs.

6 pcs.

8 pcs.

4 pcs.

Catalog No.

99-9980-(‡)

Section 1- Acceptable Manufacturers

1.01 Manufacturer: Subject to compliance with these specifications, Eaton's B-Line series cable tray systems shall be as manufactured by Eaton.

Section 2- Cable Tray Sections and Components

- 2.01 General: Except as otherwise indicated, provide metal cable trays, of types, classes and sizes indicated; with splice plates, bolts, nuts and washers for connecting units. Construct units with rounded edges and smooth surfaces; in compliance with applicable standards; and with the following additional construction features. Cable tray shall be installed according to the latest revision of NEMA VE 2.
- 2.02 Stainless Steel: Straight section and fitting side rails and rungs shall be made of AISI Type [304] [316] stainless steel. Transverse members (rungs) or corrugated bottoms shall be welded to the side rails with Type 316 stainless steel welding wire. Hardware shall be AISI Type 316 stainless steel.
- 2.03 Ladder Cable Trays shall consist of two longitudinal members (side rails) with transverse members (rungs) welded to the side rails. Rungs shall be spaced [6] [9] [12] inches apart. Rung spacing in radiused fittings shall be industry standard 9" and measured at the center of the tray's width. Each rung must be capable of supporting a 200 lb. concentrated load at the center of the cable tray with a safety factor of 1.5.
- 2.04 Cable tray loading depth shall be [3] [4] [5] inches per NEMA VE 1.
- 2.05 Straight sections shall be fabricated as I-beams. Straight sections shall be supplied in standard [12 foot] [24 foot] [10 foot (3 m)] [20 foot (6 m)] lengths.
- 2.06 Cable tray widths shall be [6] [9] [12] [18] [24] [30] [36] inches or as shown on drawings.
- 2.07 Splice plates shall be manufactured of high strength steel and be secured with 8 nuts and bolts per plate. The resistance of fixed splice connections between an adjacent section of tray shall not exceed 0.00033 ohm.
- 2.08 All fittings must have a minimum radius of [12] [24] [36] [48] inches.

Section 3- Loading Capacities and Testing

- 3.01 Cable tray shall be capable of carrying a uniformly distributed load of _____ lbs./ft. on a _____ ft. support span with a safety factor of 1.5 when supported as a simple span and tested per NEMA VE 1 5.2. In addition to the uniformly distributed load the cable tray shall support 200 lbs. concentrated load at mid-point of span. Load and safety factors specified are applicable to both the side rails and rung capacities. Cable tray shall be made to manufacturing tolerances as specified by NEMA.
- 3.02 Upon request, manufacturer shall provide test reports in accordance with the latest revision of NEMA VE 1 or CSA C22.2 No. 126.

How The Service Advisor Works

We know that your time is important! That's why the color-coding system in this catalog is designed to help you select products that fit your service needs. Products are marked to indicate the typical lead time for orders of 50 pieces or less.

Customer: How do I select my fittings so that I get the quickest turnaround?

09

Service Advisor: Each part of our selection chart is shown in colors. If any section of a part number is a different color, the part will typically ship with the longer lead time represented by the colors.

90

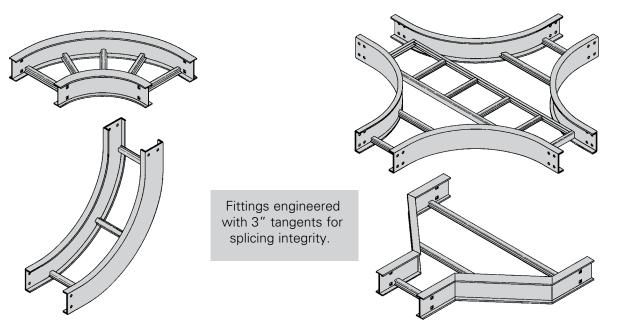
- Green = Fastest shipped items
- Black = Normal lead-time items

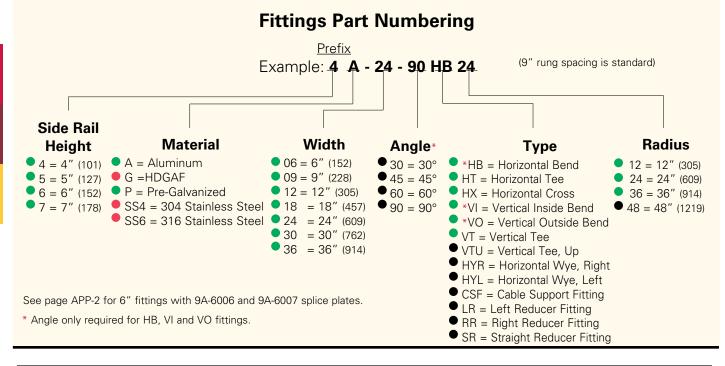
5

• Red = Normally long lead-time items

G

Example:


Part will have a long lead time because of the G material.

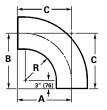

Changing the part number from G to A or P will change the coding to black and reduce lead time.

HB

24

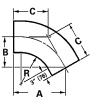
Series 2, 3, 4, & 5 - Fittings

For flat non-ventilated: Available 6" and Wider



Note: Horizontal crosses and tees 30" or wider, with a radius of 36" or larger, will be of two-piece construction.

• Green = Fastest shipped items • Black = Normal lead-time items • Red = Normally long lead-time items



90° Horizontal Bend

60° Horizontal Bend

Horizontal Bend 90° 60° (HB)

1 pair splice plates with hardware included.

Bottoms manufactured: Ladder = 9" Rung Spacing VT & 04 = 4" Rung Spacing ST & SB = Flat sheet over 12" Rung Spacing

Bend Radius	Tray Width		90° H	orizont	al Benc Dimer				60° Horizontal Bend Dimensions						
R		Catalog No.		4	E	3	c	;	Catalog No.	А		В		с	
in. (mm)	in. (mm)		in.	(mm)	in.	(mm)	in.	(mm)		in.	(mm)	in.	(mm)	in.	(mm)
	6 (152)	(Pre)-06-90HB12	18	(457)	18	(457)	18	(457)	(Pre)-06-60HB12	17 ¹ /2	(445)	10 ¹ /8	(257)	11 ¹¹ /16	(297)
	9 (228)	(Pre)-09-90HB12	19 ¹ /2	(495)	19 ¹ /2	(495)	19 ¹ /2	(495)	(Pre)-09-60HB12	18 ¹³ /16	(478)	10 ⁷ /8	(276)	12 ¹ /2	(318)
	12 (305)	(Pre)-12-90HB12	21	(533)	21	(533)	21	(533)	(Pre)-12-60HB12	20 ¹ /16	(510)	11 ⁵ /8	(295)	13 ³ /8	(340)
12 (305)	18 (457)	(Pre)-18-90HB12	24	(610)	24	(610)	24	(610)	(Pre)-18-60HB12	22 ¹¹ /16	(576)	13 ¹ /8	(333)	15 ¹ /8	(384)
12 (000)	24 (609)	(Pre)-24-90HB12	27	(686)	27	(686)	27	(686)	(Pre)-24-60HB12	25 ⁵ /16	(643)	14 ⁵ /8	(372)	16 ⁷ /8	(429)
	30 (762)	(Pre)-30-90HB12	30	(762)	30	(762)	30	(762)	(Pre)-30-60HB12	27 ⁷ /8	(708)	16 ¹ /8	(410)	18 ⁹ /16	(472)
	36 (914)	(Pre)-36-90HB12	33	(838)	33	(838)	33	(838)	(Pre)-36-60HB12	30 ¹ /2	(775)	17 ⁵ /8	(448)	20 ⁵ /16	(516)
	42 (1067)	(Pre)-42-90HB12	36	(914)	36	(914)	36	(914)	(Pre)-42-60HB12	33 ¹ /16	840	19 ¹ /8	(486)	22 ¹ /16	(560)
	6 (152)	(Pre)-06-90HB24	30	(762)	30	(762)	30	(762)	(Pre)-06-60HB24	27 ⁷ /8	(708)	16 ¹ /8	(410)	18 ⁹ /16	(472)
	9 (228)	(Pre)-09-90HB24	31 ¹ /2	(800)	31 ¹ /2	(800)	31 ¹ /2	(800)	(Pre)-09-60HB24	29³/ 16	(741)	16 ⁷ /8	(429)	19 ⁷ /16	(494)
	12 (305)	(Pre)-12-90HB24	33	(838)	33	(838)	33	(838)	(Pre)-12-60HB24	30 ¹ /2	(775)	17 ⁵ /8	(448)	20⁵/ 16	(516)
24 (610)	18 (457)	(Pre)-18-90HB24	36	(914)	36	(914)	36	(914)	(Pre)-18-60HB24	33 ¹ /16	(708)	19 ¹ /8	(486)	22 ¹ /16	(560)
24 (010)	24 (609)	(Pre)-24-90HB24	39	(991)	39	(991)	39	(991)	(Pre)-24-60HB24	35 ¹¹ /16	(907)	20 ⁵ /8	(524)	23 ¹³ /16	(605)
	30 (762)	(Pre)-30-90HB24	42	(1067)	42	(1067)	42	(1067)	(Pre)-30-60HB24	38 ¹ /4	(972)	22 ¹ /8	(564)	25 ¹ /2	(648)
	36 (914)	(Pre)-36-90HB24	45	(1143)	45	(1143)	45	(1143)	(Pre)-36-60HB24		(1038)	23 ⁵ /8	(600)	27 ¹ /4	(692)
	42 (1067)	(Pre)-42-90HB24	48	(1219)	48	(1219)	48	(1219)	(Pre)-42-60HB24	43 ¹ /2	(1105)	25 ¹ /8	(638)	29	(737)
	6 (152)	(Pre)-06-90HB36	42	(1067)	42	(1067)	(1067)	(1067)	(Pre)-06-60HB36	38 ¹ /4	(971)	22 ¹ /8	(562)	25 ¹ /2	(648)
	9 (228)	(Pre)-09-90HB36	43 ¹ /2	(1105)	43 ¹ /2	(1105)	43 ¹ /2	(1105)	(Pre)-09-60HB36	39⁹/ 16	(1005)	22 ⁷ /8	(581)	26 ³ /8	(670)
	12 (305)	(Pre)-12-90HB36	45	(1143)	45	(1143)	45	(1143)	(Pre)-12-60HB36		(1038)	23 ⁵ /8	(600)	27 ¹ /4	(692)
36 (914)	18 (457)	(Pre)-18-90HB36	48	(1219)	48	(1219)	48	(1219)	(Pre)-18-60HB36		(1105)	25 ¹ /8	(638)	29	(737)
30 (314)	24 (609)	(Pre)-24-90HB36	51	(1295)	51	(1295)	51	(1295)	(Pre)-24-60HB36	46 ¹ /16	(1170)	26 ⁵ /8	(676)	3011/16	(780)
	30 (762)	(Pre)-30-90HB36	54	(1372)	54	(1372)	54	(1372)	(Pre)-30-60HB36	48 ¹ /16	(1237)	28 ¹ /8	(714)	32 ⁷ /16	(824)
	36 (914)	(Pre)-36-90HB36	57	(1448)	57	(1448)	57	(1448)	(Pre)-36-60HB36	- ,	(1302)	29 ⁵ /8	(753)	34 ³ /16	(869)
	42 (1067)	(Pre)-42-90HB36	60	(1524)	60	(1524)	60	(1524)	(Pre)-42-60HB36	53 ⁷ /8	(1368)	31 ¹ /8	(791)	35 ¹⁵ /16	(913)
	6 (152)	(Pre)-06-90HB48	54	(1372)	54	(1372)	54	(1372)	(Pre)-06-60HB48	48 ¹ /16	(1221)	28 ¹ /8	(715)	32 ¹¹ /16	(830)
	9 (228)	(Pre)-09-90HB48	55 ¹ /2	(1410)	55 ¹ /2	(1410)	55 ¹ /2	(1410)	(Pre)-09-60HB48	49 ¹⁵ /16	(1268)	28 ⁷ /8	(734)	33⁵/ 16	(846)
	12 (305)	(Pre)-12-90HB48	57	(1448)	57	(1448)	57	(1448)	(Pre)-12-60HB48		(1302)	29 ⁵ /8	(753)	34 ³ /16	(869)
48 (1220)	18 (457)	(Pre)-18-90HB48	60	(1524)	60	(1524)	60	(1524)	(Pre)-18-60HB48		(1368)		(737)	35 ¹⁵ /16	(913)
40 (1220)	24 (609)	(Pre)-24-90HB48	63	(1600)	63	(1600)	63	(1600)	(Pre)-24-60HB48		(1434)	32 ⁵ /8	(829)	37 ⁵ /8	(956)
	30 (762)	(Pre)-30-90HB48	66	(1676)	66	(1676)	66	(1676)	(Pre)-30-60HB48	59 ¹ /16	(1500)	34 ¹ /8	(867)		(1000)
	36 (914)	(Pre)-36-90HB48	69	(1753)	69	(1753)	69	(1753)	(Pre)-36-60HB48	61 ¹¹ /16	(1567)	35 ⁵ /8	(905)	, -	(1045)
	42 (1067)	(Pre)-42-90HB48	72	(1829)	72	(1829)	72	(1829)	(Pre)-42-60HB48	64 ¹ /4	(1632)	37 ¹ /8	(943)	42 ¹³ /16	(1087)

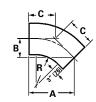
(Pre) See page L-3 for catalog number prefix.

Width dimensions are to inside wall. For aluminum fittings add 1.5 inches (38mm) for total outside width.

Manufacturing tolerances apply to all dimensions.

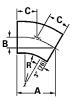
All dimensions in parentheses are millimeters unless otherwise specified.

Series 2, 3, 4, & 5 Fittings


Horizontal Bend 45° 30° (HB)

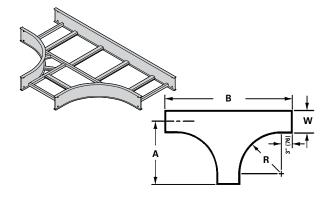
1 pair splice plates with hardware included.

Bottoms manufactured: Ladder = 9" Rung Spacing VT & 04 = 4" Rung Spacing ST & SB = Flat sheet over 12" Rung Spacing



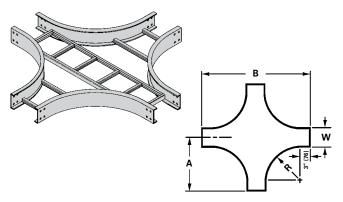
30° Horizontal Bend

	Bend Radius	Tray Widt			45° Ho	rizont	al Bend Dimen		1			30° Ho		al Bend Dimen	sions		
	R			Catalog No.	A		В		С		Catalog No.	Α		В		С	
in	. (mm)	in. (m	nm)		in.	(mm)	in.	(mm)	in.	(mm)		in.	(mm)	in.	(mm)	in.	(mm)
		6 (1	52)	(Pre)-06-45HB12	15 ³ /4	(400)	6 ¹ /2	(165)	9 ³ /16	(233)	(Pre)-06-30HB12	13 ¹ /8	(333)	3 ¹ /2	(89)	7	(179)
			28)	(Pre)-09-45HB12		(427)	6 ¹⁵ /16	(176)	9 ¹³ /16	(249)	(Pre)-09-30HB12	13 ⁷ /8	(352)	3 ¹¹ /16	(94)	7 ⁷ /16	(189)
			05)	(Pre)-12-45HB12	17 ⁷ /8	(454)	7 ³ /8	(187)	10 ⁷ /16		(Pre)-12-30HB12	14 ⁵ /8	(372)	3 ¹⁵ /16		7 ¹³ /16	(198)
1	2 (305)		.57)	(Pre)-18-45HB12	20	(508)	8 ¹ /4	(210)	11 ¹¹ /16		(Pre)-18-30HB12	16 ¹ /8	(410)	4 ⁵ /16	(135)	8 ⁵ /8	(219)
	_ (000)		609)	(Pre)-24-45HB12		(560)	9 ¹ /8	(232)	12 ¹⁵ /16		(Pre)-24-30HB12	17 ⁵ /8	(448)		(119)	9 ⁷ /16	(240)
			62)	(Pre)-30-45HB12		(614)	10	(254)	14 ³ /16		(Pre)-30-30HB12	19 ¹ /8	(486)	5 ¹ /8	(130)	10 ¹ /4	(260)
			14)	(Pre)-36-45HB12		(668)	10 ¹⁵ /16	(278)	15 ⁷ /16		(Pre)-36-30HB12	20 ⁵ /8	(524)	5 ¹ /2	(140)	11 ¹ /16	(281)
		42 (10	067)	(Pre)-42-45HB12		(722)	11 ¹³ /16	300	16 ¹¹ /16		(Pre)-42-30HB12	22 ¹ /8	(562)	5 ¹⁵ /16	(151)		(300)
		6 (1	52)	(Pre)-06-45HB24	24 ³ /16	(614)	10	(254)	14 ³ /16		(Pre)-06-30HB24	19 ¹ /8	(486)	5 ¹ /8	(130)	10 ¹ /4	(260)
		9 (2	28)	(Pre)-09-45HB24	25 ¹ /4	(641)	10 ¹ /2	(267)	14 ¹³ /16	(376)	(Pre)-09-30HB24	19 ⁷ /8	(505)	5 ⁵ /16	(135)	10 ⁵ /8	(270)
		12 (3	05)	(Pre)-12-45HB24	26 ⁵ /16	(668)	10 ¹⁵ /16	(278)	15 ⁷ /16	(392)	(Pre)-12-30HB24	20 ⁵ /8	(524)	5 ¹ /2	(140)	11 ¹ /16	(281)
-	4 (610)	18 (4	57)	(Pre)-18-45HB24		(722)	11 ¹³ /16	(300)	16 ¹¹ /16		(Pre)-18-30HB24	22 ¹ /8	(562)	5 ¹⁵ /16	(151)	11 ¹³ /16	(300)
2	.4 (010)	24 (6	(90	(Pre)-24-45HB24	30⁹/ 16	(766)	12 ¹¹ /16	(322)	17 ¹⁵ /16	(456)	(Pre)-24-30HB24	23 ⁵ /8	(600)	6 ⁵ /16	(160)	12 ⁵ /8	(321)
		30 (7	62)	(Pre)-30-45HB24	32 ¹¹ /16	(830)	13 ⁹ /16	(344)	19 ¹ /8	(486)	(Pre)-30-30HB24	25 ¹ /8	(638)	6 ³ /4	(172)	13 ⁷ /16	(341)
		36 (9	14)	(Pre)-36-45HB24	34 ¹³ /16	(884)	14 ⁷ /16	(367)	20 ³ /8	(518)	(Pre)-36-30HB24	26 ⁵ /8	(676)	7 ¹ /8	(181)	14 ¹ /4	(362)
		42 (10	067)	(Pre)-42-45HB24	36¹⁵/ 16	(938)	15 ⁵ /16	(389)	21 ⁵ /8	(549)	(Pre)-42-30HB24	28 ¹ /8	(715)	7 ¹ /2	(191)	15 ¹ /16	(383)
		6 (1	52)	(Pre)-06-45HB36	32 ¹¹ /16	(830)	13 ⁹ /16	(344)	19 ¹ /8	(486)	(Pre)-06-30HB36	25 ¹ /8	(638)	6 ³ /4	(171)	13 ⁷ /16	(341)
		9 (2	28)	(Pre)-09-45HB36	33 ³ /4	(857)	14	(356)	19 ³ /4	(502)	(Pre)-09-30HB36	25 ⁷ /8	(657)	6 ¹⁵ /16	(176)	13 ⁷ /8	(352)
		12 (3	05)	(Pre)-12-45HB36	34 ¹³ /16	(884)	14 ⁷ /16	(367)	20 ³ /8	(518)	(Pre)-12-30HB36	26 ⁵ /8	(676)	7 ¹ /8	(181)	14 ¹ /4	(362)
	6 (914)	18 (4	.57)	(Pre)-18-45HB36	36¹⁵/ 16	(938)	15 ⁵ /16	(389)	21 ⁵ /8	(549)	(Pre)-18-30HB36	28 ¹ /8	(715)	7 ¹ /2	(191)	15 ¹ /16	(383)
Ċ	0 (314)	24 (6	(90	(Pre)-24-45HB36	39 ¹ /16	(992)	16 ³ /16	(411)	22 ⁷ /8	(581)	(Pre)-24-30HB36	29 ⁵ /8	(753)	7 ¹⁵ /16	(202)	15 ⁷ /8	(403)
		30 (7	62)	(Pre)-30-45HB36	41 ³ /16		17 ¹ /16	(433)	24 ¹ /8	(613)	(Pre)-30-30HB36	31 ¹ /8	(790)	8 ⁵ /16	(211)	16 ¹¹ /16	(424)
		36 (9	14)	(Pre)-36-45HB36	43 ⁵ /16	(1100)	17 ¹⁵ /16	(456)	25 ³ /8	(645)	(Pre)-36-30HB36	32 ⁵ /8	(829)	8 ³ /4	(222)	17 ¹ /2	(445)
		42 (10	067)	(Pre)-42-45HB36	45 ⁷ /16	(1154)	18 ¹³ /16	(478)	26 ⁵ /8	(676)	(Pre)-42-30HB36	34 ¹ /8	(867)	9 ¹ /8	(232)	18 ¹ /4	(464)
		6 (1	52)	(Pre)-06-45HB48	41 ³ /16	(1046)	17 ¹ /16	(433)	24 ¹ /8	(613)	(Pre)-06-30HB48	31 ¹ /8	(791)	8 ⁵ /16	(211)	16 ¹¹ /16	(424)
		9 (2	28)	(Pre)-09-45HB48	42 ¹ /4	(1073)	17 ¹ /2	(445)	24 ³ /4	(629)	(Pre)-09-30HB48	31 ⁷ /8	(810)	8 ⁹ /16	(218)	17 ¹ /16	(433)
		12 (3	05)	(Pre)-12-45HB48	43 ⁵ /16	(1100)	17 ¹⁵ /16	(456)	25 ³ /8	(645)	(Pre)-12-30HB48	32 ⁵ /8	(829)	8 ³ /4	(222)	17 ¹ /2	(445)
,	0 (1000)	18 (4	.57)	(Pre)-18-45HB48	45 ⁷ /16	(1154)	18 ¹³ /16	(487)	26 ⁵ /8	(676)	(Pre)-18-30HB48	34 ¹ /8	(867)	9 ¹ /8	(232)	18 ¹ /4	(464)
2	.8 (1220)	24 (6	(90	(Pre)-24-45HB48	47 ⁹ /16	(1208)	19 ¹¹ /16	(500)	27 ⁷ /8	(708)	(Pre)-24-30HB48	35 ⁵ /8	(905)	9 ⁹ /16	(243)	19 ¹ /16	(484)
		30 (7	62)	(Pre)-30-45HB48	49 ¹¹ /16	(1262)	20 ⁹ /16	(522)	29 ¹ /8	(740)	(Pre)-30-30HB48	37 ¹ /8	(943)	9 ¹⁵ /16	(252)	19 ⁷ /8	(505)
		36 (9	14)	(Pre)-36-45HB48	51 ¹³ /16	(1316)	21 ⁷ /16	(545)	30⁵/ 16	(770)	(Pre)-36-30HB48	38 ⁵ /8	(981)	10 ⁵ /16	(262)	20 ¹¹ /16	(525)
		42 (10	067)	(Pre)-42-45HB48	54 ¹⁵ /16	(1395)	22 ⁵ /16	(567)	31 ⁹ /16	(802)	(Pre)-42-30HB48	40 ¹ /8	(1019)	10 ³ /4	(273)	21 ¹ /2	(546)


(Pre) See page L-3 for catalog number prefix.

Width dimensions are to inside wall. For aluminum fittings add 1.5 inches (38mm) for total outside width.

Manufacturing tolerances apply to all dimensions.


Horizontal Tee (HT)

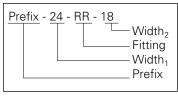
2 pair splice plates with hardware included.

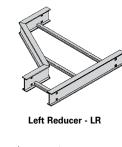
Horizontal Cross (HX)

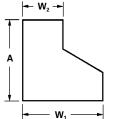
3 pair splice plates with hardware included.

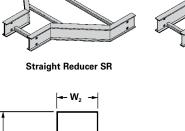
Bend	Tray	Horizo	ontal Tee		Horizon	tal Cross				
Radius	Width		Dimens	sions		Dimensions				
R		Catalog Number	Α	В	Catalog Number	Α	В			
in. (mm)	in. (mm)	5	in. (mm)	in. (mm)	5	in. (mm)	in. (mm)			
	6 (152)	(Prefix)-06-HT12	18 (457)	36 (914)	(Prefix)-06-HX12	18 (457)	36 (914)			
	9 (229)	(Prefix)-09-HT12	19 ¹ /2 (496)	39 (991)	(Prefix)-09-HX12	19 ¹ /2 (496)	39 (991)			
	12 (305)	(Prefix)-12-HT12	21 (533)	42 (1067)	(Prefix)-12-HX12	21 (533)	42 (1067)			
12 (305)	18 (457)	(Prefix)-18-HT12	24 (609)	48 (1219)	(Prefix)-18-HX12	24 (609)	48 (1219)			
12 (303)	24 (609)	(Prefix)-24-HT12	27 (686)	54 (1372)	(Prefix)-24-HX12	27 (686)	54 (1372)			
	30 (762)	(Prefix)-30-HT12	30 (762)	60 (1524)	(Prefix)-30-HX12	30 (762)	60 (1524)			
	36 (914)	(Prefix)-36-HT12	33 (838)	66 (1676)	(Prefix)-36-HX12	33 (838)	66 (1676)			
	42 (1067)	(Prefix)-42-HT12	36 914	72 (1829)	(Prefix)-42-HX12	36 914	72 (1829)			
	6 (152)	(Prefix)-06-HT24	30 (762)	60 (1524)	(Prefix)-06-HX24	30 (762)	60 (1524)			
	9 (229)	(Prefix)-09-HT24	31 ¹ /2 (800)	63 (1600)	(Prefix)-09-HX24	31 ¹ /2 (800)	63 (1600)			
	12 (305)	(Prefix)-12-HT24	33 (838)	66 (1676)	(Prefix)-12-HX24	33 (838)	66 (1676)			
24 (610)	18 (457)	(Prefix)-18-HT24	36 (914)	72 (1829)	(Prefix)-18-HX24	36 (914)	72 (1829)			
24 (610)	24 (609)	(Prefix)-24-HT24	39 (991)	78 (1982)	(Prefix)-24-HX24	39 (991)	78 (1982)			
	30 (762)	(Prefix)-30-HT24	42 (1067)	84 (2134)	(Prefix)-30-HX24	42 (1067)	84 (2134)			
	36 (914)	(Prefix)-36-HT24	45 (1143)	90 (2286)	(Prefix)-36-HX24	45 (1143)	90 (2286)			
	42 (1067)	(Prefix)-42-HT24	48 (1219)	96 (2438)	(Prefix)-42-HX24	48 (1219)	96 (2438)			
	6 (152)	(Prefix)-06-HT36	42 (1067)	84 (2134)	(Prefix)-06-HX36	42 (1067)	84 (2134)			
	9 (229)	(Prefix)-09-HT36	43 ¹ /2 (1105)	87 (2210)	(Prefix)-09-HX36	43 ¹ /2 (1105)	87 (2210)			
	12 (305)	(Prefix)-12-HT36	45 (1143)	90 (2286)	(Prefix)-12-HX36	45 (1143)	90 (2286)			
36 (914)	18 (457)	(Prefix)-18-HT36	48 (1219)	96 (2438)	(Prefix)-18-HX36	48 (1219)	96 (2438)			
30 (914)	24 (609)	(Prefix)-24-HT36	51 (1295)	102 (2590)	(Prefix)-24-HX36	51 (1295)	102 (2590)			
	30 (762)	(Prefix)-30-HT36	54 (1372)	108 (2744)	(Prefix)-30-HX36	54 (1372)	108 (2744)			
	36 (914)	(Prefix)-36-HT36	57 (1448)	114 (2896)	(Prefix)-36-HX36	57 (1448)	114 (2896)			
	42 (1067)	(Prefix)-42-HT36	60 (1524)	120 (3048)	(Prefix)-42-HX36	60 (1524)	120 (3048)			
	6 (152)	(Prefix)-06-HT48	54 (1372)	108 (2744)	(Prefix)-06-HX48	54 (1372)	108 (2744)			
	9 (229)	(Prefix)-09-HT48	55 ¹ /2 (1410)	111 (2820)	(Prefix)-09-HX48	55 ¹ /2 (1410)	111 (2820)			
	12 (305)	(Prefix)-12-HT48	57 (1448)	114 (2896)	(Prefix)-12-HX48	57 (1448)	114 (2896)			
48 (1220)	18 (457)	(Prefix)-18-HT48	60 (1524)	120 (3048)	(Prefix)-18-HX48	60 (1524)	120 (3048)			
40 (1220)	24 (609)	(Prefix)-24-HT48	63 (1600)	126 (3200)	(Prefix)-24-HX48	63 (1600)	126 (3200)			
	30 (762)	(Prefix)-30-HT48	66 (1676)	132 (3353)	(Prefix)-30-HX48	66 (1676)	132 (3353)			
	36 (914)	(Prefix)-36-HT48	69 (1753)	138 (3535)	(Prefix)-36-HX48	69 (1753)	138 (3535)			
	42 (1067)	(Prefix)-42-HT48	72 (1829)	144 (3658)	(Prefix)-42-HX48	72 (1829)	144 (3658)			

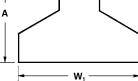
Width dimensions are to inside wall. For aluminum fittings add 1.5 inches (38mm) for total outside width. Manufacturing tolerances apply to all dimensions.

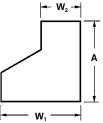

All dimensions in parentheses are millimeters unless otherwise specified.


Series 2, 3, 4, & 5 Fittings

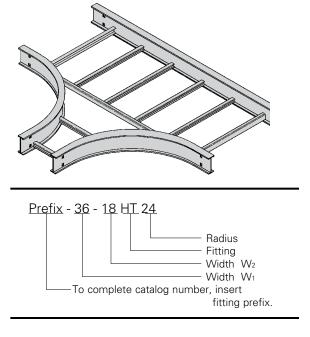

Reducers (LR, SR, RR)

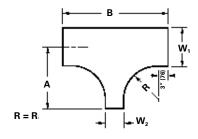

1 pair splice plates with hardware included.


Reducer Part Numbering



Right Reducer -RR

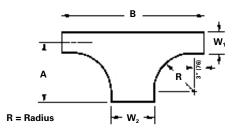

	Tray Wi	idth		Left Hand	Reducer		Straight F	Reducer		Right Hand	d Reducer	·
I	W1	W	12	Catalog No.	A		Catalog No.	A		Catalog No.	A	•
in.	(mm)	in.	(mm)	_	in.	(mm)	_	in.	(mm)	_	in.	(mm)
9	(228)	6	(152)	(Prefix)-09-LR06	9 ³ /4	(248)	(Prefix)-09-SR06	8 ¹⁵ /16	(227)	(Prefix)-09-RR06	9 ³ /4	(248)
12	305	6	(152)	(Prefix)-12-LR06	11 ¹ /2	(292)	(Prefix)-12-SR06	9 ³ /4	(248)	(Prefix)-12-RR06	11 ¹ /2	(292)
ΙZ	305	9	(228)	(Prefix)-12-LR09	9 ³ /4	(248)	(Prefix)-12-SR09	8 ¹⁵ /16	(227)	(Prefix)-12-RR09	9 ³ /4	(248)
		6	(152)	(Prefix)-18-LR06	14 ¹⁵ /16	(379)	(Prefix)-18-SR06	11 ¹ /2	(292)	(Prefix)-18-RR06	14 ¹⁵ /16	(379)
18	(457)	9	(228)	(Prefix)-18-LR09	13 ³ /16	(340)	(Prefix)-18-SR09	10 ⁵ /8	(270)	(Prefix)-18-RR09	13 ³ /16	(340)
		12	(305)	(Prefix)-18-LR12	11 ¹ /2	(292)	(Prefix)-18-SR12	9 ³ /4	(248)	(Prefix)-18-RR12	11 ¹ /2	(292)
		6	(152)	(Prefix)-24-LR06	18 ³ /8	(467)	(Prefix)-24-SR06	13 ¹ /4	(336)	(Prefix)-24-RR06	18 ³ /8	(467)
24	609	9	(228)	(Prefix)-24-LR09	16 ¹¹ /16	(424)	(Prefix)-24-SR09	12 ³ /8	(314)	(Prefix)-24-RR09	16 ¹¹ /16	(424)
24	009	12	(305)	(Prefix)-24-LR12	14 ¹⁵ /16	(379)	(Prefix)-24-SR12	11 ¹ /2	(292)	(Prefix)-24-RR12	14 ¹⁵ /16	(379)
		18	(457)	(Prefix)-24-LR18	11 ¹ /2	(292)	(Prefix)-24-SR18	9 ³ /4	(248)	(Prefix)-24-RR18	11 ¹ /2	(292)
		6	(152)	(Prefix)-30-LR06	21 ⁷ /8	(555)	(Prefix)-30-SR06	14 ¹⁵ /16	(379)	(Prefix)-30-RR06	21 ⁷ /8	(555)
		9	(228)	(Prefix)-30-LR09	20 ¹ /8	(511)	(Prefix)-30-SR09	14 ¹ /8	(359)	(Prefix)-30-RR09	20 ¹ /8	(511)
30	(762)	12	(305)	(Prefix)-30-LR12	18 ³ /8	(467)	(Prefix)-30-SR12	13 ¹ /4	(336)	(Prefix)-30-RR12	18 ³ /8	(467)
		18	(457)	(Prefix)-30-LR18	14 ¹⁵ /16	(379)	(Prefix)-30-SR18	11 ¹ /2	(292)	(Prefix)-30-RR18	14 ¹⁵ /16	(379)
		24	(609)	(Prefix)-30-LR24	11 ¹ /2	(292)	(Prefix)-30-SR24	9 ³ /4	(248)	(Prefix)-30-RR24	11 ¹ /2	(292)
		6	(152)	(Prefix)-36-LR06	25 ⁵ /16	(643)	(Prefix)-36-SR06	16 ¹¹ /16	(424)	(Prefix)-36-RR06	25 ⁵ /16	(643)
		9	(228)	(Prefix)-36-LR09	23 ⁹ /16	(598)	(Prefix)-36-SR09	15 ¹³ /16	(402)	(Prefix)-36-RR09	23 ⁹ /16	(598)
36	(914)	12	(305)	(Prefix)-36-LR12	21 ⁷ /8	(555)	(Prefix)-36-SR12	14 ¹⁵ /16	(379)	(Prefix)-36-RR12	21 ⁷ /8	(555)
00	(014)	18	(457)	(Prefix)-36-LR18	18 ³ /8	(467)	(Prefix)-36-SR18	13 ¹ /4	(336)	(Prefix)-36-RR18	18 ³ /8	(467)
		24	(609)	(Prefix)-36-LR24	14 ¹⁵ /16	(379)	(Prefix)-36-SR24	11 ¹ /2	(292)	(Prefix)-36-RR24	14 ¹⁵ /16	(379)
		30	(762)	(Prefix)-36-LR30	11 ¹ /2	(292)	(Prefix)-36-SR30	9 ³ /4	(248)	(Prefix)-36-RR30	11 ¹ /2	(292)
		6	(152)	(Prefix)-42-LR06	28 ³ /4	(730)	(Prefix)-42-SR06	18 ³ /8	(467)	(Prefix)-42-RR06	28 ³ /4	(730)
		9	(228)	(Prefix)-42-LR09	27 ¹ /16	(687)	(Prefix)-42-SR09	17 ⁹ /16	(446)	(Prefix)-42-RR09	27 ¹ /16	(687)
		12	(305)	(Prefix)-42-LR12	25 ⁵ /16	(643)	(Prefix)-42-SR12	16 ¹¹ /16	(424)	(Prefix)-42-RR12	25 ⁵ /16	(643)
42	(1067)	18	(457)	(Prefix)-42-LR18	21 ⁷ /8	(555)	(Prefix)-42-SR18	14 ¹⁵ /16	(379)	(Prefix)-42-RR18	21 ⁷ /8	(555)
		24	(609)	(Prefix)-42-LR24	18 ³ /8	(467)	(Prefix)-42-SR24	13 ¹ /4	(336)	(Prefix)-42-RR24	18 ³ /8	(467)
		30	(762)	(Prefix)-42-LR30	14 ¹⁵ /16	(379)	(Prefix)-42-SR30	11 ¹ /2	(292)	(Prefix)-42-RR30	14 ¹⁵ /16	(379)
		36	(914)	(Prefix)-42-LR36	11 ¹ /2	(292)	(Prefix)-42-SR36	9 ³ /4	(248)	(Prefix)-42-RR36	11 ¹ /2	(292)

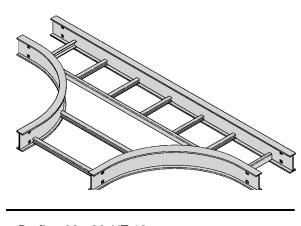

(Prefix) See page L-3 for catalog number prefix.

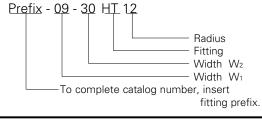
Width dimensions are to inside wall. For aluminum fittings add 1.5 inches (38mm) for total outside width.

Manufacturing tolerances apply to all dimensions.

Horizontal Reducing Tee (HT) 2 pair splice plates with hardware included.


Tray V	Width	* Insert Radius	12″ Ra	adius	24″ Ra	dius	36″ Ra	dius	48″ Ra	dius
W1 in. mm	W2 in. mm	(12", 24", 36", or 48") Catalog No.	A in. mm	B in. mm	A in. mm	B in. mm	A in. mm	B in. mm	A in. mm	B in. mm
9 (228)	6 (152)	(Prefix)-09-06-HT*	19 ¹ /2 (496)	36 (914)	31 ¹ /2 (800)	60 (1524)	43 (1092)	84 (2134)	55 ¹ /2 (1410)	108 (2743)
12 (305)	6 (152) 9 (228)	(Prefix)-12-06-HT* (Prefix)-12-09-HT*	21 (533) 21 (533)	36 (914) 39 (991)	33 (838) 33 (838)	60 (1524) 63 (1600)	45 (1143) 45 (1143)	84 (2134) 87 (2210)	57 (1448) 57 (1448)	108 (2743) 111 (2819)
18 (457)	6 (152) 9 (228) 12 (305)	(Prefix)-18-06-HT* (Prefix)-18-09-HT* (Prefix)-18-12-HT*	24 (609) 24 (609) 24 (609)	36 (914) 39 (991) 42 (1067)	36 (914) 36 (914) 36 (914) 36 (914)	60 (1524) 63 (1600) 66 (1676)	48 ((1143)) 48 (1219) 48 (1219)	84 (2134)87 (2210)90 (2286)	60 (1524) 60 (1524) 60 (1524)	108 (2743) 111 (2819) 114 (2895)
24 (609)	6 (152) 9 (228) 12 (305) 18 (457)	(Prefix)-24-06-HT* (Prefix)-24-09-HT* (Prefix)-24-12-HT* (Prefix)-24-18-HT*	27 (686) 27 (686) 27 (686) 27 (686)	36(914)39(991)42(1067)48(1219)	39 (991) 39 (991) 39 (991) 39 (991) 39 (991)	60(1524)63(1600)66(1676)72(1829)	51 (1295) 51 (1295) 51 (1295) 51 (1295)	84(2134)87(2210)90(2286)96(2438)	63 (1600) 63 (1600) 63 (1600) 63 (1600)	108(2743)111(2819)114(2895)120(3048)
30 (762)	6 (152) 9 (228) 12 (305) 18 (457) 24 (609)	(Prefix)-30-06-HT* (Prefix)-30-09-HT* (Prefix)-30-12-HT* (Prefix)-30-18-HT* (Prefix)-30-24-HT*	30 (762) 30 (762) 30 (762) 30 (762) 30 (762) 30 (762)	36 (914) 39 (991) 42 (1067) 48 (1219) 54 (1372)	42 (1067) 42 (1067) 42 (1067) 42 (1067) 42 (1067) 42 (1067) 42 (1067)	60(1524)63(1600)66(1676)72(1829)78(1981)	54 (1372) 54 (1372) 54 (1372) 54 (1372) 54 (1372) 54 (1372) 54 (1372)	84 (2134) 87 (2210) 90 (2286) 96 (2438) 102 (2591)	66 (1676) 66 (1676) 66 (1676) 66 (1676) 66 (1676) 66 (1676)	108(2743)111(2819)114(2895)120(3048)126(3200)
36 (914)	6 (152) 9 (228) 12 (305) 18 (457) 24 (609) 30 (762)	(Prefix)-30-06-HT* (Prefix)-36-09-HT* (Prefix)-36-12-HT* (Prefix)-36-18-HT* (Prefix)-36-18-HT* (Prefix)-36-24-HT* (Prefix)-36-30-HT*	33 (838) 33 (838) 33 (838) 33 (838) 33 (838) 33 (838) 33 (838) 33 (838)	36 (914) 39 (991) 42 (1067) 48 (1219) 54 (1372) 60 (1524)	45 (1143) 45 (1143) 45 (1143) 45 (1143) 45 (1143) 45 (1143) 45 (1143) 45 (1143) 45 (1143) 45 (1143)	60(1524)63(1600)66(1676)72(1829)78(1981)84(2134)	 57 (1448) 	84 (2134) 87 (2210) 90 (2286) 96 (2438) 102 (2591) 108 (2743)	69 (1753) 69 (1753) 69 (1753) 69 (1753) 69 (1753) 69 (1753) 69 (1753)	108(2743)111(2819)114(2895)120(3048)126(3200)132(3353)
42 (1067)	6 (152) 9 (228) 12 (305) 18 (457) 24 (609) 30 (762) 36 (914)	(Prefix)-42-06-HT* (Prefix)-42-09-HT* (Prefix)-42-12-HT* (Prefix)-42-12-HT* (Prefix)-42-18-HT* (Prefix)-42-24-HT* (Prefix)-42-30-HT*	36 (914) 36 (914) 36 (914) 36 (914) 36 (914) 36 (914) 36 (914) 36 (914) 36 (914) 36 (914) 36 (914)	36 (914) 39 (991) 42 (1067) 48 (1219) 54 (1372) 60 (1524) 66 (1676)	48 (1219) 48 (1219) 48 (1219) 48 (1219) 48 (1219) 48 (1219) 48 (1219) 48 (1219) 48 (1219) 48 (1219)	60 (1524) 63 (1600) 66 (1676) 72 (1829) 78 (1981) 84 (2134) 90 (2286)	60 (1524) 60 (1524) 60 (1524) 60 (1524) 60 (1524) 60 (1524) 60 (1524) 60 (1524) 60 (1524)	84 (2134) 87 (2210) 90 (2286) 96 (2438) 102 (2591) 108 (2743) 114 (2895)	72 (1829) 72 (1829) 72 (1829) 72 (1829) 72 (1829) 72 (1829) 72 (1829) 72 (1829) 72 (1829) 72 (1829) 72 (1829)	108 (2743) 111 (2819) 114 (2895) 120 (3048) 126 (3200) 132 (3353) 138 (3505)

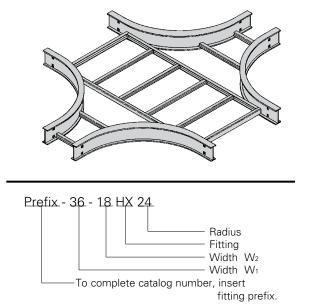

(Prefix) See page L-3 for catalog number prefix.

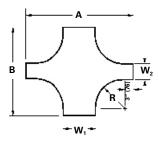

Width dimensions are to inside wall. For aluminum fittings add 1.5 inches (38mm) for total outside width.

Manufacturing tolerances apply to all dimensions.

Horizontal Expanding Tee (HT) 2 pair splice plates with hardware included.

	Tray	Widtl	n	* Insert Radius		12″ Ra	diu	5	2	24″ Ra	dius		3	6″ Ra	dius		4	8″ Ra	dius	
	W1	w	2	(12", 24", 36", or 48") Catalog No.		4		В		4		В		4	E	3	4	4		В
in.	mm	in.	mm		in.	mm	in.	mm	in.	mm	in.	mm	in.	mm	in.	mm	in.	mm	in.	mm
		9	228	(Prefix)-06-09-HT*	18	(457)	39	(991)	30	(762)	63	(1600)	42	(1067)	87	(2210)	54	(1372)	111	2819
		12	(305)	(Prefix)-06-12-HT*	18	(457)	42	(1067)	30	(762)	66	(1676)	42	(1067)	90	(2286)	54	(1372)	114	(2895)
		18	(457)	(Prefix)-06-18-HT*	18	457)	48	(1219)	30	(762)	72	(1829)	42	(1067)	96	(2438)	54	(1372)	120	(3048)
6	6 (152)	24	(609)	(Prefix)-06-24-HT*	18	(457)	54	(1372)	30	(762)	78	(1981)	42	(1067)	102	(2591)	54	(1372)	126	(3200)
		30	(762)	(Prefix)-06-30-HT*	18	(457)	60	(1524)	30	(762)	84	(2134)	42	(1067)	108	(2743)	54	(1372)	132	(3353)
		36	(914)	(Prefix)-06-36-HT*	18	(457)	66	(1676)	30	(762)	90	(2286)	42	(1067)	114	(2895)	54	(1372)	138	(3503)
		42	(1067)	(Prefix)-06-42-HT*	18	(457)	72	(1829)	30	(762)	96	(2438)	42	(1067)	120	(3048)	54	(1372)	144	(3658)
		12	(305)	(Prefix)-09-12-HT*	19 ¹ /2	(496)	42	(1067)	31 ¹ /2	(800)	66	(1676)	43 ¹ /2	(1105)	90	(2286)	55 ¹ /2	(1410)	114	(2895)
		18	(457)	(Prefix)-09-18-HT*	19 ¹ /2	(496)	48	(1219)	31 ¹ /2	(800)	72	(1829)	431/2	(1105)	96	(2438)	551/2	(1410)	120	(3048)
ç	(228)	24	(609)	(Prefix)-09-24-HT*	19 ¹ /2	(496)	54	(1372)	31 ¹ /2	(800)	78	(1981)	43 ¹ /2	(1105)	102	(2591)	55 ¹ /2	(1410)	126	(3200)
C	(220)	30	(762)	(Prefix)-09-30-HT*	19 ¹ /2	(496)	60	(1524)	31 ¹ /2	(800)	84	(2134)	431/2	(1105)	108	(2743)	551/2	(1410)	132	(3353)
		36	(914)	(Prefix)-09-36-HT*	19 ¹ /2	(496)	66	(1676)	31 ¹ /2	(800)	90	(2286)	431/2	(1105)	114	(2895)	55 ¹ /2	(1410)	138	(3503)
		42	(1067)	(Prefix)-09-42-HT*	19 ¹ /2	(496)	72	(1829)	31 ¹ /2	(800)	96	(2438)	431/2	(1105)	120	(3048)	551/2	(1410)	144	(3658)
		18	(457)	(Prefix)-12-18-HT*	21	(533)	48	(1219)	33	(838)	72	(1829)	45	(1143)	96	(2438)	57	(1448)	120	(3048)
		24	(609)	(Prefix)-12-24-HT*	21	(533)	54	(1372)	33	(838)	78	(1981)	45	(1143)	102	(2591)	57	(1448)	126	(3200)
1	2 (305)	30	(762)	(Prefix)-12-30-HT*	21	(533)	60	(1524)	33	(838)	84	(2134)	45	(1143)	108	(2743)	57	(1448)	132	(3353)
		36	(914)	(Prefix)-12-36-HT*	21	(533)	66	(1676)	33	(838)	90	(2286)	45	(1143)	114	(2895)	57	(1448)	138	(3503)
		42	(1067)	(Prefix)-12-42-HT*	21	(533)	72	(1829)	33	(838)	96	(2438)	45	(1143)	120	(3048)	57	(1448)	144	(3658)
		24	(609)	(Prefix)-18-24-HT*	24	(609)	54	(1372)	36	(914)	78	(1981)	48	(1219)	102	(2591)	60	(1524)	126	(3200)
1	8 (457)	30	(762)	(Prefix)-18-30-HT*	24	(609)	60	(1524)	36	(914)	84	(2134)	48	(1219)	108	(2743)	60	(1524)	132	(3353)
	0 (407)	36	(914)	(Prefix)-18-36-HT*	24	(609)	66	(1676)	36	(914)	90	(2286)	48	(1219)	114	(2895)	60	(1524)	138	(3503)
		42	(1067)	(Prefix)-18-42-HT*	24	(609)	72	(1829)	36	(914)	96	(2438)	48	(1219)	120	(3048)	60	(1524)	144	(3658)
		30	(762)	(Prefix)-24-30-HT*	27	(686)	60	(1524)	39	(991)	84	(2134)	51	(1295)	108	(2743)	63	(1600)	132	(3353)
2	4 (609)	36	(914)	(Prefix)-24-36-HT*	27	(686)	66	(1676)	39	(991)	90	(2286)	51	(1295)	114	(2895)	63	(1600)	138	(3503)
		42	(1067)	(Prefix)-24-42-HT*	27	(686)	72	(1829)	39	(991)	96	(2438)	51	(1295)	120	(3048)	63	(1600)	144	(3658)
3	0 (762)	36	(914)	(Prefix)-30-36-HT*	30	(762)	66	(1676)	42	(1067)	90	(2286)	54	(1372)	114	(2895)	66	(1676)	138	(3503)
0	0 (702)	42	(1067)	(Prefix)-30-42-HT*	30	(762)	72	(1829)	42	(1067)	96	(2438)	54	(1372)	120	(3048)	66	(1676)	144	(3658)
3	6 (914)	42	(1067)	(Prefix)-36-42-HT*	33	(838)	72	(1829)	45	(1143)	96	(2438)	57	(1448)	120	(3048)	69	(1753)	144	(3658)

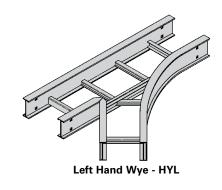

(Prefix) See page L-3 for catalog number prefix.

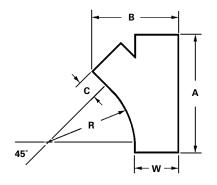

Width dimensions are to inside wall. For aluminum fittings add 1.5 inches (38mm) for total out-

side width.

Manufacturing tolerances apply to all dimensions.

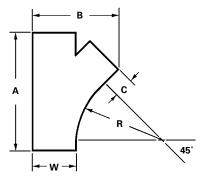
Horizontal Expanding/Reducing Cross (HX) 3 pair splice plates with hardware included.


Tray	Width		* Insert Radius	12	″ Ra	dius		24″ Ra	dius		;	36″ Ra	dius		4	8″ Ra	dius	
W1	W2		Catalog No.	А		в		Α		в		Α	E	3		4	В	
in. mm	in.	mm		in. m	m	in. mm	in.	mm	in.	mm	in.	mm	in.	mm	in.	mm	in.	mm
9 (228)	6 ((152)	(Prefix)-09-06-HX*	39 (99	91)	36 (914)	63	1600	60	(1524)	87	(2210)	84	(2134)	111	2819	108	(2743)
12 (305)	6	(152)	(Prefix)-12-06-HX*	42 (10	67)	36 (914)	66	(1676)	60	(1524)	90	(2286)	84	(2134)	114	(2895)	108	(2743)
12 (300)	9 ((228)	(Prefix)-12-09-HX*	42 (10	67)	39 (991)	66	(1676)	63	(1600)	90	(2286)	87	(2210)	114	(2895)	111	(2819)
	6 ((152)	(Prefix)-18-06-HX*	48 (12	19)	36 (914)	72	(1829)	60	(1524)	96	(2438)	84	(2134)	120	(3048)	108	(2743)
18 (457)	9 ((228)	(Prefix)-18-09-HX*	48 (12	19)	39 (991)	72	(1829)	63	(1600)	96	(2438)	87	(2210)	120	(3048)	111	(2819)
	12 ((305)	(Prefix)-18-12-HX*	48 (12	19)	42 (1067	72	(1829)	66	(1676)	96	(2438)	90	(2286)	120	(3048)	114	(2895)
	6	(152)	(Prefix)-24-06-HX*	54 (13	72)	36 (914)	78	(1981)	60	(1524)	102	(2591)	84	(2134)	126	(3200)	108	(2743)
24 (609)		(228)	(Prefix)-24-09-HX*	54 (13		39 (991)	78	(1981)	63	(1600)	102	(2591)	87	(2210)	126	(3200)	111	(2819)
24 (609)	12 ((305)	(Prefix)-24-12-HX*	54 (13	72)	42 (1067	78	(1981)	66	(1676)	102	(2591)	90	(2286)	126	(3200)	114	(2895)
	18 ((457)	(Prefix)-24-18-HX*	54 (13	72)	48 (1219	78	(1981)	72	(1829)	102	(2591)	96	(2438)	126	(3200)	120	(3048)
	6	(152)	(Prefix)-30-06-HX*	60 (15	24)	36 (914)	84	(2134)	60	(1524)	108	(2743)	84	(2134)	132	(3353)	108	(2743)
	9 ((228)	(Prefix)-30-09-HX*	60 (15	24)	39 (991)	84	(2134)	63	(1600)	108	(2743)	87	(2210)	132	(3353)	111	(2819)
30 (762)	12 ((305)	(Prefix)-30-12-HX*	60 (15	24)	42 (1067	84	(2134)	66	(1676)	108	(2743)	90	(2286)	132	(3353)	114	(2895)
	18 ((457)	(Prefix)-30-18-HX*	60 (15	24)	48 (1219	84	(2134)	72	(1829)	108	(2743)	96	(2438)	132	(3353)	120	(3048)
	24 ((609)	(Prefix)-30-24-HX*	60 (15	24)	54 (1372	84	(2134)	78	(1981)	108	(2743)	102	(2591)	132	(3353)	126	(3200)
	6 ((152)	(Prefix)-30-06-HX*	66 (16	76)	36 (914)	90	(2286)	60	(1524)	114	(2895)	84	(2134)	138	(3505)	108	(2743)
	9 ((228)	(Prefix)-36-09-HX*	66 (16	76)	39 (991)	90	(2286)	63	(1600)	114	(2895)	87	(2210)	138	(3505)	111	(2819)
36 (914)	12 ((305)	(Prefix)-36-12-HX*	66 (16	76)	42 (1067	90	(2286)	66	(1676)	114	(2895)	90	(2286)	138	(3505)	114	(2895)
00 (011)	18 ((457)	(Prefix)-36-18-HX*	66 (16	76)	48 (1219	90	(2286)	72	(1829)	114	(2895)	96	(2438)	138	(3505)	120	(3048)
		(609)	(Prefix)-36-24-HX*	66 (16	76)	54 (1372		(2286)	78	(1981)	114	(2895)	102	(2591)	138	(3505)	126	(3200)
	30 ((762)	(Prefix)-36-30-HX*	66 (16	76)	60 (1524	90	(2286)	84	(2134)	114	(2895)	108	(2743)	138	(3505)	132	(3353)
	6 ((152)	(Prefix)-42-06-HX*	72 (18	29)	36 (914)	96	(2438)	60	(1524)	120	(3048)	84	(2134)	144	(3658)	108	(2743)
	-	(228)	(Prefix)-42-09-HX*	72 (18	29)	39 (991)	96	(2438)	63	(1600)	120	(3048)	87	(2210)	144	(3658)	111	(2819)
		(305)	(Prefix)-42-12-HX*	72 (18		42 (1067		(2438)	66	(1676)	120	(3048)	90	(2286)	144	(3658)	114	(2895)
42 (1067)		(457)	(Prefix)-42-18-HX*	72 (18		48 (1219	_	(2438)	72	(1829)	120	(3048)	96	(2438)	144	(3658)	120	(3048)
		(609)	(Prefix)-42-24-HX*	72 (18		54 (1372	_	(2438)	78	(1981)	120	(3048)	102	(2591)	144	(3658)	126	(3200)
		(762)	(Prefix)-42-30-HX*	72 (18		60 (1524		(2438)	84	(2134)	120	(3048)	108	(2743)	144	(3658)	132	(3353)
	36 ((914)	(Prefix)-42-36-HX*	72 (18	29)	66 (1676	96	(2438)	90	(2286)	120	(3048)	114	(2895)	144	(3658)	138	(3505)


(Prefix) See page L-3 for catalog number prefix.

Width dimensions are to inside wall. For aluminum fittings add 1.5 inches (38mm) for total outside width.

Manufacturing tolerances apply to all dimensions.

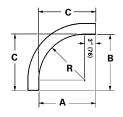

Horizontal Wye (HYL, HYR) 2 pair splice plates with hardware included.

Right Hand Wye - HYR

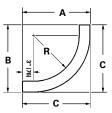
R = Radius	R	=	Radius
------------	---	---	--------

Bend Radius	Tray Width	Left Hand Wye Catalog No.	Right Hand Wye Catalog No.	-	A		В		;
in. mm	in. mm			in.	mm	in.	mm	in.	mm
	6 (152)	(Prefix)-06-HYL	(Prefix)-06-HYR	28 ⁷ /16	(722)	15 ³ /16	(386)	3 ¹ /16	(77)
	9 (228)	(Prefix)-09-HYL	(Prefix)-09-HYR	32 ¹¹ /16	(831)	20 ⁵ /16	(516)	6 ¹ /16	(154)
	12 (305)	(Prefix)-12-HYL	(Prefix)-12-HYR	36 ¹⁵ /16	(938)	25 ⁷ /16	(646)	9 ¹ /16	(231)
24 (609)	18 (457)	(Prefix)-18-HYL	(Prefix)-18-HYR	45 ³ /8	(1153)	35 ¹³ /16	(910)	15 ¹ /16	(383)
24 (000)	24 (609)	(Prefix)-24-HYL	(Prefix)-24-HYR	53 ⁷ /8	(1368)	45 ¹⁵ /16	(1167)	21 ¹ /16	(535)
	30 (762)	(Prefix)-30-HYL	(Prefix)-30-HYR	62 ³ /8	(1585)	56 ³ /16	(1427)	27 ¹ /16	(688)
	36 (914)	(Prefix)-36-HYL	(Prefix)-36-HYR	70 ⁷ /8	(1800)	66 ⁷ /16	(1687)	33 ¹ /16	(840)
	42 (1067)	(Prefix)-42-HYL	(Prefix)-42-HYR	79 ³ /8	(2016)	76 ⁵ /8	(1946)	39 ¹ /16	(992)

(Prefix) See page L-3 for catalog number prefix.


Width dimensions are to inside wall. For aluminum fittings add 1.5 inches (38mm) for total outside width.


Manufacturing tolerances apply to all dimensions.

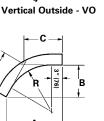


90° Vertical Outside - VO

90° Vertical Inside - VI

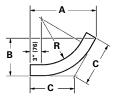
Bend	Tra		(*) Insert "VO" for	-	Side F						VIS	Side R	ail Hei	ght				
Radius R	Wio Inse		Vert. Outside Bend "VI" for		-leight 1″ - 7″			4″			5″			6″			7″	
		-	Vert. Inside Bend Catalog No.		in./(mm ⊨B) C	A	n./(mm B) C	A	n./(mm ⊨B) C	A	in./(mm B) C	A	n./(mm ⊨B) C
in./(mm)		(mm)	ų.	A	D	C	A	D	C	A	Р	C	A	D	C	A	D	U.
	6	(152)	(Prefix)-06-90(*)12															
	9	(228)	(Prefix)-09-90(*)12															
	12	(305)	(Prefix)-12-90(*)12															
12	18	(457)	(Prefix)-18-90(*)12	15	15	15	19	19	19	20	20	20	21	21	21	22	22	22
(305)	24	(609)	(Prefix)-24-90(*)12	(381)	(381)	(381)	(483)	(483)	(483)	(508)	(508)	(508)	(533)	(533)	(533)	(559)	(559)	(559)
	30	(762)	(Prefix)-30-90(*)12															
	36	(914)	(Prefix)-36-90(*)12															
	42	(1067)	(Prefix)-42-90(*)12															
	6	(152)	(Prefix)-06-90(*)24															
	9	(228)	(Prefix)-09-90(*)24															
	12	(305)	(Prefix)-12-90(*)24															
24	18	(457)	(Prefix)-18-90(*)24	27	27	27	31	31	31	32	32	32	33	33	33	34	34	34
(609)	24	(609)	(Prefix)-24-90(*)24	(686)	(686)	(686)	(787)	(787)	(787)	(813)	(813)	(813)	(838)	(838)	(838)	(864)	(864)	(864)
	30	(762	(Prefix)-30-90(*)24															
	36	(914)	(Prefix)-36-90(*)24															
	42	(1067)	(Prefix)-42-90(*)24															
	6	(152)	(Prefix)-06-90(*)36															
	9	(228)	(Prefix)-09-90(*)36	1														
	12	(305)	(Prefix)-12-90(*)36															
36	18	(457)	(Prefix)-18-90(*)36	39	39	39	43	43	43	44	44	44	45	45	45	46	46	46
(914)	24	(609)	(Prefix)-24-90(*)36	(991)	(991)	(991)	(1092)	(1092)	(1092)	(1118)	(1118)	(1118)	(1143)	(1143)	(1143)	(1168)	(1168)	(1168)
	30	(762	(Prefix)-30-90(*)36	1														
	36	(914)	(Prefix)-36-90(*)36															
	42	(1067)	(Prefix)-42-90(*)36	1														
	6	(152)	(Prefix)-06-90(*)48															
	9	(228)	(Prefix)-09-90(*)48	1														
	12	(305)	(Prefix)-12-90(*)48															
48	18	(457)	(Prefix)-18-90(*)48	51	51	51	55	55	55	56	56	56	57	57	57	58	58	58
(1219)	24		(Prefix)-24-90(*)48	(1295)	(1295)	(1295)					(1422)		-	(1448)		(1473)		(1473)
	30	(762	(Prefix)-30-90(*)48	1														
	36	(914)	(Prefix)-36-90(*)48															
		(1067)	(Prefix)-42-90(*)48	1														

(Prefix) See page L-3 for catalog number prefix.


Width dimensions are to inside wall. For aluminum fittings add 1.5 inches (38mm) for total outside width.

Manufacturing tolerances apply to all dimensions.

All dimensions in parentheses are millimeters unless otherwise specified.


Vertical Bend 60° (VO, VI) 1 pair splice plates with hardware included.

60° Vertical Inside - VI

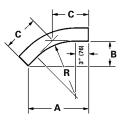
Bend	Tray	(*) Insert "VO" for		Side						VI	Side R	ail Hei	ght				
Radius R in./(mm)	Width Insert	Vert. Outside Bend "VI" for Vert. Inside Bend Catalog No.		Heigh 4″ - 7 n./(mm B	"	ir A	4″ n./(mm) B		ir A	5″ n./(mm) B	С	ir A	6″ n./(mm) B	С	i A	7″ n./(mm) B	C
12 (305)	6 (152) 9 (228) 12 (305) 18 (457) 24 (609) 30 (762) 36 (914) 42 (1067)	(Prefix)-06-60(*)12 (Prefix)-09-60(*)12 (Prefix)-12-60(*)12 (Prefix)-18-60(*)12 (Prefix)-24-60(*)12 (Prefix)-30-60(*)12 (Prefix)-36-60(*)12 (Prefix)-42-60(*)12	14 ⁷ /8 (378)	8 ⁵ /8 (219)	9 ¹⁵ /16 (253)	18 ³ /8 (467)	10 ⁷ /8 (270)	12 ¹ /4 (311)	19 ¹ /4 (489		12 ¹³ /16 (326)		11 ⁵ /8 (296)	13 ³ /8 (340)		12 ¹ /8 (308)	14 (356)
24 (609)	6 (152) 9 (228) 12 (305) 18 (457) 24 (609) 30 (762) 36 (914) 42 (1067)	(Prefix)-06-60(*)24 (Prefix)-09-60(*)24 (Prefix)-12-60(*)24 (Prefix)-18-60(*)24 Prefix)-24-60(*)24 (Prefix)-30-60(*)24 (Prefix)-36-60(*)24 (Prefix)-42-60(*)24	25 ⁵ /16 (643)	14 ⁵ /8 (372)	16 ⁷ /8 (428)	28 ³ /4 (730)	16 ⁵ /8 (422)	19 ³ /16 (488)	29 ⁵ /8 (753)	17 ¹ /8 (435)	19 ³ /4 (502)	30 ¹ /2 (775)	17 ⁵ /8 (448)	20 ⁵ /16 (516)	31 ³ /8 (797)	18 ¹ /8 (461)	20 ⁷ /8 (530)
36 (914)	6 (152) 9 (228) 12 (305) 18 (457) 24 (609) 30 (762) 36 (914) 42 (1067)	(Prefix)-06-60(*)36 (Prefix)-09-60(*)36 (Prefix)-12-60(*)36 (Prefix)-18-60(*)36 (Prefix)-24-60(*)36 (Prefix)-30-60(*)36 (Prefix)-36-60(*)36 (Prefix)-42-60(*)36	35 ^{11/16} (907)	20 ⁵ /8 (524)	23 ¹³ /16 (605)	39 ¹ /8 (994)	22 ⁵ /8 (575)	26 ¹ /8 (663)	40 (1016)	23 ¹ /8 (587)	26 ¹¹ /16 (687)	40 ⁷ /8 (1038)	23 ⁵ /8 (600)	27 ¹ /4 (692)	41 ³ /4 (1060)	24 ¹ /8 (613)	27 ¹³ /16 (706)
48 (1219)	6 (152) 9 (228) 12 (305) 18 (457) 24 (609) 30 (762) 36 (914) 42 (1067)	(Prefix)-06-60(*)48 (Prefix)-09-60(*)48 (Prefix)-12-60(*)48 (Prefix)-18-60(*)48 (Prefix)-24-60(*)48 (Prefix)-30-60(*)48 (Prefix)-36-60(*)48 (Prefix)-42-60(*)48	46 ¹ /16 (1170)	26 ⁵ /8 (676)	30 ¹¹ /16 (780)	49 ⁹ /16 (1259)	28 ⁵ /8 (727)	33 (838)	50 ³ /8 (1280)	29 ¹ /8 (740)	33 ⁵ /8 (854)	51 ¹ /4 (1302)	29 ⁵ /8 (753)	34 ³ /16 (868)	52 ¹ /8 (1324)	30 ¹ /8 (765)	34 ³ /4 (883)

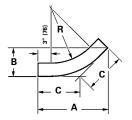
(Prefix) See page L-3 for catalog number prefix.

Width dimensions are to inside wall. For aluminum fittings add 1.5 inches (38mm) for total outside width.

Manufacturing tolerances apply to all dimensions.

All dimensions in parentheses are millimeters unless otherwise specified.


Series 2, 3, 4, & 5 Fittings



Vertical Bend 45° (VO, VI) 1 pair splice plates with hardware included.

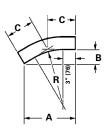
45° Vertical Outside -VO

45° Vertical Inside -VI

Bend		ray	(*) Insert "VO" for	VC) Side						VI	Side F	lail He	ight				
Radius R		idth sert	Vert. Outside Bend "VI" for		Heigh 4" - 7			4″	,		5″	,		6″			7″	
			Vert. Inside Bend		in./(mm	ı)		n./(mm))		n./(mm)		n./(mm)		in./(mm)	
in./(mm)	in.	(mm)	Catalog No.	Α	В	С	Α	В	С	A	В	С	A	В	С	Α	В	С
	6	(152)	(Prefix)-06-45(*)12															
	9	(228)	(Prefix)-09-45(*)12															
	12	(305)	(Prefix)-12-45(*)12															
12	18	(457)	(Prefix)-18-45(*)12	13 ⁵ /8	5 ⁵ /8	8		6 ¹³ /16		17 ¹ /8	71/8	10 ¹ /16	17 ⁷ /8	7 ³ /8	10 ⁷ /16	18 ⁹ /16	7 ¹¹ /16	10 ⁷ /8
(305)	24	(609)	(Prefix)-24-45(*)12	(346)	(143)	(203)	(417)	(173)	(245)	(435)	(181)	(256)	(454)	(188)	(265)	(471)	(195)	(2176)
	30	(762)	(Prefix)-30-45(*)12															
	36	(914)	(Prefix)-36-45(*)12															
	-	(1067)	(Prefix)-42-45(*)12															
	6	(152)	(Prefix)-06-45(*)24															
	9	(228)	(Prefix)-09-45(*)24															
	12	(305)	(Prefix)-12-45(*)24	4 -	- 4 -		15 -							15 .	7.	4.		10 /
24	18	(457)	(Prefix)-18-45(*)24	22 ¹ /16	9 ¹ /8			10 ⁵ /16		25 ⁵ /8	10 ⁵ /8	15		10 ¹⁵ /16			11 ³ /16	15 ¹³ /16
(609)	24	(609)	(Prefix)-24-45(*)24	(561)	(232)	(329)	(634)	(262)	(372)	(651)	(270)	(381)	(668)	(278)	(392)	(687)	(284)	(402)
	30	(762	(Prefix)-30-45(*)24															
	36	(914)	(Prefix)-36-45(*)24															
		(1067)	(Prefix)-42-45(*)24															
	6	(152)	(Prefix)-06-45(*)36															
	9	(228)	(Prefix)-09-45(*)36															
00	12	(305)	(Prefix)-12-45(*)36	0.001	10111	4 715 /	0021	10101	100/	0.11	1 /		0.1127	4 471	0024	0-1/	11 .	00107
36 (914)	18	/	(Prefix)-18-45(*)36			17 ¹⁵ /16		13 ¹³ /16 (351)			14 ¹ /8	20		147/16		35 ¹ /2	141/16 (284)	2013/16
(914)	24	(609)	(Prefix)-24-45(*)36	(776)	(323)	(456)	(848)	(351)	(497)	(867)	(359)	(508)	(885)	(367)	(518)	(902)	(284)	(402)
	30 36	(762	(Prefix)-30-45(*)36															
		(914)	(Prefix)-36-45(*)36 (Prefix)-42-45(*)36															
		(1067)																
	6	(152)	(Prefix)-06-45(*)48															
	9	(228)	(Prefix)-09-45(*)48															
40	12	(305)	(Prefix)-12-45(*)48	001/	1021	0074	4471	1734	0.404	1051	4751	0.4157	1051	1715/	0534	4.4	101/	05127
48 (1219)	18	/	(Prefix)-18-45(*)48	39 ¹ /16 (992)	16 ³ /16 (411)	22 ⁷ /8 (581)	41 ⁷ /8 (1064)	17 ³ /8 (441)	24 ⁹ /16 (624)	42 ⁵ /8 (1083)	1 /5/8 (448)	24 ¹⁵ /16 (633)	· ·	1/15/16 (456)	25 ³ /8 (645)	44 (1118)	18 ¹ /4 (464)	25 ¹³ /16 (656)
(1219)	24	(609)	(Prefix)-24-45(*)48	(392)	(411)	(1001)	(1004)	(441)	(024)	(1083)	(44ð)	(033)	(1100)	(400)	(040)	(iii)	(404)	(000)
	30	(762	(Prefix)-30-45(*)48															
	36	(914)	(Prefix)-36-45(*)48 (Prefix)-42-45(*)48															
	42	(1067)	(Prefix)-42-45(*)48															

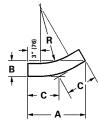
(Prefix) See page L-3 for catalog number prefix.

Width dimensions are to inside wall. For aluminum fittings add 1.5 inches (38mm) for total outside width.


Manufacturing tolerances apply to all dimensions.

All dimensions in parentheses are millimeters unless otherwise specified.

Vertical Bend 30° (VO, VI) 1 pair splice plates with hardware included.

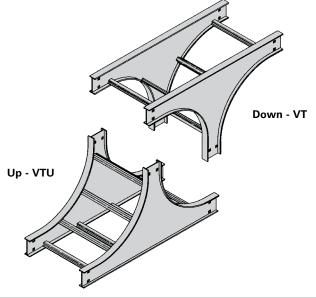


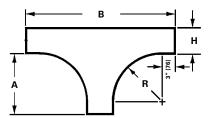
30° Vertical Outside -VO

30° Vertical Inside -VI

Bend	Tray	(*) Insert "VO" for	vo) Side						VI	Side R	ail He	ight				
Radius R in./(mm)	Width Insert in. (mm)	Vert. Outside Bend "VI" for Vert. Inside Bend Catalog No.	Α	Heigh 4" - 7 in./(mm) B	"	Α	4″ in./(mm) B	C	Α	5″ in./(mm) B	С	Α	6″ in./(mm) B	C	Α	7″ in./(mm) B	C
12 (305)	6 (152) 9 (228) 12 (305) 18 (457) 24 (609) 30 (762) 36 (914) 42 (1067)	(Prefix)-06-30(*)12 (Prefix)-09-30(*)12 (Prefix)-12-30(*)12 (Prefix)-18-30(*)12 (Prefix)-24-30(*)12 (Prefix)-30-30(*)12 (Prefix)-36-30(*)12 (Prefix)-42-30(*)12	11 ⁵ /8 (296)	3 ¹ /8 (79)	6 ³ /16 (157)	13 ⁵ /8 (346)	3 ⁵ /8 (92)	7 ⁵ /16 (186)	14 ¹ /8 (359)	3 ³ /4 (95)	7 ⁹ /16 (192)	14 ⁵ /8 (372)	3 ¹⁵ /16 (100)	7 ¹³ /16 (199)	15 ¹ /8 (384)	4 ¹ /16 (103)	8 ¹ /16 (205)
24 (609)	6 (152) 9 (228) 12 (305) 18 (457) 24 (609) 30 (762) 36 (914) 42 (1067)	(Prefix)-06-30(*)24 (Prefix)-09-30(*)24 (Prefix)-12-30(*)24 (Prefix)-18-30(*)24 (Prefix)-24-30(*)24 (Prefix)-30-30(*)24 (Prefix)-36-30(*)24 (Prefix)-42-30(*)24	17 ⁵ /8 (448)	4 ¹¹ /16 (120)	9 ⁷ /16 (240)	19 ⁵ /8 (499)	5 ¹ /4 (133)	10 ¹ /2 (267)	20 ¹ /8 (511	5 ³ /8 (137)	10 ³ /4 (273)	20 ⁵ /8 (524)	5 ¹ /2 (140)	11 ¹ /16 (282)	21 ¹ /8 (537)	5 ⁵ /8 (143)	11 ⁵ /16 (287)
36 (914)	6 (152) 9 (228) 12 (305) 18 (457) 24 (609) 30 (762) 36 (914) 42 (1067)	(Prefix)-06-30(*)36 (Prefix)-09-30(*)36 (Prefix)-12-30(*)36 (Prefix)-18-30(*)36 (Prefix)-24-30(*)36 (Prefix)-30-30(*)36 (Prefix)-36-30(*)36 (Prefix)-42-30(*)36	23 ⁵ /8 (600)	6 ⁵ /16 (160)	12 ⁵ /8 (321)	25 ⁵ /8 (651)	6 ⁷ /8 (174)	13 ¹¹ /16 (348)	26 ¹ /8 (663)	7 (175)	14 (356)	26 ⁵ /8 (676)	7 ¹ /8 (181)	14 ¹ /4 (362)	27 ¹ /8 (689)	7 ¹ /4 (184)	14 ¹ /2 (287)
48 (1219)	6 (152) 9 (228) 12 (305) 18 (457) 24 (609) 30 (762) 36 (914) 42 (1067)	(Prefix)-06-30(*)48 (Prefix)-09-30(*)48 (Prefix)-12-30(*)48 (Prefix)-18-30(*)48 (Prefix)-24-30(*)48 (Prefix)-30-30(*)48 (Prefix)-36-30(*)48 (Prefix)-42-30(*)48	29 ⁵ /8 (753)	7 ^{15/} 16 (202)	15 ⁷ /8 (403)	31 ⁵ /8 (803)	8 ⁷ /16 (214)	16 ¹⁵ /16 (430)	32 ¹ /8 (816)	8 ⁵ /8 (219)	17 ³ /16 (437)	32 ⁵ /8 (829)	8 ³ /4 (222)	17 ¹ /2 (445)	331/8 (842)	8 ⁷ /8 (226)	17 ³ /4 (451)

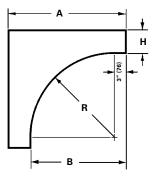
(Prefix) See page L-3 for catalog number prefix.

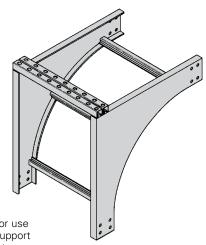

Width dimensions are to inside wall. For aluminum fittings add 1.5 inches (38mm) for total outside width.


Manufacturing tolerances apply to all dimensions.

All dimensions in parentheses are millimeters unless otherwise specified.

Series 2, 3, 4, & 5 Fittings


Bend	Tray	,	Vertical Tee Down	Vertical Tee Up			Sic	le Rail H	leight "	Η″			_
Radius	Width	h				1 ″	5	5″	6	"	7	"	
R in./(mm)	in. m		Catalog No.	Catalog No.	A in./(mm)	B in./(mm)	A in./(mm)	B in./(mm)	A in./(mm)	B in./(mm)	A in./(mm)	B in./(mm)	_
	6 (15	52)	(Prefix)-06-VT12	(Prefix)-06-VTU12									
	9 (22	28)	(Prefix)-09-VT12	(Prefix)-09-VTU12									Se
	12 (30	05)	(Prefix)-12-VT12	(Prefix)-12-VTU12									rie
12	18 (45		(Prefix)-18-VT12	(Prefix)-18-VTU12	15	34	15	35	15	36	15	37	Series 2,
(305)	24 (60		(Prefix)-24-VT12	(Prefix)-24-VTU12	(381)	(846)	(381)	(889)	(381)	(914)	(381)	(940)	ίω
	30 (76		(Prefix)-30-VT12	(Prefix)-30-VTU12									4
	36 (91	14)	(Prefix)-36-VT12	(Prefix)-36-VTU12									ହ
	42 (10)67)	(Prefix)-42-VT12	(Prefix)-42-VTU12									ហ
	6 (15	52)	(Prefix)-06-VT24	(Prefix)-06-VTU24									Fittings
	9 (22	28)	(Prefix)-09-VT24	(Prefix)-09-VTU24									Bu
	12 (30	05)	(Prefix)-12-VT24	(Prefix)-12-VTU24									S
24	18 (45	57)	(Prefix)-18-VT24	(Prefix)-18-VTU24	27	58	27	59	27	60	27	61	
(609)	24 (60		(Prefix)-24-VT24	(Prefix)-24-VTU24	(6867)	(1473)	(686)	(1498)	(686)	(1524)	(686)	(1549)	
	30 (76		(Prefix)-30-VT24	(Prefix)-30-VTU24									
	36 (91	14)	(Prefix)-36-VT24	(Prefix)-36-VTU24									
	42 (10)67)	(Prefix)-42-VT24	(Prefix)-42-VTU24									
	6 (15	52)	(Prefix)-06-VT36	(Prefix)-06-VTU36									-
	9 (22	28)	(Prefix)-09-VT36	(Prefix)-09-VTU36									
	12 (30	05)	(Prefix)-12-VT36	(Prefix)-12-VTU36									
36	18 (45	57)	(Prefix)-18-VT36	(Prefix)-18-VTU36	39	82	39	83	39	84	39	85	
(914)	24 (60	09)	(Prefix)-24-VT36	(Prefix)-24-VTU36	(991)	(2083)	(991)	(2108)	(991)	(2134)	(991)	(2159)	
	30 (76	62)	(Prefix)-30-VT36	(Prefix)-30-VTU36									
	36 (91	14)	(Prefix)-36-VT36	(Prefix)-36-VTU36									
	42 (10	67)	(Prefix)-42-VT36	(Prefix)-42-VTU36									
	6 (15	52)	(Prefix)-06-VT48	(Prefix)-06-VTU48									-
		28)	(Prefix)-09-VT48	(Prefix)-09-VTU48									
	12 (30		(Prefix)-12-VT48	(Prefix)-12-VTU48									
48	18 (45	57)	(Prefix)-18-VT48	(Prefix)-18-VTU48	51	106	51	107	51	108	51	109	
(1219)	24 (60	09)	(Prefix)-24-VT48	(Prefix)-24-VTU48	(1295)	(2692)	(1295)	(2718)	(1295)	(2743)	(1295)	(2769)	
	30 (76		(Prefix)-30-VT48	(Prefix)-30-VTU48									
	36 (91	14)	(Prefix)-36-VT48	(Prefix)-36-VTU48									
	42 (10	67)	(Prefix)-42-VT48	(Prefix)-42-VTU48									


(Prefix) See page L-3 for catalog number prefix.

Width dimensions are to inside wall. For aluminum fittings add 1.5 inches (38mm) for total outside width. Manufacturing tolerances apply to all dimensions.

All dimensions in parentheses are millimeters unless otherwise specified.

Cable Support Fittings (CSF) 1 pair splice plates with hardware included.

This fitting is recommended for use at the top of vertical runs to support the weight of the cables. The top cross brace is drilled for installing eyebolts, ordered separately.

	Bend	Tr	ay					ide Rail H				
	Radius	Wi	dth			."	-	;"	6	<i>n</i>	7′	,
	R in./(mm)	in.	mm	Catalog No.	A in./(mm)	B in./(mm)	A in./(mm)	B in./(mm)	A in./(mm)	B in./(mm)	A in./(mm)	B in./(mm)
		6	152	(Prefix)-06-CSF12								
		9	228	(Prefix)-09-CSF12								
		12	305	(Prefix)-12-CSF12								
	12	18	457	(Prefix)-18-CSF12	19	15	20	15	21	15	22	15
	(305)	24	609	(Prefix)-24-CSF12	(483)	(381)	(508)	(381)	(533)	(381)	(559)	(381)
		30	762	(Prefix)-30-CSF12								
		36	914	(Prefix)-36-CSF12								
		42	1067	(Prefix)-42-CSF12								
		6	152	(Prefix)-06-CSF24								
		9	228	(Prefix)-09-CSF24								
		12	305	(Prefix)-12-CSF24								
	24	18	457	(Prefix)-18-CSF24	31	27	32	27	33	27	34	27
	(609)	24	609	(Prefix)-24-CSF24	(787)	(686)	(813)	(686)	(838)	(686)	(864)	(686)
		30	762	(Prefix)-30-CSF24								
		36	914	(Prefix)-36-CSF24								
		42	1067	(Prefix)-42-CSF24								
_		6	152	(Prefix)-06-CSF36								
		9	228	(Prefix)-09-CSF36								
		12	305	(Prefix)-12-CSF36								
	36	18	457	(Prefix)-18-CSF36	43	39	44	39	45	39	46	39
	(914)	24	609	(Prefix)-24-CSF36	(1092)	(991)	(1118)	(991)	(1143)	(991)	(1168)	(991)
		30	762	(Prefix)-30-CSF36								
		36	914	(Prefix)-36-CSF36								
		42	1067	(Prefix)-42-CSF36								
_		6	152	(Prefix)-06-CSF48								
		9	228	(Prefix)-09-CSF48								
		12	305	(Prefix)-12-CSF48								
	48	18	457	(Prefix)-18-CSF48	55	51	56	51	57	51	58	51
	(1219)	24	609	(Prefix)-24-CSF48	(1397)	(1295)	(1422)	(1295)	(1448)	(1295)	(1473)	(1295)
		30	762	(Prefix)-30-CSF48								
		36	914	(Prefix)-36-CSF48								
			1067	(Prefix)-42-CSF48								

(Prefix) See page L-3 for catalog number prefix.

Width dimensions are to inside wall. For aluminum fittings add 1.5 inches (38mm) for total outside width.

Manufacturing tolerances apply to all dimensions.

All dimensions in parentheses are millimeters unless otherwise specified.

Series 2, 3, 4, & 5 - Notes

How The Service Advisor Works

We know that your time is important! That's why the color-coding system in this catalog is designed to help you select products that fit your service needs. Products are marked to indicate the typical lead time for orders of 50 pieces or less.

Customer: How do I select my straight sections. covers, or fittings so that I get the quickest turnaround?

Service Advisor: Each part of our selection chart is shown in colors. If any section of a part number is a different color, the part will typically ship with the longer lead time represented by the colors.

- Green = Fastest shipped items
- Black = Normal lead-time items
- Red = Normally long lead-time items

Example:			- 09		
	3-5	15	3-5	3-5	3-5

Part will have a long lead time because of the FV material.

Changing the part number from 24FV to 24F will change the coding to black for all sections and reduce the lead time.

Corrosion Guide

The information shown in this corrosion guide is based on full immersion laboratory tests and data generated from resin manufacturer's data. It should be noted that in some of the environments listed, splashes and spill situations may result in a more corrosive situation than indicated due to the evaporation of water. Regular wash down is recommended in these situations.

All data represents the best available information and is believed to be correct. The data should not be construed as a warranty of performance for that product as presented in these tables. User tests should be performed to determine suitability of service if there is any doubt or concern. Such variables as concentration, temperature, time and combined chemical effects of mixtures of chemicals make it impossible to specify the exact suitability of fiber reinforced plastics in all environments. We will be happy to supply material samples for testing. These recommendations should only be used as a guide and we do not take responsibility for design or suitability of materials for service intended. In no event will we be liable for any consequential or special damages for any defective material or workmanship including without limitation, labor charge, other expense or damage to properties resulting from loss of materials or profits or increased expenses of operations.

CHEMICAL	POL	ESTER	VINYI	- ESTER	CHEMICAL	POLY	ESTER/		ESTER
ENVIRONMENT	Max Wt. %	Max Oper. Temp °F	Max Wt. %	Max Oper. Temp °F	ENVIRONMENT	Max Wt. %	Max Oper. Temp °F	Max Wt. %	Max Oper. Temp °F
Acetic Acid	10	190	10	210	Chromic Acid	5	70	10	120
Acetic Acid	50	125	50	180	Citric Acid	SAT	170	SAT	200
Acetone	N/R	N/R	100	75	Copper Chloride	SAT	170	SAT	200
Aluminum Chloride	SAT	170	SAT	200	Copper Cyanide	SAT	170	SAT	200
Aluminum Hydroxide	SAT	160	SAT	170	Copper Nitrate	SAT	170	SAT	200
Aluminum Nitrate	SAT	150	SAT	170	Crude Oil, Sour	100	170	100	200
Aluminum Sulfate	SAT	180	SAT	200	Cyclohexane	N/R	N/R	N/R	N/R
Ammonium Chloride	SAT	170	SAT	190	Cyclohexane, Vapor	ALL	100	ALL	130
Ammonium Hydroxide	1	100	10	150	Diesel Fuel	100	160	100	180
Ammonium Hydroxide	28	N/R	28	100	Diethyl Ether	N/R	N/R	N/R	N/R
Ammonium Carbonate	N/R	N/R	SAT	150	Dimethyl Phthalate	N/R	N/R	N/R	N/R
Ammonium Bicarbonate	15	125	SAT	130	Ethanol	50	75	50	90
Ammonium Nitrate	SAT	160	SAT	190	Ethyl Acetate	N/R	N/R	N/R	N/R
Ammonium Persulfate	SAT	N/R	SAT	150	Ethylene Chloride	N/R	N/R	N/R	N/R
Ammonium Sulfate	SAT	170	SAT	200	Ethylene Glycol	100	90	100	200
Amyl Alcohol	ALL	N/R	ALL	90	Fatty Acids	SAT	180	SAT	200
Amyl Alcohol Vapor	-	140	-	120	Ferric Chloride	SAT	170	SAT	200
Benzene	N/R	N/R	100	140	Ferric Nitrate	SAT	170	SAT	200
Benzene Sulfonic Acid	25	110	SAT	200	Ferric Sulfate	SAT	170	SAT	200
Benzoic Acid	SAT	150	SAT	200	Ferrous Chloride	SAT	170	SAT	200
Benzoyl Alcohol	100	N/R	100	N/R	Fluoboric Acid	N/R	N/R	SAT	165
Borax	SAT	170	SAT	200	Fluosilicic Acid	N/R	N/R	SAT	70
Calcium Carbonate	SAT	170	SAT	200	Formaldehyde	50	75	50	100
Calcium Chloride	SAT	170	SAT	200	Formic Acid	N/R	N/R	50	100
Calcium Hydroxide	25	70	25	165	Gasoline	100	80	100	150
Calcium Nitrate	SAT	180	SAT	200	Glucose	100	170	100	200
Calcium Sulfate	SAT	180	SAT	200	Glycerine	100	150	100	200
Carbon Disulfide	N/R	N/R	N/R	N/R	Heptane	100	110	100	120
Carbonic Acid	SAT	130	SAT	180	Hexane	100	90	100	130
Carbon Dioxide Gas	-	200	-	200	Hydrobromic Acid	50	120	50	120
Carbon Monoxide Gas	-	200	-	200	Hydrochloric Acid	10	150	10	200
Carbon Tetrachloride	N/R	N/R	100	75	Hydrochloric Acid	20	140	20	190
Chlorine, Dry Gas	-	140	-	170	Hydrochloric Acid	37	75	37	95
Chlorine, Wet Gas	-	N/R	-	180	Hydrofluoric Acid	N/R	N/R	15	80
Chlorine Water	SAT	80	SAT	180	Hydrogen Bromide, Dry	100	190	100	200

-iberglass

-: No Information Available

N/R: Not Recommended

SAT: Saturated Solution

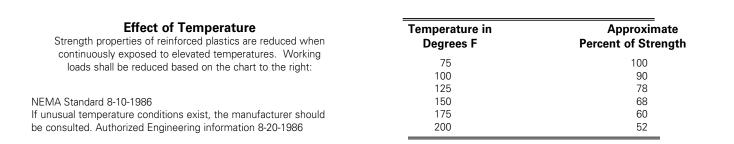
FUM: Fumes

Corrosion Guide

CHEMICAL	POL	ESTER	VINY	LESTER	CHEMICAL	POL	YESTER	VINYI	ESTER
ENVIRONMENT	Max Wt. %	Max Oper. Temp [°] F	Max Wt. %	Max Oper. Temp °F	ENVIRONMENT	Max Wt.	Max Oper. Temp °F	Max Wt. %	Max Oper. Temp °F
Hydrogen Bromide, Wet	100	75	100	130	Potassium Hydroxide	N/R	N/R	25	150
Hydrogen Chloride	-	120	-	200	Potassium Nitrate	SAT	170	SAT	200
Hydrogen Peroxide	5	100	30	100	Potassium Permanganate	100	80	100	210
Hydrogen Sulfide, Dry	100	170	100	210	Potassium Sulfate	SAT	170	SAT	200
Hydrogen Sulfide, Wet	100	170	100	210	Propylene Glycol	ALL	170	ALL	200
Hypochlorous Acid	20	80	20	150	Phthalic Acid	-	-	SAT	200
sopropyl Alcohol	N/R	N/R	15	80	Sodium Acetate	SAT	160	SAT	200
Kerosene	100	140	100	180	Sodium Benzoate	SAT	170	SAT	200
Lactic Acid	SAT	170	SAT	200	Sodium Bicarbonate	SAT	160	SAT	175
_ead Acetate	SAT	170	SAT	200	Sodium Bisulfate	ALL	170	ALL	200
_ead Chloride	SAT	140	SAT	200	Sodium Bromide	ALL	170	ALL	200
Lead Nitrate	SAT	-	SAT	200	Sodium Carbonate	10	80	35	160
_inseed Oil	100	150	100	190	Sodium Chloride	SAT	170	SAT	200
_ithium Chloride	SAT	150	SAT	190	Sodium Cyanide	SAT	170	SAT	200
Vagnesium Carbonate	SAT	140	SAT	170	Sodium Hydroxide	N/R	N/R	50	150
Vagnesium Chloride	SAT	170	SAT	200	Sodium Hydroxide	N/R	N/R	25	80
Magnesium Hydroxide	SAT	150	SAT	190	Sodium Hypochloride	N/R	N/R	10	150
Vagnesium Nitrate	SAT	140	SAT	180	Sodium Monophosphate	SAT	170	SAT	200
Vlagnesium Sulfate	SAT	170	SAT	190	Sodium Nitrate	SAT	170	SAT	200
Viercuric Chloride	SAT	150	SAT	190	Sodium Sulfate	SAT	170	SAT	200
Vercurous Chloride	SAT	140	SAT	180	Sodium Thiosulfate	ALL	100	ALL	120
Vethyl Ethyl Ketone	N/R	N/R	N/R	N/R	Stannic Chloride	SAT	160	SAT	190
Vineral Oils	100	170	100	200	Styrene	N/R	N/R	N/R	N/R
Vonochlorobenzene	N/R	N/R	N/R	N/R	Sulfated Detergent	0/50	170	0/50	200
Naphtha	100	140	100	170	Sulfur Dioxide	100	80	100	200
Nickel Chloride	SAT	170	SAT	200	Sulfur Trioxide	100	80	100	200
Nickel Nitrate	SAT	170	SAT	200	Sulfuric Acid	93	N/R	93	N/R
Nickel Sulfate	SAT	170	SAT	200	Sulfuric Acid	50	N/R	50	180
Nitric Acid	5	140	5		Sulfuric Acid				190
Nitric Acid	20	70	20	150 100	Sulfurous Acid	25 SAT	75 80	25 N/R	N/R
Dleic Acid	100	170	100	190	Tartaric Acid	SAT	170	SAT	200
Dielic Acid	ALL	75	ALL	130	Tetrachloroethylene	N/R	N/R	FUM	75
	_				,				N/R
Paper Mill Liquors	- 100	100	- 100	120	Toluene	N/R	N/R	N/R	175
Perchlorethylene		N/R		N/R	Trisodium Phosphate	N/R	N/R	SAT	
Perchloric Acid	N/R	N/R	10	150	Urea	SAT	130	SAT	140
Perchloric Acid	N/R	N/R	30	80	Vinegar	100	170	100	200
Phosphoric Acid	10	160	10	200	Water, Distilled	100	170	100	190
Phosphoric Acid	100	120	100	200	Water, Tap	100	170	100	190
Potassium Aluminum Sulfate	SAT	170	SAT	200	Water, Sea	SAT	170	SAT	190
Potassium Bicarbonate	50	80	50	140	Xylene	N/R	N/R	N/R	N/R
Potassium Carbonate	10	N/R	10	120	Zinc Chloride	SAT	170	SAT	200
Potassium Chloride	SAT	170	SAT	200	Zinc Nitrate	SAT	170	SAT	200
Potassium Dichromate	SAT	170	SAT	200	Zinc Sulfate	SAT	170	SAT	200

-: No Information Available

N/R: Not Recommended


SAT: Saturated Solution

FUM: Fumes

Load Data

Fiberglass Cable Tray and Cable Channel are offered in two (2) versions for applications as follows:

Standard Series 13F, 24F, 36F, 46F, 48F FCC-03, FCC-04, FCC-06, FCC-08	Resin Type Fire Retardant Polyester	Color Gray	Meets ASTM E-84 Class 1 - UL94 VO Good Corrosion Resistance in most environments
High Performance			
13FV, 24FV, 36FV, 46FV, 48FV FCCV-03, FCCV-04, FCCV-06, FCCV-08	Fire Retardant Vinyl Ester	BS)	ASTM E-84 Class 1 - UL94 VO Improved Corrosion Resistance For more severe environments Higher Heat Distortion Temperature

Typical Properties of Pultruded Components

Eaton B-Line Division Fiberglass Cable Tray systems are manufactured from glass fiber-reinforced plastic shapes that meet ASTM E-84, Smoke Density rating for polyester of 680, for vinyl ester 1025, Class 1 Flame Rating and self-extinguishing requirements of ASTM D-635. A surface veil is applied during pultrusion to insure a resin-rich surface and ultraviolet resistance.

Flame Resistance (FTMS 406-2023) ign/burn, seconds	75/75
Intermittent Flame Test (HLT-15), rating	100
Flammability Test (ASTM D635) Ignition Burning Time	none 0 sec.

	Test	Unit/	3" & 4" Ca Cable C	•	6" Cable Tray	
Properties	Method	Value	Longitudinal	Transverse	Longitudinal	Transverse
Density	ASTM D1505	lbs/in ³	.058062	-	.072076	
Coefficient of Thermal Expansion	ASTM D696	in/in/°F	5.0 x 10 ⁻⁶	-	5.0 x 10 ⁻⁶	
Water Absorption	ASTM D570	Max %	0.5	-	0.5	
Dielectic Strength	ASTM D149	V/mil (vpm)	200	-	200	-
Flammability Classification	UL94	VO	-	-	-	
Flame Spread	ASTM E-84	20 Max	-	-	-	

Expansion or Contraction for Various Temperature Differences

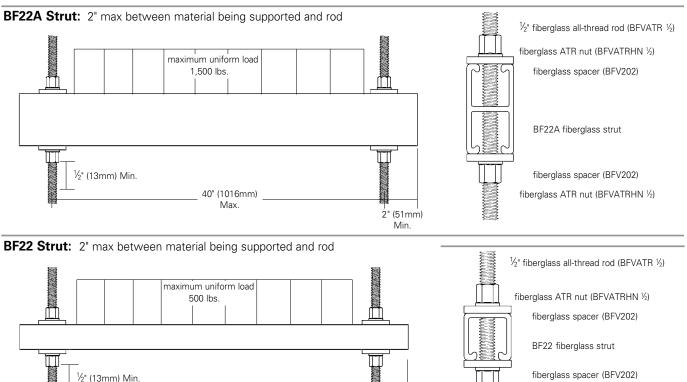
Temperature	Cable Tray Length	Tray Length for
Differential	for 1" Expansion	Each Expansion Connector*
25°F (13.9°C)	667 Feet (203.3m)	417 Feet (127.1m)
50°F (27.8°C)	333 Feet (101.5m)	208 Feet (63.4m)
75°F (41.7°C)	222 Feet (67.6m)	139 Feet (42.3m)
100°F (55.6°C)	167 Feet (50.9m)	104 Feet (31.7m)
125°F (69.4°C)	133 Feet (40.5m)	83 Feet (25.3m)
150°F (83.3°C)	111 Feet (33.8m)	69 Feet (21.0m)
175°F (97.2°C)	95 Feet (28.9m)	59 Feet (18.0m)

Note for gap set and hold down/guide location, see installation instruction above.

*1" (25.4mm) slotted holes in each expansion connector allow 5/8" (15.9mm) total expansion or contraction.

Authorized Engineering Information 8-20-1986

Cable Tray Installation Guide


Installation of B-Line series fiberglass cable tray should be made in accordance with the standards set by NEMA Publication VE-2 (NEMA BI 50016), Cable Tray Installation Guide, and National Electrical Code, Article 318.

- Always observe common safety practices when assembling tray and fittings. Installations generally require some field cutting. Dust created during fabrication presents no serious health hazard, but skin irritation may be experienced by some workers.
- Operators of saws and drills should wear masks, long sleeve shirts or coveralls.
- Fabrication with fiberglass is relatively easy and comparable to working with wood. Ordinary hand tools may be used in most cases.
- Avoid excessive pressure when sawing or drilling. Too much force can rapidly dull tools and also produce excessive heat which softens the bonding resin in the fiberglass resulting in a ragged edge rather than a clean-cut edge.
- Field cutting is simple and can be accomplished with a circular power saw with an abrasive cut-off wheel (masonry type) or hack saw (24 to 32 teeth per inch).
- Drill fiberglass as you would drill hard wood. Standard twist drills are more than adequate.
- Any surface that has been drilled, cut, sanded or otherwise broken, must be sealed with a compatible resin. (see page M-48)
- Carbide tipped saw blades and drill bits are recommended when cutting large quantities.
- Support the fiberglass material firmly during cutting operations to keep material from shifting which may cause chipping at the cut edge.
- Each tray section length should be equal to or greater than the support span.
- When possible, the splice should be located at quarter span.
- Fittings should be supported as per NEMA FG-1.

Recommended Fiberglass Trapeze Hanging Systems

Notes:

- 1) A snug three to four ft.-lbs. torque is sufficient for all thread rod nuts.
- 2) When supporting cable tray, the spacing between each trapeze should not exceed the distance between splice plates.
- 3) When hanging from beam, B-Line series BFV751 series clamps provide extra thread engagement necessary for load ratings. All thread rod must be fully engaged in the clamp.
- 4) Design load safety factor is 3:1

For vinyl ester resin, 'V' must be added appropriately to part number. Example: BFV22A.

40" (1016mm) Max.

APPROPRIATE PROTECTIVE CLOTHING AND RESPIRATORY PROTECTION DEVICE SHOULD BE WORN WHEN FIELD CUTTING OR GRINDING FIBERGLASS.

2" (51mm) Min. fiberglass ATR nut (BFVATRHN 1/2)

Fiberglass

SECTION 161xx NON-METALLIC CABLE TRAY POLYESTER, VINYL ESTER

PART 1 - GENERAL

1.01 SECTION INCLUDES

- **A.** The work covered under this section consists of the furnishing of all necessary labor, supervision, materials, equipment, tests and services to install complete cable tray systems as shown on the drawings.
- B. Cable tray systems are defined to include, but are not limited to straight sections of [ladder

type] [vented bottom type] [solid bottom type] cable trays, bends, tees, elbows, drop-outs, supports and accessories.

1.02 REFERENCES

- A. ANSI/NFPA 70 National Electrical Code
- B. NEMA FG 1-2002 Non-Metallic Cable Tray Systems
- C. NEMA VE 2-2002 Cable Tray Installation Guidelines

1.03 DRAWINGS

- **A.** The drawings, which constitute a part of these specifications, indicate the general route of the cable tray systems. Data presented on these drawings are as accurate as preliminary surveys and planning can determine until final equipment selection is made. Accuracy is not guaranteed and field verification, of all dimensions, routing, etc., is directed.
- **B.** Specifications and drawings are for assistance and guidance, but exact routing, locations, distances and levels will be governed by actual field conditions. Contractor is directed to make field surveys as part of his work prior to submitting system layout drawings.

1.04 SUBMITTALS

A. Submittal Drawings: Submit drawings of cable tray and accessories including clamps, brackets, hanger rods, splice plate connectors, expansion joint assemblies, and fittings, showing accurately scaled components.

B. Product Data: Submit manufacturer's data on cable tray including, but not limited to, types, materials, finishes, rung spacings, inside depths and fitting radii. For side rails and rungs, submit cross sectional properties including Section Modulus (Sx) and Moment of Inertia (Ix).

1.05 QUALITY ASSURANCE

- **A.** Manufacturers: Firms regularly engaged in manufacture of cable trays and fittings of types and capacities required, whose products have been in satisfactory use in similar service for not less than 5 years.
- **B.** NEMA Compliance: Comply with NEMA Standards Publication Number FG-1, "Non-Metallic Cable Tray Systems".
- **C.** NEC Compliance: Comply with NEC, as applicable to construction and installation of cable tray and cable channel systems (Article 318, NEC).

1.06 DELIVERY, STORAGE AND HANDLING

- **A.** Deliver cable tray systems and components carefully to avoid breakage, denting and scoring finishes. Do not install damaged equipment.
- **B.** Store cable trays and accessories in original cartons and in clean dry space; protect from weather and construction traffic. Wet materials should be unpacked and dried before storage.

PART 2 - PRODUCTS

2.01 ACCEPTABLE MANUFACTURERS

A. Subject to compliance with these specifications, Eaton's B-Line series cable tray systems shall be as manufactured by Eaton.

2.02 CABLE TRAY SECTIONS AND COMPONENTS

- **A.** General: Except as otherwise indicated, provide non-metallic cable trays, of types, classes, and sizes indicated; with splice plates, bolts, nuts and washers for connecting units. Construct units with rounded edges and smooth surfaces; in compliance with applicable standards; and with the following additional construction features. Cable tray shall be installed according to the latest revision of NEMA VE 2.
- **B.** Material and Finish: Straight section structural elements; side rails, rungs and splice plates shall be pultruded from glass fiber reinforced polyester resin or vinyl ester resin.
- **C.** Pultruded shapes shall be constructed with a surface veil to insure a resin-rich surface and ultraviolet resistance.
- **D.** Pultruded shapes shall meet ASTM E-84, Class 1 flame rating and self-extinguishing requirements of ASTM D-635.

2.03 TYPE OF TRAY SYSTEM

- **A.** Ladder Cable Trays shall consist of two longitudinal members (side rails) with transverse members (rungs) mechanically fastened <u>and</u> adhesively bonded to the side rails. Rungs shall be spaced [6] [9] [12] inches apart. Rung spacing in radiused fittings shall be industry standard 9" and measured at the center of the tray's width. Each rung must be capable of supporting a 200 lb. concentrated load at the center of the cable tray with a safety factor of 1.5 (See following rung loading table).
- **B.** Ventilated Bottom Cable Trays shall consist of two longitudinal members (side rails) with rungs spaced 4" apart.
- **C.** Solid Bottom Cable Trays shall consist of two longitudinal members (side rails) with a solid sheet over rungs spaced on 12" centers.
- D. Cable tray loading depth shall be [2] [3] [5] inches per NEMA FG 1.
- E. Straight sections shall be supplied in standard [10 foot (3m)] [20 foot (6m)] lengths.
- **F.** Cable tray inside widths shall be [6] [9] [12] [18] [24] [30] [36] inches or as shown on drawings. Outside width shall not exceed inside by more than a total of 2".
- **G.** Straight and expansion splice plates will be of "L" shaped lay-in design with an eight-bolt pattern in 5" fill systems and four-bolt pattern in 3" and 2" fill systems. Splice plates shall be furnished with straight sections and fittings.
- H. All fittings must have a minimum radius of [12] [24] [36].
- I. Fittings shall be of mitered construction.
- J. Dimension tolerances will be per NEMA FG 1.

2.04 LOADING CAPACITIES

A. Cable trays shall meet NEMA class designation: [8C] [12C] [20B] [20C].

Or

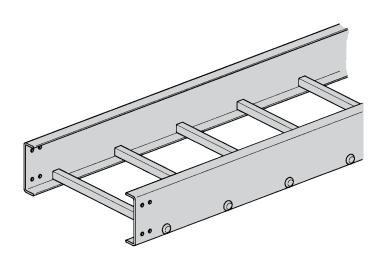
A. Cable tray shall be capable of carrying a uniformly distributed load of _____ lbs./ft on a _____ foot support span with a safety factor of 1.5 when supported as a simple span and tested per NEMA VE 1 Section 5.2.

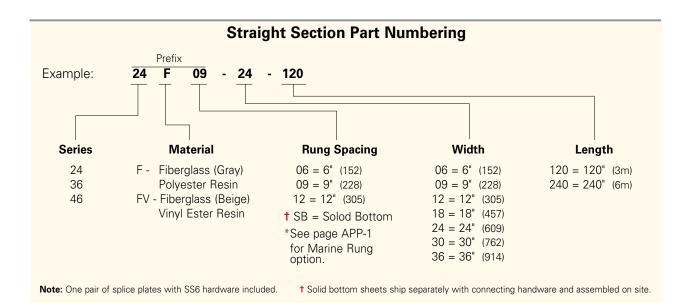
continued on page M-9

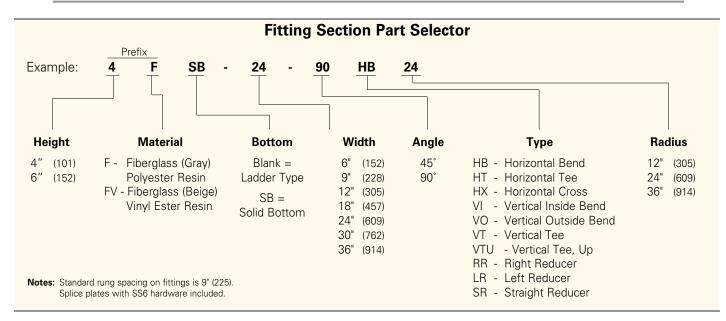
PART 3 - EXECUTION

3.01 INSTALLATION

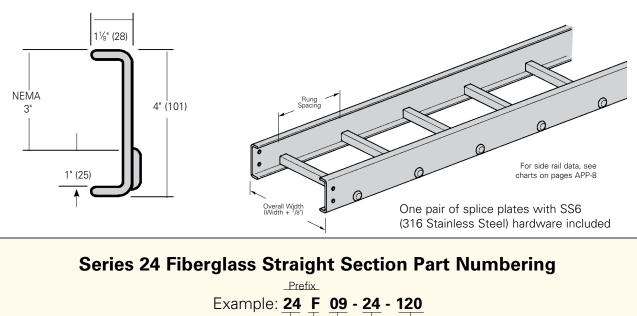
- A. Install cable trays as indicated: Installation shall be in accordance with equipment manufacturer's instructions, and with recognized industry practices to ensure that cable tray equipment comply with requirements of NEC and applicable portions of NFPA 70B. Reference NEMA VE 2 for general cable tray installation guidelines.
- **B.** Coordinate cable tray with other electrical work as necessary to properly integrate installation of cable tray work with other work.
- **C.** Provide sufficient space encompassing cable trays to permit access for installing and maintaining cables.
- **D.** Cable tray fitting supports shall be located such that they meet the strength requirements of straight sections. Install fitting supports per NEMA VE 2 guidelines, or in accordance with manufacturer's instructions.

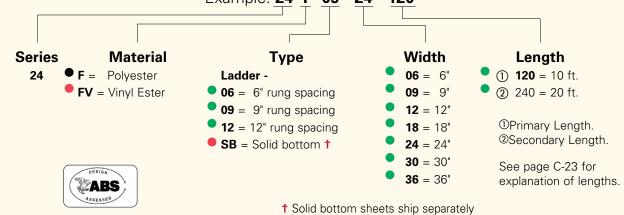

3.02 TESTING


A. Upon request manufacturer shall provide test reports witnessed by an independent testing laboratory of the "worst case" loading conditions outlined in this specification and performed in accordance with the latest revision of NEMA FG 1.


To order a Fiberglass straight section of cable tray, select the appropriate size and material from the charts below and place those symbols in the sequence shown to form the complete catalog number.

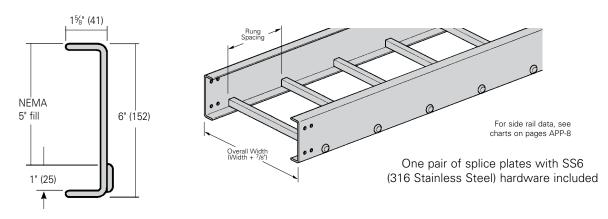
Procedure:

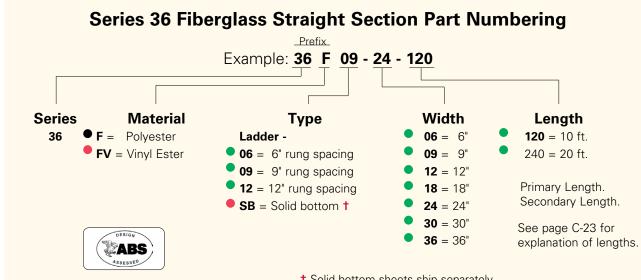

- Select the correct B-Line series Fiberglass tray using the Load Data for straight sections shown on page M-16 for 4", page M-17 and M-18 for 6".
- Select the resin required. Polyester or Vinyl Ester. Refer to Corrosion Guide on pages M-3 and M-4, for the effect of environmental conditions on the desired material and the effective temperature range on page M-5.
- 3. The tray prefix is completed by inserting the rung spacing.
- 4. Select the desired width in inches.
- 5. Finally select the straight section length in inches. Fiberglass 120 [10'] (3m) or 240 [20'] (6m)



Fiberglass - 4" Straight Section

See page M-38 for additional rung options.


 Solid bottom sheets ship separately with connecting handware and assembled on site.


B-Line series	Side Rail Dimensions	NEMA & CSA Classifications	Span ft	Load Ibs/ft	Deflection Multiplier	Span meters	Load kg/m	Deflection Multiplier
	1.125	NEMA: 12C	6	672	0.001	1.8	958	0.023
24F	NEMA 3* fill 1 4.00	CSA: E-3m	8	378	0.004	2.4	539	0.074
			10	242	0.011	3.0	345	0.182
24FV			12	161	0.022	3.7	240	0.378

Values are based on simple beam tests per NEMA FG-1 on 36" wide cable tray rungs spaced on 12" centers. Published load safety factor is 1.5. To convert 1.5 safety factor to 2.0, multiply published load by 0.75. To obtain mid-span deflection, multiply a load by the deflection multiplier. Cable tray must be supported on spans shorter than or equal to the length of the cable being installed.

When trays are used in continuous spans, the deflection of the tray is reduced by as much as 50%.

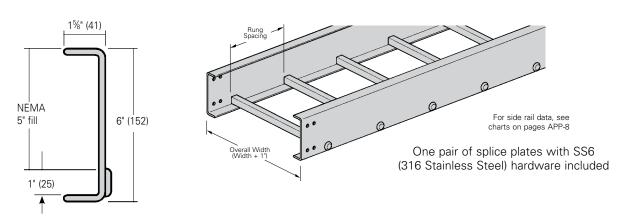
Green = Fastest shipped items
 Black = Normal lead-time items
 Red = Normally long lead-time items

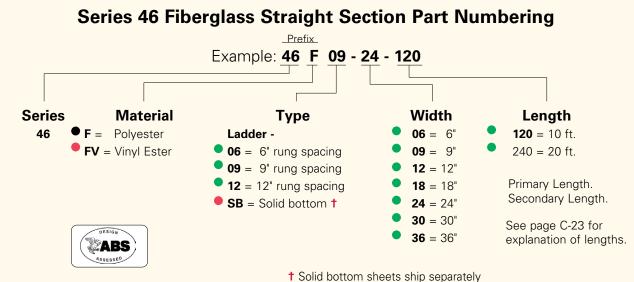
See page M-38 for additional rung options.

Solid bottom sheets ship separately with connecting handware and assembled on site.

B-Line Series	Side Rail Dimensions	NEMA & CSA Classifications	Span ft	Load Ibs/ft	Deflection Multiplier	Span meters	Load kg/m	Deflection Multiplier
	1.625 -	NEMA: 20A	12	200	0.005	3.7	298	0.081
0.05		CSA: E-6m	14	147	0.009	4.3	219	0.151
36F	NEMA 5" fill 1 6.00		16	113	0.015	4.9	167	0.257
36FV	<u>+</u> ∖		18	89	0.024	5.5	132	0.411
			20	72	0.037	6.1	107	0.627

Values are based on simple beam tests per NEMA FG-1 on 36" wide cable tray rungs spaced on 12" centers. Published load safety factor is 1.5. To convert 1.5 safety factor to 2.0, multiply published load by 0.75. To obtain mid-span deflection, multiply a load by the deflection multiplier. Cable tray must be supported on spans shorter than or equal to the length of the cable being installed.


When trays are used in continuous spans, the deflection of the tray is reduced by as much as 50%.

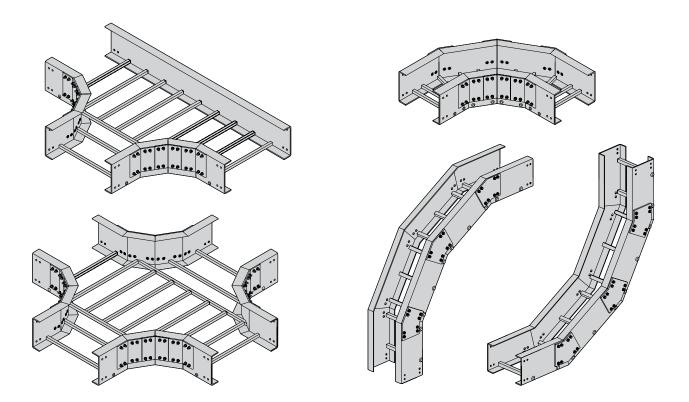

Green = Fastest shipped items
 Black = Normal lead-time items
 Red = Normally long lead-time items

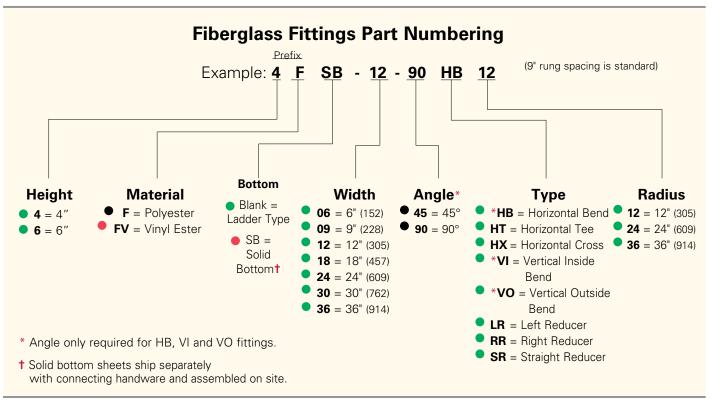
Dimensions shown in parentheses are in millimeters, unless otherwise specified.

Fiberglass

Fiberglass - 6" Straight Section

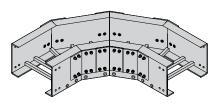
See page M-38 for additional rung options.

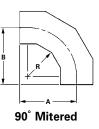

 Solid bottom sheets ship separately with connecting handware and assembled on site.

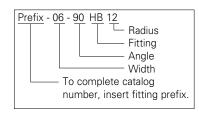

B-Line Series	Side Rail Dimensions	NEMA & CSA Classifications	Span ft	Load lbs/ft	Deflection Multiplier	Span meters	Load kg/m	Deflection Multiplier
	1.625 -	NEMA: 20C	12	356	0.005	3.7	529	0.079
46F 46FV	NEMA 5" fill 1 6.00	CSA: E-6m	14	261	0.009	4.3	389	0.145
			16	200	0.015	4.9	298	0.246
			18	157	0.023	5.5	235	0.396
			20	128	0.035	6.1	190	0.605

Values are based on simple beam tests per NEMA FG-1 on 36" wide cable tray rungs spaced on 12" centers. Published load safety factor is 1.5. To convert 1.5 safety factor to 2.0, multiply published load by 0.75. To obtain mid-span deflection, multiply a load by the deflection multiplier. Cable tray must be supported on spans shorter than or equal to the length of the cable being installed.

When trays are used in continuous spans, the deflection of the tray is reduced by as much as 50%.


• Green = Fastest shipped items • Black = Normal lead-time items • Red = Normally long lead-time items




Green = Fastest shipped items
Black = Normal lead-time items
Red = Normally long lead-time items

Horizontal Bend 90° (HB)

One pair of splice plates with SS6 hardware included.

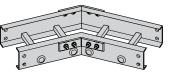
(Prefix) See page M-20 for catalog number prefix. Dimensions for reference only, when critical contact factory.

- R -			90° Horizo	ntal Bend			
Bend	Tray			-		nsions	
Radius in. (mm)	Widt in. (n	:h nm)	Catalog No.	A in. (mm)		B in.	(mm)
	6 (1	52)	(Prefix)-06-90HB12	28 ¹¹ /16	(728)	28 ¹¹ /16	(728)
	9 (2	228)	(Prefix)-09-90HB12	30 ³ /16	(767)	30 ³ /16	(767)
	12 (3	305)	(Prefix)-12-90HB12	31 ¹¹ /16	(805)	31 ¹¹ /16	(805)
12 (305)	18 (4	157)	(Prefix)-18-90HB12	34 ¹¹ /16	(881)	34 ¹¹ /16	(881)
	24 (6	609)	(Prefix)-24-90HB12	37 ¹¹ /16	(957)	37 ¹¹ /16	(957)
	30 (7	762)	(Prefix)-30-90HB12	40 ¹¹ /16	(1033)	40 ¹¹ /16	(1033)
	36 (9	914)	(Prefix)-36-90HB12	43 ¹¹ /16	(1109)	43 ¹¹ /16	(1109)
	6 (1	52)	(Prefix)-06-90HB24	41	(1041)	41	(1041)
	9 (2	228)	(Prefix)-09-90HB24	42 ¹ /2	(1079)	42 ¹ /2	(1079)
	12 (3	305)	(Prefix)-12-90HB24	44	(1117)	44	(1117)
24 (609)	18 (4	157)	(Prefix)-18-90HB24	47	(1193)	47	(1193)
	24 (6	609)	(Prefix)-24-90HB24	50	(1269)	50	(1269)
	30 (7	762)	(Prefix)-30-90HB24	53	(1346)	53	(1346)
	36 (9	914)	(Prefix)-36-90HB24	56	(1422)	56	(1422)
	6 (1	52)	(Prefix)-06-90HB36	53 ¹ /4	(1353)	53 ¹ /4	(1353)
	9 (2	228)	(Prefix)-09-90HB36	54 ³ /4	(1391)	54 ³ /4	(1391)
	12 (3	305)	(Prefix)-12-90HB36	56 ¹ /4	(1429)	56 ¹ /4	(1429)
36 (914)	18 (4	157)	(Prefix)-18-90HB36	59 ¹ /4	(1505)	59 ¹ /4	(1505)
	24 (6	609)	(Prefix)-24-90HB36	62 ¹ /4	(1582)	62 ¹ /4	(1582)
	30 (7	762)	(Prefix)-30-90HB36	65 ¹ /4	(1658)	65 ¹ /4	(1658)
	36 (9	914)	(Prefix)-36-90HB36	68 ¹ /4	(1734)	68 ¹ /4	(1734)

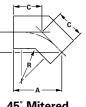
For 4" Fittings

(Tray Widths - 6" thru 36" • Radius 12", 24" & 36") Polyester, Vinyl Ester All radius are mitered

For 6" Fittings


(Tray Widths - 6" thru 36" • Radius 12", 24" & 36") Polyester, Vinyl Ester All radius are mitered

Green = Fastest shipped items
 Black = Normal lead-time items
 Red = Normally long lead-time items


Dimensions shown in parentheses are in millimeters, unless otherwise specified.

Fiberglass

Horizontal Bend 45° (HB)

One pair of splice plates with SS6 hardware included.

45° Mitered

Width To complete catalog number, insert fitting prefix.

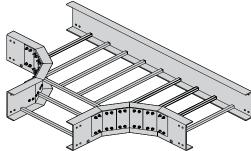
Т

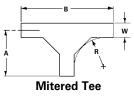
Radius Fitting Angle

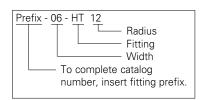
Prefix - 06 - 45 HB 12

(Prefix) See page M-20 for catalog number prefix. Dimensions for reference only, when critical contact factory.

- R - Bend	Tray	4	5° Horizontal Bei	nd - Mitered Dimensions	
Radius in. (mm)	Width in. (mm)	Catalog No.	A in. (mm)	B in. (mm)	C in. (mm)
	6 (152)	(Prefix)-06-45HB12	24 ²¹ /32 (626)	10 ⁷ /32 (259)	14 ⁷ /16 (367)
	9 (228)	(Prefix)-09-45HB12	25 ²³ /32 (653)	10 ²¹ /32 (271)	15 ¹ /16 (383)
	12 (305)	(Prefix)-12-45HB12	26 ²⁵ /32 (680)	11 ³ /32 (282)	15 ¹¹ /18 (398)
12 (305)	18 (457)	(Prefix)-18-45HB12	28 ²⁹ /32 (734)	11 ³¹ /32 (304)	16 ¹⁵ /16 (430)
	24 (609)	(Prefix)-24-45HB12	31 ¹ /32 (788)	12 ²⁷ /32 (326)	18 ⁵ /32 (462)
	30 (762)	(Prefix)-30-45HB12	33 ⁵ /32 (842)	13 ³ /4 (349)	19 ¹³ /32 (493)
	36 (914)	(Prefix)-36-45HB12	35 ¹ /4 (896)	14 ⁵ /8 (371)	20 ²¹ /32 (525)
	6 (152)	(Prefix)-06-45HB12	24 ²¹ /32 (626)	10 ⁷ /32 (259)	14 ⁷ /16 (367)
	9 (228)	(Prefix)-09-45HB12	25 ²³ /32 (653)	10 ²¹ /32 (271)	15 ¹ /16 (383)
	12 (305)	(Prefix)-12-45HB12	26 ²⁵ /32 (680)	11 ³ /32 (282)	15 ¹¹ /18 (398)
24 (609)	18 (457)	(Prefix)-18-45HB12	28 ²⁹ /32 (734)	11 ³¹ /32 (304)	16 ¹⁵ /16 (430)
	24 (609)	(Prefix)-24-45HB12	31 ¹ /32 (788)	12 ²⁷ /32 (326)	18 ⁵ /32 (462)
	30 (762)	(Prefix)-30-45HB12	33 ⁵ /32 (842)	13 ³ /4 (349)	19 ¹³ /32 (493)
	36 (914)	(Prefix)-36-45HB12	35 ¹ /4 (896)	14 ⁵ /8 (371)	20 ²¹ /32 (525)
	6 (152)	(Prefix)-06-45HB12	24 ²¹ /32 (626)	10 ⁷ /32 (259)	14 ⁷ /16 (367)
	9 (228)	(Prefix)-09-45HB12	25 ²³ /32 (653)	10 ²¹ /32 (271)	15 ¹ /16 (383)
	12 (305)	(Prefix)-12-45HB12	26 ²⁵ /32 (680)	11 ³ /32 (282)	15 ¹¹ /18 (398)
36 (914)	18 (457)	(Prefix)-18-45HB12	28 ²⁹ /32 (734)	11 ³¹ /32 (304)	16 ¹⁵ /16 (430)
	24 (609)	(Prefix)-24-45HB12	31 ¹ /32 (788)	12 ²⁷ /32 (326)	18 ⁵ /32 (462)
	30 (762)	(Prefix)-30-45HB12	33 ⁵ /32 (842)	13 ³ /4 (349)	19 ¹³ /32 (493)
	36 (914)	(Prefix)-36-45HB12	35 ¹ /4 (896)	14 ⁵ /8 (371)	20 ²¹ /32 (525)


For 4" Fittings


(Tray Widths - 6" thru 36" Radius 12", 24" & 36") Polyester, Vinyl Ester All radius are mitered


For 6" Fittings

(Tray Widths - 6" thru 36" Radius 12", 24" & 36") Polyester, Vinyl Ester All radius are mitered

Horizontal Tee (HT)

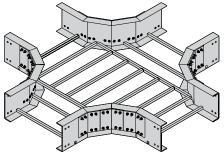
(Prefix) See page M-20 for catalog number prefix. Dimensions for reference only, when critical contact factory.

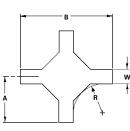
Two pair of splice plates with SS6 hardware included.

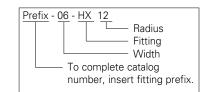
- R - Bend	Tray	-	Horizontal Tee - Mitered Dimensions							
Radius in. (mm)	Width in. (m	Catalog No.	A in. (mm)	B in. (mm)						
	6 (15	2) (Prefix)-06-HT12	28 ⁷ /32 (716)	56 ¹³ /32 (1433)						
	9 (22	8) (Prefix)-09-HT12	29 ¹¹ /16 (754)	59 ¹³ /32 (1509)						
	12 (30	5) (Prefix)-12-HT12	31 ⁷ /32 (792)	62 ¹³ /32 (1585)						
12 (305)	18 (45	7) (Prefix)-18-HT12	34 ⁷ /32 (869)	68 ¹³ /32 (1737)						
	24 (60	9) (Prefix)-24-HT12	37 ⁷ /32 (945)	74 ¹³ /32 (1890)						
	30 (76	2) (Prefix)-30-HT12	40 ⁷ /32 (1021)	80 ¹³ /32 (2042)						
	36 (91	4) (Prefix)-36-HT12	43 ⁷ /32 (1097)	86 ¹³ /32 (2195)						
	6 (15	2) (Prefix)-06-HT24	40 ⁷ /32 (1021)	80 ¹³ /32 (2042)						
	9 (22	8) (Prefix)-09-HT24	41 ¹¹ /16 (1059)	83 ¹³ /32 (2118)						
	12 (30	5) (Prefix)-12-HT24	43 ⁷ /32 (1097)	86 ¹³ /32 (2195)						
24 (609)	18 (45	7) (Prefix)-18-HT24	46 ⁷ /32 (1173)	92 ¹³ /32 (2347)						
	24 (60	9) (Prefix)-24-HT24	49 ⁷ /32 (1250)	98 ¹³ /32 (2499)						
	30 (76	2) (Prefix)-30-HT24	52 ⁷ /32 (1326)	104 ¹³ /32 (2652)						
	36 (91	4) (Prefix)-36-HT24	55 ⁷ /32 (1402)	110 ¹³ /32 (2804)						
	6 (15	2) (Prefix)-06-HT36	52 ⁷ /32 (1326)	104 ¹³ /32 (2652)						
	9 (22	8) (Prefix)-09-HT36	53 ¹¹ /16 (1364)	107 ¹³ /32 (2728)						
	12 (30	5) (Prefix)-12-HT36	55 ⁷ /32 (1402)	110 ¹³ /32 (2804)						
36 (914)	18 (45	7) (Prefix)-18-HT36	58 ⁷ /32 (1478)	116 ¹³ /32 (2957)						
	24 (60	9) (Prefix)-24-HT36	61 ⁷ /32 (1554)	122 ¹³ /32 (3109)						
	30 (76	2) (Prefix)-30-HT36	64 ⁷ /32 (1631)	128 ¹³ /32 (3261)						
	36 (91	4) (Prefix)-36-HT36	67 ⁷ /32 (1707)	134 ¹³ /32 (3414)						

For 4" Fittings

(Tray Widths - 6" thru 36" • Radius 12", 24" & 36") Polyester, Vinyl Ester All radius are mitered


For 6" Fittings


(Tray Widths - 6" thru 36" • Radius 12", 24" & 36") Polyester, Vinyl Ester All radius are mitered


Dimensions shown in parentheses are in millimeters, unless otherwise specified.

Fiberglass

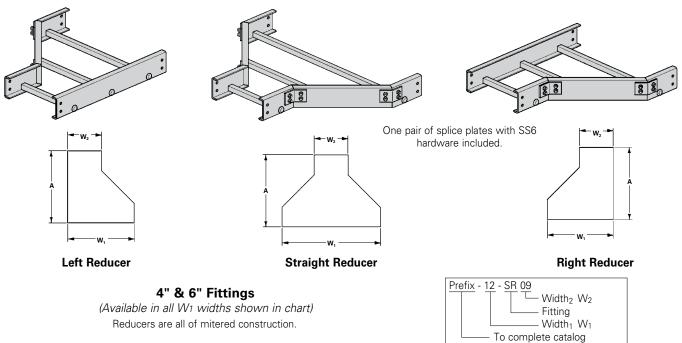
Horizontal Cross (HX)

Three pair of splice plates with SS6 hardware included.

Mitered Cross

⁽Prefix) See page M-20 for catalog number prefix. Dimensions for reference only, when critical contact factory.

- R - Bend	Tray	Horizo	ntal Cross - Miter Dimer	
Radius in. (mm)	Width in. (mm)	Catalog No.	A in. (mm)	B in. (mm)
	6 (152)	(Prefix)-06-HX12	28 ³ /16 (716)	56 ¹³ /32 (1433)
	9 (228)	(Prefix)-09-HX12	29 ¹¹ /16 (754)	59 ¹³ /32 (1509)
	12 (305)	(Prefix)-12-HX12	31 ³ /16 (792)	62 ¹³ /32 (1585)
12 (305)	18 (457)	(Prefix)-18-HX12	34 ³ /16 (869)	68 ¹³ /32 (1737)
	24 (609)	(Prefix)-24-HX12	37 ³ /16 (945)	74 ¹³ /32 (1890)
	30 (762)	(Prefix)-30-HX12	40 ³ /16 (1021)	80 ¹³ /32 (2042)
	36 (914)	(Prefix)-36-HX12	43 ³ /16 (1097)	86 ¹³ /32 (2195)
	6 (152)	(Prefix)-06-HX24	40 ³ /16 (1021)	80 ¹³ /32 (2042)
	9 (228)	(Prefix)-09-HX24	41 ¹¹ /16 (1059)	83 ¹³ /32 (2118)
	12 (305)	(Prefix)-12-HX24	43 ³ /16 (1097)	86 ¹³ /32 (2195)
24 (609)	18 (457)	(Prefix)-18-HX24	46 ³ /16 (1173)	92 ¹³ /32 (2347)
	24 (609)	(Prefix)-24-HX24	49 ³ /16 (1250)	98 ¹³ /32 (2499)
	30 (762)	(Prefix)-30-HX24	52 ³ /16 (1326)	104 ¹³ /32 (2652)
	36 (914)	(Prefix)-36-HX24	55 ³ /16 (1402)	110 ¹³ /32 (2804)
	6 (152)	(Prefix)-06-HX36	52 ³ /16 (1326)	104 ¹³ /32 (2652)
	9 (228)	(Prefix)-09-HX36	53 ¹¹ /16 (1364)	107 ¹³ /32 (2728)
	12 (305)	(Prefix)-12-HX36	55 ³ /16 (1402)	110 ¹³ /32 (2804)
36 (914)	18 (457)	(Prefix)-18-HX36	58 ³ /16 (1478)	116 ¹³ /32 (2957)
	24 (609)	(Prefix)-24-HX36	61 ³ /16 (1554)	122 ¹³ /32 (3109)
	30 (762)	(Prefix)-30-HX36	64 ³ /16 (1631)	128 ¹³ /32 (3261)
	36 (914)	(Prefix)-36-HX36	67 ³ /16 (1707)	134 ¹³ /32 (3414)

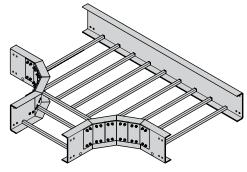

For 4" Fittings

(*Tray Widths - 6" thru 36" Radius 12", 24" & 36"*) Polyester, Vinyl Ester All radius are mitered

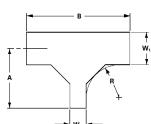
For 6" Fittings

(Tray Widths - 6" thru 36" Radius 12", 24" & 36") Polyester, Vinyl Ester All radius are mitered

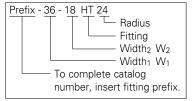
Reducers (LR) (SR) (RR)



(Prefix) See page M-20 for catalog number prefix. Dimensions for reference only, when critical contact factory.


number, insert fitting prefix.

Tray	Width	Left Hand I	Reduc	er	Straight F	Reducer		Right Hand	Reduc	er
W ₁ in. (mm)	W ₂ in. (mm)	Catalog No.	in.	A (mm)	Catalog No.	A in.	(mm)	Catalog No.	in.	A (mm)
9 (228)	6 (152)	(Prefix)-09-LR06	21	(533)	(Prefix)-09-SR06	19 ¹ /2	(495)	(Prefix)-09-RR06	21	(533)
12 (305)	6 (152)	(Prefix)-12-LR06	24	(609)	(Prefix)-12-SR06	21	(533)	(Prefix)-12-RR06	24	(609)
12 (303)	9 (228)	(Prefix)-12-LR09	21	(533)	(Prefix)-12-SR09	19 ¹ /2	(495)	(Prefix)-12-RR09	21	(533)
	6 (152)	(Prefix)-18-LR06	30	(762)	(Prefix)-18-SR06	24	(609)	(Prefix)-18-RR06	30	(762)
18 (457)	9 (228)	(Prefix)-18-LR09	27	(686)	(Prefix)-18-SR09	22 ¹ /2	(571)	(Prefix)-18-RR09	27	(686)
	12 (305)	(Prefix)-18-LR12	24	(609)	(Prefix)-18-SR12	21	(533)	(Prefix)-18-RR12	24	(609)
	6 (152)	(Prefix)-24-LR06	36	(914)	(Prefix)-24-SR06	27	(686)	(Prefix)-24-RR06	36	(914)
24 (609)	9 (228)	(Prefix)-24-LR09	33	(838)	(Prefix)-24-SR09	25 ¹ /2	(648)	(Prefix)-24-RR09	33	(838)
24 (000)	12 (305)	(Prefix)-24-LR12	30	(762)	(Prefix)-24-SR12	24	(609)	(Prefix)-24-RR12	30	(762)
	18 (457)	(Prefix)-24-LR18	24	(609)	(Prefix)-24-SR18	21	(533)	(Prefix)-24-RR18	24	(609)
	6 (152)	(Prefix)-30-LR06	42	(1067)	(Prefix)-30-SR06	30	(762)	(Prefix)-30-RR06	42	(1067
	9 (228)	(Prefix)-30-LR09	39	(990)	(Prefix)-30-SR09	28 ¹ /2	(724)	(Prefix)-30-RR09	39	(990)
30 (762)	12 (305)	(Prefix)-30-LR12	36	(914)	(Prefix)-30-SR12	27	(686)	(Prefix)-30-RR12	36	(914)
	18 (457)	(Prefix)-30-LR18	30	(762)	(Prefix)-30-SR18	24	(609)	(Prefix)-30-RR18	30	(762)
	24 (609)	(Prefix)-30-LR24	24	(609)	(Prefix)-30-SR24	21	(533)	(Prefix)-30-RR24	24	(609)
	6 (152)	(Prefix)-36-LR06	48	(1219)	(Prefix)-36-SR06	33	(838)	(Prefix)-36-RR06	48	(1219
	9 (228)	(Prefix)-36-LR09	45	(1143)	(Prefix)-36-SR09	31 ¹ /2	(800)	(Prefix)-36-RR09	45	(1143
36 (914)	12 (305)	(Prefix)-36-LR12	42	(1067)	(Prefix)-36-SR12	30	(762)	(Prefix)-36-RR12	42	(1067
00 (011)	18 (457)	(Prefix)-36-LR18	36	(914)	(Prefix)-36-SR18	27	(686)	(Prefix)-36-RR18	36	(914)
	24 (609)	(Prefix)-36-LR24	30	(762)	(Prefix)-36-SR24	24	(609)	(Prefix)-36-RR24	30	(762)
	30 (762)	(Prefix)-36-LR30	24	(609)	(Prefix)-36-SR30	21	(533)	(Prefix)-36-RR30	24	(609)


Horizontal Reducing Tee (HT)

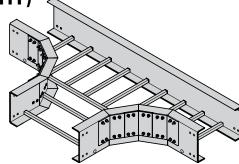
Two pair of splice plates with SS6 hardware included.

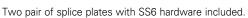
Mitered Reducing Tee

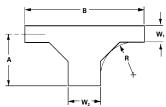
(Prefix) See page M-20 for catalog number prefix. Dimensions for reference only, when critical contact factory.

Mitered Fittings

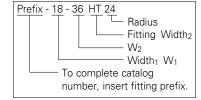
Tray	Width	Catalog No.	12" Rad	ius (305)	24" Rac	lius (609)	36" Radi	ius (914)
W ₁ in. (mm)	W ₂ in. (mm)	* Insert radius (12", 24" or 36")	A in. (mm)	B in. (mm)	A in. (mm)	B in. (mm)	A in. (mm)	B in. (mm)
9 (228)	6 (152)	(Prefix)-09-06-HT*	29 ¹¹ /16 (754)	56 ¹³ /32 (1433)	41 ¹¹ /16 (1059)	80 ¹³ /32 (2042)	53 ¹¹ /16 (1364)	104 ¹³ /32 (2652)
12 (205)	6 (152)	(Prefix)-12-06-HT*	31 ³ /16 (792)	56 ¹³ /32 (1433)	43 ³ /16 (1097)	80 ¹³ /32 (2042)	55 ³ /16 (1402)	104 ¹³ /32 (2652)
12 (305)	9 (228)	(Prefix)-12-09-HT*	31 ³ /16 (792)	59 ¹³ /32 (1509)	43 ^{3/} 16 (1097)	83 ¹³ /32 (2118)	55 ³ /16 (1402)	107 ¹³ /32 (2728)
6 (152	6 (152)	(Prefix)-18-06-HT*	34 ³ /16 (869)	56 ¹³ /32 (1433)	46 ³ /16 (1173)	80 ¹³ /32 (2042)	58 ³ /16 (1478)	104 ¹³ /32 (2652)
18 (457)	9 (228)	(Prefix)-18-09-HT*	34 ³ /16 (869)	59 ¹³ /32 (1509)	46 ³ /16 (1173)	83 ¹³ /32 (2118)	58 ³ /16 (1478)	107 ¹³ /32 (2728)
	12 (305)	(Prefix)-18-12-HT*	34 ³ /16 (869)	62 ¹³ /32 (1585)	46 ³ /16 (1173)	86 ¹³ /32 (2195)	58 ³ /16 (1478)	110 ¹³ /32 (2804)
	6 (152)	(Prefix)-24-06-HT*	37 ³ /16 (945)	56 ¹³ /32 (1433)	49 ³ /16 (1250)	80 ¹³ /32 (2042)	61 ³ /16 (1554)	104 ¹³ /32 (2652)
24 (000)	9 (228)	(Prefix)-24-09-HT*	37 ³ /16 (945)	59 ¹³ /32 (1509)	49 ³ /16 (1250)	83 ¹³ /32 (2118)	61 ³ /16 (1554)	107 ¹³ /32 (2728)
24 (609)	12 (305)	(Prefix)-24-12-HT*	37 ³ /16 (945)	62 ¹³ /32 (1585)	49 ³ /16 (1250)	86 ¹³ /32 (2195)	61 ³ /16 (1554)	110 ¹³ /32 (2804)
	18 (457)	(Prefix)-24-18-HT*	37 ³ /16 (945)	68 ¹³ /32 (1737)	49 ³ /16 (1250)	92 ¹³ /32 (2347)	61 ³ /16 (1554)	116 ¹³ /32 (2957)
	6 (152)	(Prefix)-30-06-HT*	40 ³ /16 (1021)	56 ¹³ /32 (1433)	52 ³ /16 (1326)	80 ¹³ /32 (2042)	64 ³ /16 (1631)	104 ¹³ /32 (2652)
	9 (228)	(Prefix)-30-09-HT*	40 ³ /16 (1021)	59 ¹³ /32 (1509)	52 ³ /16 (1326)	83 ¹³ /32 (2118)	64 ³ /16 (1631)	107 ¹³ /32 (2728)
30 (762)	12 (305)	(Prefix)-30-12-HT*	40 ³ /16 (1021)	62 ¹³ /32 (1585)	52 ³ /16 (1326)	86 ¹³ /32 (2195)	64 ³ /16 (1631)	110 ¹³ /32 (2804)
	18 (457)	(Prefix)-30-18-HT*	40 ³ /16 (1021)	68 ¹³ /32 (1737)	52 ³ /16 (1326)	92 ¹³ /32 (2347)	64 ³ /16 (1631)	116 ¹³ /32 (2957)
	24 (609)	(Prefix)-30-24-HT*	40 ³ /16 (1021)	74 ¹³ /32 (1890)	52 ³ /16 (1326)	98 ¹³ /32 (2499)	64 ³ /16 (1631)	122 ¹³ /32 (3109)
	6 (152)	(Prefix)-36-06-HT*	43 ³ /16 (1097)	56 ¹³ /32 (1433)	55 ³ /16 (1402)	80 ¹³ /32 (2042)	67 ³ /16 (1707)	104 ¹³ /32 (2652)
	9 (228)	(Prefix)-36-09-HT*	43 ³ /16 (1097)	59 ¹³ /32 (1509)	55 ³ /16 (1402)	83 ¹³ /32 (2118)	67 ³ /16 (1707)	107 ¹³ /32 (2728)
36 (914)	12 (305)	(Prefix)-36-12-HT*	43 ³ /16 (1097)	62 ¹³ /32 (1585)	55 ³ /16 (1402)	86 ¹³ /32 (2195)	67 ³ /16 (1707)	110 ¹³ /32 (2804)
30 (314)	18 (457)	(Prefix)-36-18-HT*	43 ³ /16 (1097)	68 ¹³ /32 (1737)	55 ³ /16 (1402)	92 ¹³ /32 (2347)	67 ³ /16 (1707)	116 ¹³ /32 (2957)
	24 (609)	(Prefix)-36-24-HT*	43 ³ /16 (1097)	74 ¹³ /32 (1890)	55 ³ /16 (1402)	98 ¹³ /32 (2499)	67 ³ /16 (1707)	122 ¹³ /32 (3109)
	30 (762)	(Prefix)-36-30-HT*	43 ³ /16 (1097)	80 ¹³ /32 (2042)	55 ³ /16 (1402)	104 ¹³ /32 (2652)	67 ³ /16 (1707)	128 ¹³ /32 (3261)


For 4" Fittings


(Radius 12", 24" & 36" W1 tray widths - 9" thru 36") Polyester, Vinyl Ester All radius are mitered


For 6" Fittings

(Radius 12", 24" & 36" W1 tray widths - 9" thru 36") Polyester, Vinyl Ester All radius are mitered

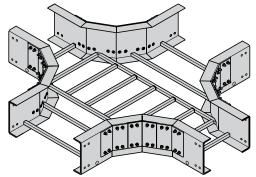

Horizontal Expanding Tee (HT)

Mitered

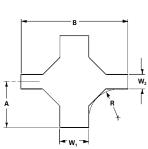
⁽Prefix) See page M-20 for catalog number prefix. Dimensions for reference only, when critical contact factory.

Mitered Fittings

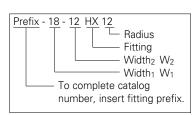
Tra	y Width	Catalog No.	1	2" Rad	ius (305)	24" Ra	dius (609)	36" Rad	lius (914)
W ₁	W ₂	* Insert radius	Δ		В	Α	В	Α	В
in. (mn	n) in. (mm)	(12", 24" or 36")	in.	(mm)	in. (mm)	in. (mm) in. (mm)	in. (mm)	in. (mm)
	9 (228)	(Prefix)-06-09-HT*	28 ³ /16	(716)	59 ¹³ /32 (1509)	40 ³ /16 (102 ⁻) 83 ¹³ /32 (2118)	52 ³ /16 (1326)	107 ¹³ /32 (2728)
	12 (305)	(Prefix)-06-12-HT*	28 ³ /16	(716)	62 ¹³ /32 (1585)	40 ³ /16 (102 ⁻) 86 ¹³ /32 (2195)	52 ³ /16 (1326)	110 ¹³ /32 (2804)
6 (152	18 (457)	(Prefix)-06-18-HT*	28 ³ /16	(716)	68 ¹³ /32 (1737)	40 ³ /16 (102 ⁻) 92 ¹³ /32 (2347)	52 ³ /16 (1326)	116 ¹³ /32 (2957)
0 (102	24 (609)	(Prefix)-06-24-HT*	28 ³ /16	(716)	74 ¹³ /32 (1890)	40 ³ /16 (102 ⁻) 98 ¹³ /32 (2499)	52 ³ /16 (1326)	122 ¹³ /32 (3109)
	30 (762)	(Prefix)-06-30-HT*	28 ³ /16	(716)	80 ¹³ /32 (2042)	40 ³ /16 (102 ⁻) 104 ¹³ /32 (2652)	52 ³ /16 (1326)	128 ¹³ /32 (3261)
	36 (914)	(Prefix)-06-36-HT*	28 ³ /16	(716)	86 ¹³ /32 (2195)	40 ³ /16 (102 ⁻) 110 ¹³ /32 (2804)	52 ³ /16 (1326)	134 ¹³ /32 (3414)
	12 (305)	(Prefix)-09-12-HT*	29 ¹¹ /16	(754)	62 ¹³ /32 (1585)	41 ¹¹ /16 (1059) 86 ¹³ /32 (2195)	53 ¹¹ /16 (1364)	110 ¹³ /32 (2804)
	18 (457)	(Prefix)-09-18-HT*	29 ¹¹ /16	(754)	68 ¹³ /32 (1737)	41 ¹¹ /16 (1059) 92 ¹³ /32 (2347)	53 ¹¹ /16 (1364)	116 ¹³ /32 (2957)
9 (228	3) 24 (609)	(Prefix)-09-24-HT*	29 ¹¹ /16	(754)	74 ¹³ /32 (1890)	41 ¹¹ /16 (1059) 98 ¹³ /32 (2499)	53 ¹¹ /16 (1364)	122 ¹³ /32 (3109)
	30 (762)	(Prefix)-09-30-HT*	29 ¹¹ /16	(754)	80 ¹³ /32 (2042)	41 ¹¹ /16 (1059) 104 ¹³ /32 (2652)	53 ¹¹ /16 (1364)	128 ¹³ /32 (3261)
	36 (914)	(Prefix)-09-36-HT*	29 ¹¹ /16	(754)	86 ¹³ /32 (2195)	41 ¹¹ /16 (1059) 110 ¹³ /32 (2804)	53 ¹¹ /16 (1364)	134 ¹³ /32 (3414)
	18 (457)	(Prefix)-12-18-HT*	31 ³ /16	(792)	68 ¹³ /32 (1737)	43 ³ /16 (1097) 92 ¹³ /32 (2347)	55 ³ /16 (1402)	116 ¹³ /32 (2957)
12 (305	24 (609)	(Prefix)-12-24-HT*	31 ³ /16	(792)	74 ¹³ /32 (1890)	43 ³ /16 (1097) 98 ¹³ /32 (2499)	55 ³ /16 (1402)	122 ¹³ /32 (3109)
12 (305	30 (762)	(Prefix)-12-30-HT*	31 ³ /16	(792)	80 ¹³ /32 (2042)	43 ³ /16 (1097) 104 ¹³ /32 (2652)	55 ³ /16 (1402)	128 ¹³ /32 (3261)
	36 (914)	(Prefix)-12-36-HT*	31 ³ /16	(792)	86 ¹³ /32 (2195)	43 ³ /16 (1097) 110 ¹³ /32 (2804)	55 ³ /16 (1402)	134 ¹³ /32 (3414)
	24 (609)	(Prefix)-18-24-HT*	34 ³ /16	(869)	74 ¹³ /32 (1890)	46 ³ /16 (1173) 98 ¹³ /32 (2499)	58 ³ /16 (1478)	122 ¹³ /32 (3109)
18 (457	7) 30 (762)	(Prefix)-18-30-HT*	34 ³ /16	(869)	80 ¹³ /32 (2042)	46 ³ /16 (1173) 104 ¹³ /32 (2652)	58 ³ /16 (1478)	128 ¹³ /32 (3261)
	36 (914)	(Prefix)-18-36-HT*	3 4 ³ /16	(869)	86 ¹³ /32 (2195)	46 ³ /16 (1173) 110 ¹³ /32 (2804)	58 ³ /16 (1478)	134 ¹³ /32 (3414)
24 (609	30 (762)	(Prefix)-24-30-HT*	37 ³ /16	(945)	80 ¹³ /32 (2042)	49 ³ /16 (1250) 104 ¹³ /32 (2652)	61 ³ /16 (1554)	128 ¹³ /32 (3261)
24 (003	36 (914)	(Prefix)-24-36-HT*	37 ³ /16	(945)	86 ¹³ /32 (2195)	49 ³ /16 (1250) 110 ¹³ /32 (2804)	61 ³ /16 (1554)	134 ¹³ /32 (3414)
30 (762	2) 36 (914)	(Prefix)-30-36-HT*	40 ³ /16	(1021)	86 ¹³ /32 (2195)	52 ³ /16 (1326	i) 110 ¹³ /32 (2804)	64 ³ /16 (1631)	134 ¹³ /32 (3414)


For 4" Fittings

(Radius 12", 24" & 36" W1 tray widths - 6" thru 30") W2 tray widths - 9" thru 36") Polyester, Vinyl Ester All radius are mitered


For 6" Fittings

(Radius 12", 24" & 36" W1 tray widths - 6" thru 30") W2 tray widths - 9" thru 36") Polyester, Vinyl Ester All radius are mitered

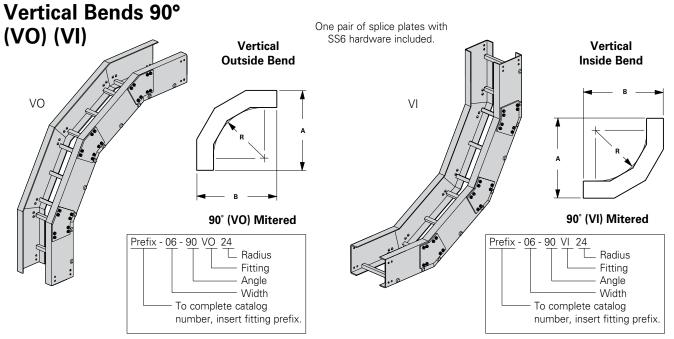

Horizontal Expanding/Reducing Cross (HX)

Three pair of splice plates with SS6 hardware included.

Mitered

⁽Prefix) See page M-20 for catalog number prefix. Dimensions for reference only, when critical contact factory.

Mitered Fittings


Tray	Width	Catalog No.	12	2" Rad	ius (305)		24" Rad	ius (609)	36" Rad	ius (914)
W ₁ in. (mm)	W ₂ in. (mm)	* Insert radius (12", 24" or 36")	A in.	(mm)	B in.	(mm)	A in. (mm)	B in. (mm)	A in. (mm)	B in. (mm)
9 (228)	6 (152)	(Prefix)-09-06-HX*	28 ³ /16	(716)	59 ¹³ /32	(1509)	40 ³ /16 (1021)	83 ¹³ /32 (2118)	52 ³ /16 (1326)	107 ¹³ /32 (2728)
10 (005)	6 (152)	(Prefix)-12-06-HX*	28 ³ /16	(716)	62 ¹³ /32	(1585)	40 ³ /16 (1021)	86 ¹³ /32 (2195)	52 ³ /16 (1326)	110 ¹³ /32 (2804)
12 (305)	9 (228)	(Prefix)-12-09-HX*	29 ¹¹ /16	(754)	62 ¹³ /32	(1585)	41 ¹¹ /16 (1059)	86 ¹³ /32 (2195)	53 ¹¹ /16 (1364)	110 ¹³ /32 (2804)
	6 (152)	(Prefix)-18-06-HX*	28 ³ /16	(716)	68 ¹³ /32	(1737)	40 ³ /16 (1021)	92 ¹³ /32 (2347)	52 ³ /16 (1326)	116 ¹³ /32 (2957)
18 (457)	9 (228)	(Prefix)-18-09-HX*	29 ¹¹ /16	(754)	68 ¹³ /32	(1737)	41 ¹¹ /16 (1059)	92 ¹³ /32 (2347)	53 ¹¹ /16 (1364)	116 ¹³ /32 (2957)
	12 (305)	(Prefix)-18-12-HX*	31 ³ /16	(792)	68 ¹³ /32	(1737)	43 ³ /16 (1097)	92 ¹³ /32 (2347)	55 ³ /16 (1402)	116 ¹³ /32 (2957)
	6 (152)	(Prefix)-24-06-HX*	28 ³ /16	(716)	74 ¹³ /32	(1890)	40 ³ /16 (1021)	98 ¹³ /32 (2499)	52 ³ /16 (1326)	122 ¹³ /32 (3109)
	9 (228)	(Prefix)-24-09-HX*	29 ¹¹ /16	(754)	74 ¹³ /32		41 ¹¹ /16 (1059)	98 ¹³ /32 (2499)	53 ¹¹ /16 (1364)	122 ¹³ /32 (3109)
24 (609)	12 (305)	(Prefix)-24-12-HX*	31 ³ /16	(792)	74 ¹³ /32	(1890)	43 ³ /16 (1097)	98 ¹³ /32 (2499)	55 ³ /16 (1402)	122 ¹³ /32 (3109)
	18 (457)	(Prefix)-24-18-HX*	34 ³ /16	(869)	74 ¹³ /32	(1890)	46 ³ /16 (1173)	98 ¹³ /32 (2499)	58 ³ /16 (1478)	122 ¹³ /32 (3109)
	6 (152)	(Prefix)-30-06-HX*	28 ³ /16	(716)	80 ¹³ /32	(2042)	40 ³ /16 (1021)	104 ¹³ /32 (2652)	52 ³ /16 (1326)	128 ¹³ /32 (3261)
	9 (228)	(Prefix)-30-09-HX*	29 ¹¹ /16	(754)	80 ¹³ /32	(2042)	41 ¹¹ /16 (1059)	104 ¹³ /32 (2652)	53 ¹¹ /16 (1364)	128 ¹³ /32 (3261)
30 (762)	12 (305)	(Prefix)-30-12-HX*	31 ³ /16	(792)	80 ¹³ /32	(2042)	43 ³ /16 (1097)	104 ¹³ /32 (2652)	55 ³ /16 (1402)	128 ¹³ /32 (3261)
	18 (457)	(Prefix)-30-18-HX*	34 ³ /16	(869)	80 ¹³ /32	(2042)	46 ³ /16 (1173)	104 ¹³ /32 (2652)	58 ³ /16 (1478)	128 ¹³ /32 (3261)
	24 (609)	(Prefix)-30-24-HX*	37 ³ /16	(945)	80 ¹³ /32	(2042)	49 ³ /16 (1250)	104 ¹³ /32 (2652)	61 ³ /16 (1554)	128 ¹³ /32 (3261)
	6 (152)	(Prefix)-36-06-HX*	28 ³ /16	(716)	86 ¹³ /32	(2195)	40 ³ /16 (1021)	110 ¹³ /32 (2804)	52 ³ /16 (1326)	134 ¹³ /32 (3414)
	9 (228)	(Prefix)-36-09-HX*	29 ¹¹ /16	(754)	86 ¹³ /32	(2195)	41 ¹¹ /16 (1059)	110 ¹³ /32 (2804)	53 ¹¹ /16 (1364)	134 ¹³ /32 (3414)
36 (914)	12 (305)	(Prefix)-36-12-HX*	31 ³ /16	(792)	86 ¹³ /32	(2195)	43 ³ /16 (1097)	110 ¹³ /32 (2804)	55 ³ /16 (1402)	134 ¹³ /32 (3414)
36 (914)	18 (457)	(Prefix)-36-18-HX*	34 ³ /16	(869)	86 ¹³ /32	(2195)	46 ³ /16 (1173)	110 ¹³ /32 (2804)	58 ³ /16 (1478)	134 ¹³ /32 (3414)
	24 (609)	(Prefix)-36-24-HX*	37 ³ /16	(945)	86 ¹³ /32	(2195)	49 ³ /16 (1250)	110 ¹³ /32 (2804)	61 ³ /16 (1554)	134 ¹³ /32 (3414)
	30 (762)	(Prefix)-36-30-HX*	40 ³ /16	(1021)	86 ¹³ /32	(2195)	52 ³ /16 (1326)	110 ¹³ /32 (2804)	64 ³ /16 (1631)	134 ¹³ /32 (3414)

For 4" Fittings

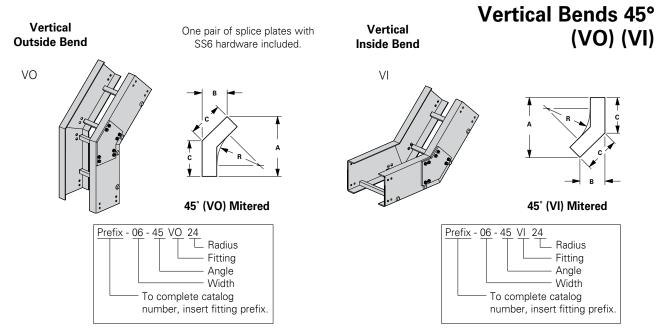
(Radius 12", 24" & 36" W1 tray widths - 9" thru 36") W2 tray widths - 6" thru 30") Polyester, Vinyl Ester All radius are mitered

For 6" Fittings

(Radius 12", 24" & 36" W1 tray widths - 9" thru 36") W2 tray widths - 6" thru 30") Polyester, Vinyl Ester All radius are mitered

(Prefix) See page M-20 for catalog number prefix. Dimensions for reference only, when critical contact factory.

- R -				90° M	litered
Bend		ray		VO & V	/I Bend
Radius in. (mm)	Wi in.	idth (mm)	Catalog No.	A in. / (mm)	B in. / (mm)
	6	(152)	(Prefix)-06-90(*)12		
	9	(228)	(Prefix)-09-90(*)12		
	12	(305)	(Prefix)-12-90(*)12		
12 (305)	18	(457)	(Prefix)-18-90(*)12	27 5⁄32	27 ⁵ ⁄32
12 (000)	24	(609)	(Prefix)-24-90(*)12	(690)	(690)
	30	(762)	(Prefix)-30-90(*)12	(<i>i</i>)	
	36	(914)	(Prefix)-36-90(*)12		
	6	(152)	(Prefix)-06-90(*)24		
	9	(228)	(Prefix)-09-90(*)24		
	12	(305)	(Prefix)-12-90(*)24		
24 (609)	18	(457)	(Prefix)-18-90(*)24	36 ²³ ⁄32	36 ²³ /32
(,	24	(609)	(Prefix)-24-90(*)24	(933)	(933)
	30	(762)	(Prefix)-30-90(*)24		
	36	(914)	(Prefix)-36-90(*)24		
	6	(152)	(Prefix)-06-90(*)36		
	9	(228)	(Prefix)-09-90(*)36		
	12	(305)	(Prefix)-12-90(*)36		
36 (914)	18	(457)	(Prefix)-18-90(*)36	44 ²⁹ ⁄32	44 ²⁹ /32
	24	(609)	(Prefix)-24-90(*)36	(1141)	(1141)
	30	(762)	(Prefix)-30-90(*)36		
	36	(914)	(Prefix)-36-90(*)36		


For 4" Fittings

(Radius 12", 24" & 36" Tray widths - 6" thru 36") Polyester, Vinyl Ester All radius are mitered

For 6" Fittings

(Radius 12", 24" & 36" Tray widths - 6" thru 36") Polyester, Vinyl Estert All radius are mitered

(*) Insert 'VO' for Vertical Outside Bend or 'VI' for Vertical Inside Bend.

(Prefix) See page M-20 for catalog number prefix. Dimensions for reference only, when critical contact factory.

_				45° Mitered			
- R - Bend	Tra	av.		VO & VI Bend			
Radius	Tray Width in. mm		Catalog No.	A in. / (mm)	B in. / (mm)	C in. / (mm)	
	6	(152)	(Prefix)-06-45(*)12				
	9	(228)	(Prefix)-09-45(*)12				
	12	(305)	(Prefix)-12-45(*)12	23 ¹ ⁄16	9 ⁹ ⁄16	13 ¹ /2	
12 (305)	18	(457)	(Prefix)-18-45(*)12	(585)	(242)	(343)	
	24	(609)	(Prefix)-24-45(*)12	(000)	(242)	(343)	
	30	(762)	(Prefix)-30-45(*)12				
	36	(914)	(Prefix)-36-45(*)12				
	6	(152)	(Prefix)-06-45(*)24				
	9	(228)	(Prefix)-09-45(*)24				
	12	(305)	(Prefix)-12-45(*)24	001/	99/16	1016	
24 (609)	18	(457)	(Prefix)-18-45(*)24	23 ¹ ⁄16 (585)	9%16 (242)	13 ¹ /2 (343)	
	24	(609)	(Prefix)-24-45(*)24	(000)	(242)	(343)	
	30	(762)	(Prefix)-30-45(*)24				
	36	(914)	(Prefix)-36-45(*)24				
	6	(152)	(Prefix)-06-45(*)36				
	9	(228)	(Prefix)-09-45(*)36				
	12	(305)	(Prefix)-12-45(*)36	0.01/		101/	
36 (914)	18	(457)	(Prefix)-18-45(*)36	23 ¹ /16	9 ⁹ /16	13 ¹ /2	
	24	(609)	(Prefix)-24-45(*)36	(585)	(242)	(343)	
	30	(762)	(Prefix)-30-45(*)36				
	36	(914)	(Prefix)-36-45(*)36				

For 4" Fittings

(Radius 12", 24" & 36" Tray widths - 6" thru 36") Polyester, Vinyl Ester All radius are mitered

For 6" Fittings

(Radius 12", 24" & 36" Tray widths - 6" thru 36") Polyester, Vinyl Ester All radius are mitered

(*) Insert 'VO' for Vertical Outside Bend or 'VI' for Vertical Inside Bend.

 60° and 30° vertical bends available in mitered construction.

Covers

Material Thickness: .090" (2.3) Cover Length: 10' (3m) Standard Mounting Hardware: (10 each) #10 x ³/4" stainless, self drilling screws provided with each section

Covers	F C - 24 - 120 Length or fitting description Width Rail design Material
🔴 FV	C - 24 - 120=Flat polyesterC - 24 - 120=Flat vinyl esterC - 24 - 120=Peaked polyester

Peaked Cover provides 1 to 3.7 pitch Peaked covers available for straight sections only. No Hardware provided.

Quantity of Standard Cover Clamps Required

Straight Section 60" or 72" 4 pcs.
Straight Section 120" or 144" 6 pcs.
Horizontal/Vertical Bends 4 pcs.
Tees
Crosses
Reducers 4 pcs.
Note: When using the Heavy Duty Cover Clamp, only

one-half the number of clamps stated above is required.

Standard Cover Clamp• Furnished in pairs with hardware. $\overrightarrow{(nm)}$ 9(Δ)-901339(Δ)-901339(Δ)-901449(Δ)-901669(Δ)-90166

Heavy Duty Cover Clamp Recommended for outdoor service.		Catalog No.	Side Ra in.	ail Height (mm)
 W = tray width 		9F-W-9034	3	(76)
 Heavy duty cover clamp available 		9F-W-9044	4	(101)
for flat covers only		9F-W-9064	6	(152)
	A A A	9F-W-9084	8	(203)
Peaked Cover Clamp		Catalog No.	Side Ra	ail Height

• W = tray width

Sold individually.

• Shipped in packages of 25 pcs.

Thermo Plastic Drive Rivet

Catalog No.

(mm)

(76)

(101)

(152)

(203)

in.

3

4

6

8

9F-W-9034P

9F-W-9044P

9F-W-9064P

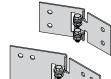
9F-W-9084P

• TPDR

Material Designations

- (Δ) Insert one of the following material designations when required.
- F = Polyester Resin (Example: 9F-9013)
- FV = Vinyl Ester Resin (Example: 9FV-9013)

Check with B-Line Technical Support (<u>blinetechnicalsupport@eaton.com</u>) if there are questions/concerns about environmental loads for covers (wind, snow, sleet, rain, etc.).

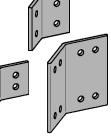

Green = Fastest shipped items
 Black = Normal lead-time items
 Red = Normally long lead-time items

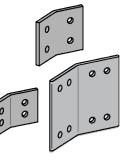
Part Number with Hardware Explanation	Hardwa		Stainless Steel
Note: All hardware is ³/8" Example: 9F-4004 SS6: pair of 4-hole splice plates for 4" (101) system with stainless	Optior	ו	SS6
steel hardware			
9FV-8006 SS6: pair of 8-hole vinyl ester splice plates for 6" (152) system with	stainless ste	el hardwar	9
Standard Lay-In Splice Plates	Material	Height	Catalog No.
Furnished in pairs with 316 stainless steel hardware		in. (mm)	
• One pair including hardware provided with straight section.		3" (76)	9(∆)-4003SS6
00	Fiberglass	4" (101)	9(∆)-4004SS6
00	-	6" (152)	9(∆)-8006SS6
		8" (203)	9(∆)-8008SS6
Expansion Lay-In Splice Plates	Material	Height	Catalog No.
Furnished in pairs with 316 stainless steel hardware		in. (mm)	
Requires supports within 24" on both sides, per		3" (76)	9(∆)-4013SS6
VEMA VE 2.	Fiberglass	4" (101)	9(∆)-4014SS6
	i iberglass	6" (152)	9(∆)-8016SS6
		8" (203)	9(∆)-8018SS6
Fray to Box Splice Plates These plates are used to attach the end of a	Material	Height	Catalog No.
ray run to a distribution box or control center.	material	in. (mm)	outding ito.
• Furnished in pairs with	Fiberglass	3" (76)	9(∆)-4053SS6
316 stainless steel hardware		4" (101)	9(∆)-4054SS6
		6" (152)	9(∆)-8056SS6
		8" (203)	9(∆)-8058SS6
Sten Deur Splice Blotes	11.5	b - a	Cotolo a No
Step Down Splice Plates Material These plates are offered for connecting cable tray 0 °	Height in. (mm)		Catalog No.
sections having side rails of different heights.	8" to 6" (203 to 152)	9(Δ)-8086SS6
• Furnished in pairs with 316 stainless steel hardware	8" to 4" (203 to 101)	9(∆)-8084SS6
Fiberglass	6" to 3"	(152 to 76)	9(∆)-8063SS6
	6" to 4" (152 to 101)	9(∆)-8064SS6
	4" to 3"	(101 to 76)	9(∆)-4043SS6
Blind End Plate			
		leight n. (mm)	Catalog No.
This plate forms a closure for any tray that dead ends.	In		(Δ)-1083-WSS6
This plate forms a closure for any tray that dead ends.	3	" (76) 9	
This plate forms a closure for any tray that dead ends. Furnished as one plate W = tray width	3		(∆)-1084-WSS6
This plate forms a closure for any tray that dead ends. Furnished as one plate W = tray width	3	" (101) 9	(∆)-1084-WSS6 (∆)-1086-WSS6
his plate forms a closure for any tray that dead ends. Furnished as one plate W = tray width	iberglass	" (101) 9 " (152) 9	
This plate forms a closure for any tray that dead ends. Furnished as one plate W = tray width Resin Seal Kit To reseal fiberglass after field modifications.	iberglass	" (101) 9 " (152) 9	(∆)-1086-WSS6 (∆)-1088-WSS6
This plate forms a closure for any tray that dead ends. Furnished as one plate W = tray width Resin Seal Kit	iberglass	" (101) 9 " (152) 9	(Δ)-1086-WSS6

Horizontal Adjustable Splice Plates

These plates provide for changes in the horizontal direction that do not conform to standard fittings.

- Furnished in pairs with 316 stainless steel hardware
- Body made from 316 stainless steel
- Used for all material finishes
- \bullet Requires supports within 24" on both sides, per NEMA VE 2



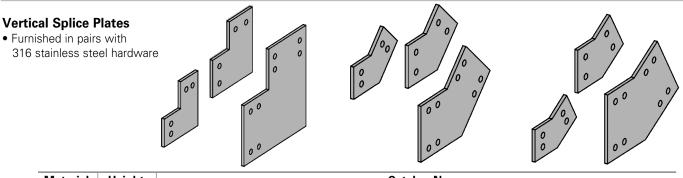

00

Material	Height	Catalog No.
	in. (mm)	
	3" (76)	9F-4033SS6
316SS	4" (101)	9F-4034SS6
31055	6" (152)	9F-8036SS6
	8" (203)	9F-8038SS6

Horizontal Splice Plates

• Furnished in pairs with 316 stainless steel hardware

Material	Height		Catalog No.		
	in. (mm)	90°	45°	30°	
	3" (76)	9(∆)-4903HSS6	9(∆)-4453HSS6	9(∆)-4303HSS6	
Elle e se la ca	4" (101)	9(∆)-4904HSS6	9(∆)-4454HSS6	9(∆)-4304HSS6	
Fiberglass	6" (152)	9(∆)-8906HSS6	9(∆)-8456HSS6	9(∆)-8306HSS6	
	8" (203)	9(∆)-8908HSS6	9(∆)-8458HSS6	9(∆)-8308HSS6	


Vertical Adjustable Splice Plates

These plates provide for changes in elevation that do not conform to standard vertical fittings.

- Furnished in pairs with
- 316 stainless steel hardwareRequires supports within 24" on both sides, per NEMA VE 2

00

Material	Height	Catalog No.
	in. (mm)	
	3" (76)	9(∆)-4023SS6
Fiberalese	4" (101)	9(∆)-4024SS6
Fiberglass	6" (152)	9(∆)-8026SS6
	8" (203)	9(∆)-8028SS6

Material	Height		Catalog No.		
	in. (mm)	90°	45°	30°	
	3" (76)	9(∆)-4903VSS6	9(∆)-4453VSS6	9(∆)-4303VSS6	
Fiberglass	4" (101)	9(∆)-4904VSS6	9(∆)-4454VSS6	9(∆)-4304VSS6	
Fiberglass	6" (152)	9(∆)-8906VSS6	9(∆)-8456VSS6	9(∆)-8306VSS6	
	8" (203)	9(∆)-8908VSS6	9(∆)-8458VSS6	9(∆)-8308VSS6	

(Δ) See page M-31 for material selection

Ladder Drop-Out

• 4" (101) radius

Specially-designed Ladder Drop-Outs provide a rounded surface with adequate radius to protect cable as it exits from the tray, preventing damage to insulation.

Catalog No. 9(∆)-1104-W

Side Rail Height

in. (mm)

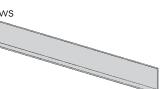
(101)

Catalog No.

9F-1208

3" (76)

4"


6" (152)

8" (203)

W = tray width
Furnished with #10 x ³/₄" self-drilling stainless steel screws

Barriers

• Furnished with #10 x 3/4" self-drilling stainless steel screws

J.

.

Catalog	Side Rail Height		
No.	in. (mm)		
72(∆)-120	3" (76)		
73(∆)-120	4" (101)		
75(∆)-120	6" (152)		
77(∆)-120	8" (203)		

Catalog

No.

72(∆)-90HBFL

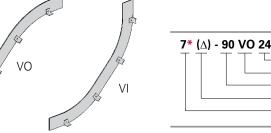
73(∆)-90HBFL

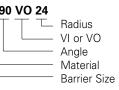
75(∆)-90HBFL

77(∆)-90HBFL

Flexible Horizontal Barrier Kit

One kit allows up to a 36" (914) radius position of the barrier.

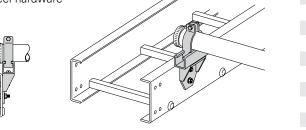

Kit Contents:


- 1 pc 72" (1829) Straight Barrier
- 4 pc 9F-9002 Barrier Strip Clip
- 8 pc Thermo Plastic Drive Rivet
- 4 pc #10 x ¾" Stainless Steel Self-Drilling Screw Assembly required directions included.

Vertical Bend Barriers

• Furnished with #10 x 3/4" self-drilling stainless steel screws

- * Insert 2 for 3" (76) siderail height
 - 3 for 4" (101) siderail height
 - 5 for 6" (152) siderail height

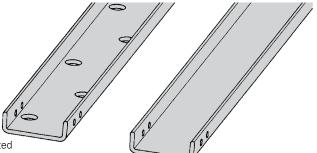


Clamp/Guide - Fiberglass

- Nonmetallic
- Designed for 3/8" hardware not included
- Combination hold down clamp and guide
- Material: Glass reinforced polyurethane
- Sold in pairs

Fiberglass Conduit to Cable Tray Adapter

- For rigid or PVC conduit
- Furnished in pairs with 316 stainless steel hardware



Catalog	Conduit Size in. (mm)		
No.			
9FV-2008	0.50	(15)	
9FV-2009	0.75	(20)	
9FV-2010	1.00	(25)	
9FV-2011	1.25	(32)	
9FV-2012	1.50	(40)	
9FV-2013	2.00	(50)	
9FV-2014	2.50	(65)	
9FV-2015	3.00	(80)	
9FV-2016	3.50	(90)	
9FV-2017	4.00	(100)	

(Δ) See page M-31 for material selection

Straight Section

- Load data was interpolated from CSA testing.
- Loads shown are for FCCN series.
- Loads shown are for 6 ft. (1.83m) span with deflection of .7 (18.26) inches.
- One pair of splice plates included with each straight section.

FCC Fiberglass	
Cable Channel Ventila	ted

FCCN Fiberglass Cable Channel Non-Ventilated

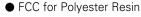
Cata	log No.	Width	Length	Height	Load
Ventilated	Non-Ventilated	in. (mm)	ft. (m)	in. (mm)	Lbs/Ft (kg/m)
(*)-03-120	(*)N-03-120	3 (76)	10 (3)	1 (25)	8 (12)
(*)-03-240	(*)N-03-240	3 (76)	20 (6)	1 (25)	8 (12)
(*)-04-120	(*)N-04-120	4 (101)	10 (3)	1 ¹ ⁄8 (28)	12 (18)
(*)-04-240	(*)N-04-240	4 (101)	20 (6)	1 ¹ ⁄8 (28)	12 (18)
(*)-06-120	(*)N-06-120	6 (152)	10 (3)	1 ⁵ ⁄8 (35)	58 (86)
(*)-06-240	(*)N-06-240	6 (152)	20 (6)	15⁄8 (35)	58 (86)
(*)-08-120	(*)N-08-120	8 (203)	10 (3)	2 ³ ⁄16 (55)	87 (129)
(*)-08-240	(*)N-08-240	8 (203)	20 (6)	2 ³ ⁄16 (55)	87 (129)

Cable Channel Fittings

All fittings are of mitered construction with 12" (305) radius.

Horizontal	3" series	4" series	6" series	8" series
90° (*)N-03-90HB12	(*)N-04-90HB12	(*)N-06-90HB12	(*)N-08-90HB12
45° (*)N-03-45HB12	(*)N-04-45HB12	(*)N-06-45HB12	(*)N-08-45HB12

One pair of splice plates included.


VO PO PO CO
· · · · · · · · · · · · · · · · · · ·

..]

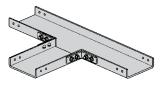
Vertical	3" series	4" series	6" series	8" series
90°	(*)N-03-90V*12	(*)N-04-90V*12	(*)N-06-90V*12	(*)N-08-90V*12
45°	(*)N-03-45V*12	(*)N-04-45V*12	(*)N-06-45V*12	(*)N-08-45V*12

One pair of splice plates included.

(*) Insert material type

FCCV for Vinyl Ester Resin

Green = Fastest shipped items
Black = Normal lead-time items
Red = Normally long lead-time items


Fiberglass - Cable Channel Fittings & Accessories

Horizontal Tees

Horizontal Crosses

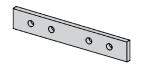
• Two pair of splice plates included.

• Three pair of splice plates included.

Catalog No.	Width in. (mm)			
FCC(*)N-03-HT12	3 (76)			
FCC(*)N-04-HT12	4 (101)			
FCC(*)N-06-HT12	6 (152)			
FCC(*)N-08-HT12	8 (203)			

(*) See page fitting material selection bottom of page M-35

All fittings are of mitered construction with 12" (305) radius.


Catalog No. FCC(*)N-03-HX12 FCC(*)N-04-HX12 FCC(*)N-06-HX12 FCC(*)N-08-HX12

All fittings are of mitered construction with 12" (305) radius.

(*) See page fitting material selection bottom of page M-35

Splice Plates

- Sold in pairs included with tray sections.
- Uses 1/4"-20 316SS hardware

Catalog No.
9(∆)-1001SS6

Width

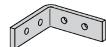
in. (mm)

3 (76)


4 (101)

6 (152)

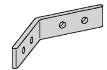
8 (203)


Expansion Splice Plates

- Sold in pairs
- Uses 1/4"-20 316SS hardware

Horizontal 90° Splice Plates

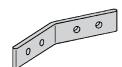
- Sold in pairs
- Uses ¹/4"-20 316SS hardware


Catalog No. 9(∆)-1901HSS6

Catalog No. 9(∆)-1013SS6

Fiberglass

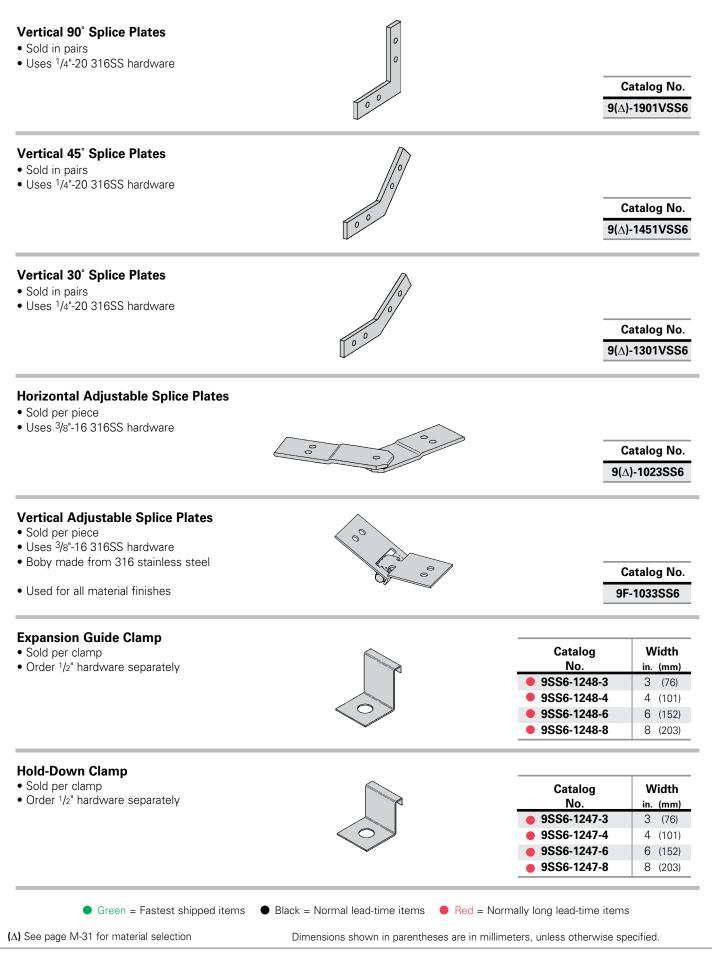
Horizontal 45° Splice Plates


- Sold in pairs
- Uses 1/4"-20 316SS hardware

Catalog No. 9(∆)-1451HSS6

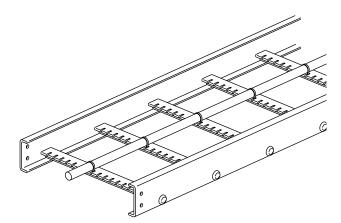
Horizontal 30° Splice Plates

- Sold in pairs
- Uses 1/4"-20 316SS hardware


Catalog No. 9(∆)-1301HSS6

Splice plates included with cable channel sections. Hardware for splice plates is ¹/4"-20 (316SS).

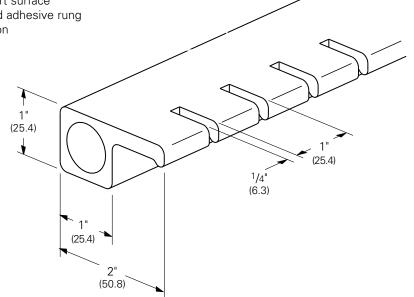
(Δ) See page M-31 for material selection


Dimensions shown in parentheses are in millimeters, unless otherwise specified.

Fiberglass - Cable Channel Accessories

Fiberglass

Marine Rung Cable Tray/Fiberglass



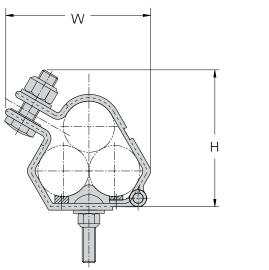
Features:

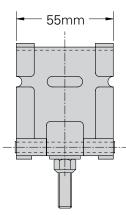
- For Coast Guard Requirements
 - Allows stainless steel banding of cables
 - ⁵/32" (15.9) slots 1" (25.4) on centers
 - Accommodates up to 5/8" (15.9) banding
- Has applications on land
 - Vertical installation
- Any location where extra cable positioning is required
- Designed for Earton's B-Line series Fiberglass Cable Trays
- Part Number Indication
 - Add MR after rung spacing
 - Example: 46F09MR-36-240

Rung design provides:

- 2" (50.8) cable support surface
- Both mechanical and adhesive rung to side rail connection

Dimensions shown in parentheses are in millimeters, unless otherwise specified.


Cable Cleats



Trefoil Cable Cleat with LSF Pad

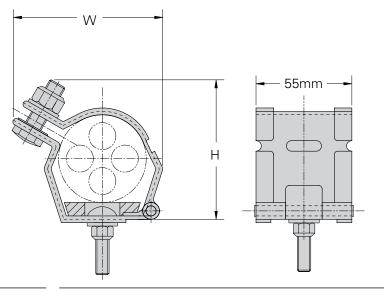
- 1. Recommended for installations where the highest levels of short circuit withstand are required.
- 2. Short circuit current tested in accordance with BS EN/IEC 61914 standard.
- 3. Available for single and trefoil cable applications.
- 4. LSF-pad incorporates an integral low smoke, low fume, zero halogen pad.
- 5. Hardware to attach cleat to rung attachment bracket is included with cleat. Bracket must be ordered separately.

Cable Cleats

BS EN/IEC 61914 (Cable Cleats for Electric Installations) Classification

Classi	
Cleat Type	Composite
Resistance to Electromechanical Force	130 kA peak / 50 kA RMS 600 mm spacing
Lateral Load Test	3.439 kg average
Axial Load Test	Pass
Operating Temperature Range	-40°C to +60°C
Impact Resistance	Very Heavy
Needle Flame Test	30 seconds

	Cable Ra	nge (mm)	Dimensions (mm)			
Part No.	Min. Dia.	Max. Dia.	H W			
9SS6-CCT1323	13	22	74	66		
9SS6-CCT2125	21	25	77	70		
9SS6-CCT2329	23	29	81	78		
9SS6-CCT2531	25	31	84	81		
9SS6-CCT2733	27	33	86	83		
9SS6-CCT2935	29	35	90	89		
9SS6-CCT3238	32	38	94	95		
9SS6-CCT3541	35	41.5	98	100		
9SS6-CCT3844	38	44.5	101	104		
9SS6-CCT4248	42	48	105	111		
9SS6-CCT4551	45	51	109	117		
9SS6-CCT4753	47	53	111	120		
9SS6-CCT4955	49	55	114	124		
9SS6-CCT5157	51	57	116	127		
9SS6-CCT5359	53	59	119	133		
9SS6-CCT5561	55	61	127	137		
9SS6-CCT5763	57	63	126	140		
9SS6-CCT5965	59	65	128	144		
9SS6-CCT6167	61	67	132	147		
9SS6-CCT6369	63	69	136	150		


	Technical Specifications
Frame	50mm x 2mm Marine grade, Non-magnetic 316L
Closure Hardware	Captive 316 Stainless Steel M8 or M10 (M12 available) bolt and nylon-lock nut (Optional Hex Flange Lock Nut available)
Integral Pad	Low Smoke, Low Fume, Zero Halogen
Tools Required	Impact Wrench
Mounting Bolt	Provided with Cable Cleat

	Cable Ra	nge (mm)	Dimensions (mm)			
Part No.	Min. Dia.	Max. Dia.	н	w		
9SS6-CCT6571	65	71	140	153		
9SS6-CCT6773	67	73	143	156		
9SS6-CCT6975	69	75	147	160		
9SS6-CCT7177	71	77	151	163		
9SS6-CCT7379	73	79	154	166		
9SS6-CCT7581	75	81	158	169		
9SS6-CCT7783	77	83	161	173		
9SS6-CCT7985	79	85	164	176		
9SS6-CCT8187	81	87	169	179		
9SS6-CCT8389	83	89	173	182		
9SS6-CCT8692	86	92	177	187		
9SS6-CCT8896	88	96	181	192		
9SS6-CCT9199	91	99	185	196		
9SS6-CCT96103	96	103	190	201		
9SS6-CCT99107	99	107	194	202		
9SS6-CCT103111	103	111	199	204		
9SS6-CCT107115	SS6-CCT107115 107	S6-CCT107115 107 115	115	203	208	
9SS6-CCT111119	111	119	208	213		
9SS6-CCT115123	115	123	213	217		
9SS6-CCT119128	119	128	217	221		

Single Cable Cleat with LSF Pad

- 1. Recommended for installations where the highest levels of short circuit withstand are required.
- 2. Short circuit current tested in accordance with BS EN/IEC 61914 standard.
- 3. Available for single and trefoil cable applications.
- 4. LSF-pad incorporates an integral low smoke, low fume, zero halogen pad.
- 5. Hardware to attach cleat to rung attachment bracket is included with cleat. Bracket must be ordered separately.

BS EN/IEC 61914 (Cable Cleats for Electric Installations) Classification

Cleat Type	Composite
Resistance to Electromechanical Force	130 kA peak / 50 kA RMS 600 mm spacing
Lateral Load Test	3.439 kg average
Axial Load Test	Pass
Operating Temperature Range	-40°C to +60°C
Impact Resistance	Very Heavy
Needle Flame Test	30 seconds

	Cable Ra	nge (mm)	Dimensions (mm)			
Part No.	Min. Dia.	Max. Dia.	н	w		
9SS6-CCS2832	28	32	61	55		
9SS6-CCS3034	30	34	63	57		
9SS6-CCS3236	32	36	65	59		
9SS6-CCS3438	34	38	67	61		
9SS6-CCS3640	36	40	71	63		
9SS6-CCS3842	38	42	69	65		
9SS6-CCS4044	40	44	71	67		
9SS6-CCS4246	42	46	72	69		
9SS6-CCS4448	44	48	74	71		
9SS6-CCS4650	46	50	75	73		
9SS6-CCS4852	48	52	77	75		
9SS6-CCS5054	50	54	79	77		
9SS6-CCS5256	52	56	80	79		
9SS6-CCS5458	54	58	81	81		
9SS6-CCS5660	56	60	83	83		
9SS6-CCS5862	58	62	85	85		
9SS6-CCS6064	60	64	86	87		
9SS6-CCS6266	62	66	88	89		
9SS6-CCS6468	64	68	90	91		
9SS6-CCS6670	66	70	91	93		

Technical Specifications								
Frame 50mm x 2mm Marine grade, Non-magnetic 316L								
Closure Hardware	Captive 316 Stainless Steel M8 or M10 (M12 available) bolt and nylon-lock nut (Optional Hex Flange Lock Nut available)							
Integral Pad	Low Smoke, Low Fume, Zero Halogen							
Tools Required	Impact Wrench							
Mounting Bolt	Provided with Cable Cleat							

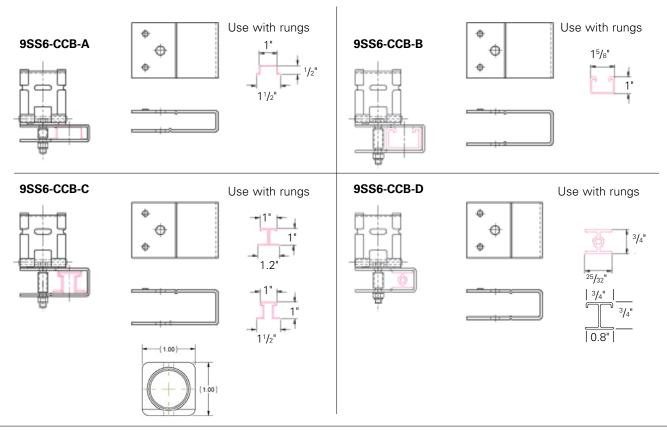
	Cable Ra	nge (mm)	Dimensions (mm)			
Part No.	Min. Dia.	Max. Dia.	Н	W		
9SS6-CCS6872	68	72	93	95		
9SS6-CCS7074	70	74	95	97		
9SS6-CCS7276	72	76	97	99		
9SS6-CCS7478	74	78	99	101		
9SS6-CCS7680	76	80	101	103		
9SS6-CCS7682	76	82	103	105		
9SS6-CCS8084	80	84	105	107		
9SS6-CCS8286	82	86	107	109		
9SS6-CCS8488	84	88	109	111		
9SS6-CCS8690	86	90	110	113		
9SS6-CCS88192	88	192	113	117		
9SS6-CCS9094	90	94	116	120		
9SS6-CCS9296	92	96	126	127		
9SS6-CCS94106	94	106	135	133		
9SS6-CCS100112	100	112	140	139		
9SS6-CCS106118	106	118	145	145		
9SS6-CCS112124	112	124	153	155		
9SS6-CCS118130	118	130	162	165		
9SS6-CCS127139	127	139	161	167		
9SS6-CCS132144	132	144	165	173		
9SS6-CCS138150	138	150	170	179		

Step 1: Know Your Cables

- What type of cable is being used?
 Single or Multi-conductor
- What is the outside diameter of the cable(s)?
- What is the cable arrangement (single conductor cables only)?
 - Flat or Trefoil
- If a ground wire will be installed within the cleat, you will need the ground wire outside diameter.

Step 2: Know Your System

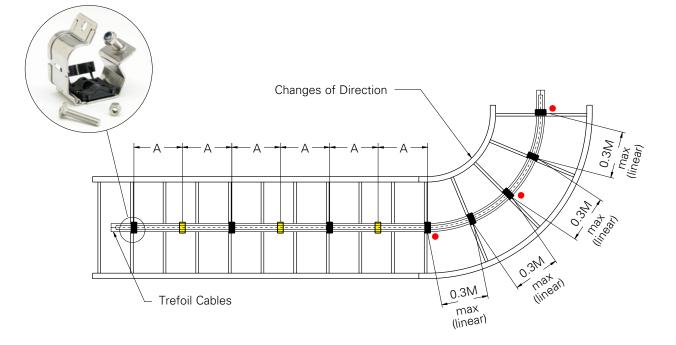
- What is the available short circuit current (RMS or ip (peak))?
- What type of B-Line cable tray is installed?


Step 3: Select Your Cable Cleats

See Pages N-2 & N-3

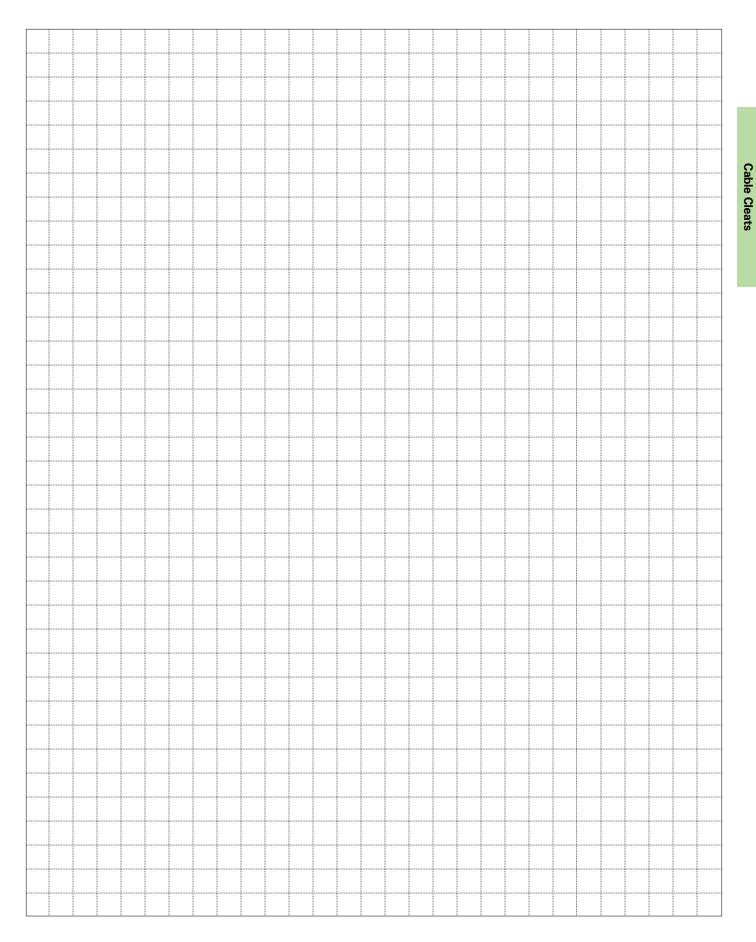
Step 4: Select Your Mounting Bracket

Mounting brackets are used to attach cable cleats to the rungs of the ladder type cable trays. Your tray type will determine the mounting bracket used.


B-Line Tray Types	Mounting Bracket
Steel Series 1 trays with standard rungs	9SS6-CCB-A
Steel trays with strut rungs Aluminum trays with "Marine Rungs"	9SS6-CCB-B
Aluminum welded rung trays with standard rungs. Steel Series 2, 3, 4 or 5, trays with standard rungs Fiberglass trays with standard rungs	9SS6-CCB-C
KwikRail™ cable tray	9SS6-CCB-D

Step 5: Determine Cleat Spacing for Installation

Your cable diameter is equal to the spacing between conductor centers shown below. Find your cable diameter at the top of the table and look down at the column below it. Find the value equal to or greater than the available short circuit for your system.


	Single Conductor Short Circuit Withstand Table												
Max. Cab	le Cleat		Spacing Between Conductor Centers (mm)										
Spacii	ng (A)	23	23 25 27 29 31 33 35 37 39 41 43							43	45		
mm	ln.		i _p peak (kA)										
225	9	179	187	194	203	209	216	220	229	234	240	246	250
300	12	155	163	168	174	181	187	192	198	203	209	214	215
450	18	128	133	137	144	148	152	157	161	165	170	174	178
600	24	110	115	119	124	128	132	135	139	143	148	150	153
675	27	104	108	113	117	121	124	128	132	135	139	143	147
900	36	89	93	97	102	104	108	110	115	117	121	124	127

IMPORTANT: Recommended Installation Procedures

It is important that the cleats are installed properly to secure your cables:

- It is not necessary for every cleat to be attached to the tray. Every other cleat (■) must be attached to the tray system to mount cable in tray. Unattached cleats (□) provide additional restraint to keep cables bundled.
- The bend radius should be 8 to 12 times the cable diameter.
- Cleats should always be installed at the beginning, middle and end of a bend (•), and at no time should the distance between cleats on a bend be more than 0.3M center to center.

Firestop

3M[™][↑] Fire Barrier Self-Locking Pillows

Features & Benefits

- Extremely easy to install saves time and labor
- Easy removal and fully reusable with no blocking or fusing of materials
- No cutting required, no left over debris
- Up to three-hour UL Listed F-Rating
- UL Listed systems up to 540 sq. in. opening
- Passes hose stream test without cumbersome wire mesh
- Smoke seal tested and listed
- Listed for blank or filled openings in gypsum wallboard or concrete
- Available in three (3) sizes
- One (1) or two (2) cable trays per opening

This product will intumesce and lock tightly into place eliminating the prep work of cutting or leaving any messy debris. The resulting barrier retards the transmission of smoke, fire, and toxic gases from spreading between adjacent rooms and floors for the rated time period.

Catalog Number	Туре	Pillow Size in. (mm)
FSP-SLP-S	Small	2" x 4" x 9" (51 x 101 x 228)
FSP-SLP-M	Medium	2" x 6" x 9" (51 x 152 x 228)
FSP-SLP-L	Large	3" x 6" x 9" (76 x 152 x 228)

The following charts give the number of 3M pillows needed to completely firestop an opening that cable tray passes through.* Two (2) sticks of moldable putty (part number FSP-MPS) are also needed for each opening.

	Flex	ctray			Two (2) \$	Side Rail	Cable Tra	ау		Pan	Tray	
		Height				H	eight				Height	
Width	2	4	6	Width	4	5	6	7	Width	4	5	6
2	4			6	8	9	10	11	6	8	9	10
4	5	7		9	11	12	14	15	9	11	12	14
6	6	8		12	13	15	17	19	12	13	15	17
8	7	10	13	18	18	21	24	26	18	18	21	24
12	10	13	17	24	24	27	30	34	24	24	27	30
16	12	17	21	30	29	33	37	41	30	29	33	37
18	13	18	24	36	34	39	44	49	36	34	39	44
20	15	20	26	42	39	45	51	56				
24	17	24	30	48	45	51	57	64				
30	21	29										
36	22											

UL Listed Systems

Concrete Wall - C-AJ-4056 3 HR F-Rating, ³/4 HR T-Rating Gypsum Wall - W-L-4037 1 HR and 2 HR F-Ratings, 0 HR and ¹/2 HR T-Ratings For tray larger than 4" x 24", or a tray style other than ladder tray call

1-800-328-1687 then option 8 to obtain a free engineering judgement letter.

* Number of pillows refers to 3M's medium self-locking pillows (part number FSP-SLP-M) and are based on an opening that is 1.5" larger than the tray on all sides.

Example: For a 4" x 12" tray the recommended opening would be 7" x 15".

3M^{™+} Fire Barrier Moldable Putty+

Features & Benefits

- Pliable. Easy to mold into any shape
- Adheres. Sticks well to most surfaces but not to the applicator's hands
- Conformable. Pads easily conform and adhere to a wide variety of metallic and non-metallic electrical outlet boxes
- UL Listed. Wide range of UL Listed systems
- Ages Well. Excellent aging properties

3M Fire Barrier Moldable Putty+ is a one-part, halogen-free product designed to firestop electrical outlet boxes and a wide variety of through-penetrations including cable, conduit, insulated pipe and metal pipe, which penetrate fire-rated construction.

Catalog Number	Туре	Size in. (mm)
FSP-MPP-4x8	Small Pad	4" x 8" (101 x 203)
FSP-MPP-7x7	Medium Pad	7″ x 7″ (178 x 178)
FSP-MPP-9x9	Large Pad	9 ¹ /2" x 9 ¹ /2" (241 x 241)

3M^{™+} Fire Barrier CS-195+ Composite Sheets

Features & Benefits

- Ideal for fire-stopping blank openings and through-penetrations of multiple cable, pipe ducts, buss ducts and cable trays
- Intumescent
- Lightweight and easy to handle just cut and form to fit
- Easy to install using common trade tools
- Easy to fasten bolt punch or drill through and use self-tapping screws or anchor bolts
- Bottom-of-floor applications available
- No mixing or damming required
- Re-enterable
- Documented aging properties

This organic/inorganic elastomeric sheet is bonded on one side to a layer of 28-gauge galvanized steel. The other side is reinforced with a steel-wire mesh and covered with aluminum foil.

Catalog Number	Туре	Size in. (mm)
		111. (11111)
FSP-CS-16x28	Sheet	16" x 28" (406 x 711)
FSP-CS-28x52	Sheet	28" x 52" (711 x 1320)
FSP-CS-36x24	Sheet	36" x 24" (914 x 609)
FSP-CS-36x36	Sheet	36" x 36" (914 x 914)
FSP-CS-36x41	Sheet	36" x 41" (914 x 1041)

[†] 3M[™] is a registered trademark of the 3M Company

3M^{™†} Fire Barrier Quick Pass Devices

Features & Benefits

- Hinged for existing cables
- Stackable for multiple penetrations
- Optional mounting brackets single or triplex
- Install before or after gypsum wall assembly
- Easily identified red color
- Quick to pass cables
- JCAHO and NFPA Life Safety Code 101 compliant
- UL Classified 1, 2 and 3 hour fire (F) and temperature (T) rating
- UL Classified L rating, Hot and Cold Smoke Seal
- ULC

The Quick Pass Device makes installation and retrofitting a snap. Simply follow the instructions located on the product. Use this product in new construction or update your fire protection in a renovation - the optional mounting bracket opens easily allowing retrofit installations. As your needs change, reuse the device for additional cables and wiring.

Catalog Number	Туре	Size
PT2RD	Round Device	2" (25 mm) Round
PT4SD	Square Device	4" (101mm) Square
PT4RD	Round Device	4" (101mm) Round

[†] 3M[™] is a registered trademark of the 3M Company

Firestop

3M[™]⁺ Fire Barrier CP-25WB+ Caulk

SM Fire Barrier SEALANT P 25WBr

Features & Benefits

- Water based easy cleanup and routine disposal with no special handling
- One-part system no mixing or measuring required
- Intumescent and endothermic
- No-sag, non-halogen formula
- Fast drying tack-free in approximately 10 to 15 minutes
- Water-resistant seal
- Paintable
- Documented aging properties

Our premium, intumescent latex/water-based caulk. CP 25WB Caulk can be installed with a standard caulking gun

Catalog Number	Туре
FSP-BC-25	10.1 ounce Tube

3M^{™†} Fire Barrier IC-15WB+ Caulk

Features & Benefits

- Cost effective
- UL tested
- Distinctive yellow color makes inspections easier
- For use as a one-part fire, smoke, noxious gas and water sealant

This is an affordable firestop caulk that helps you stay on budget. Its unique intumescent property allows IC 15WB Caulk to effectively contain fire and smoke at its origin. IC 15WB Caulk can be installed with a standard caulking gun

Catalog Number	Туре
FSP-BC-15	10.1 ounce Tube

3M[™] Aluminum Foil Tape 425

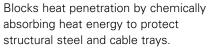
Features & Benefits

- 3-mil aluminum foil
- Acrylic adhesive performs in high temperatures

Designed to seal the cut edges of 3M[™] Interam Mats to complete the total encapsulation.

Catalog Number	Туре
FSP-AT-425	4" (101mm) x 180' (27.5m) Roll
101-41-425	+ (1011111) × 100 (27.511) 1101


[†] 3M[™] is a registered trademark of the 3M Company



3M^{™+} Interam^{™+} E-5 Series Mat

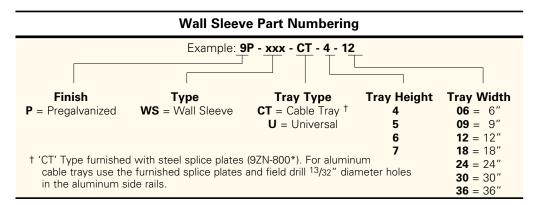
Features & Benefits

- Provides up to three (3) hours of electrical circuit protection
- Made of a combination of organic/inorganic materials
- Outdoor durable
- Endothermic
- Available with a stainless-steel or aluminum backing
- Outstanding performance in high-intensity fires
- Easy to install in new applications or directly over existing fire protection

Catalog Number	Туре
FSP-EMAT	24 ¹ /2" (622mm) x 20' (6.09m) Roll

[†] 3M[™] and Interam[™] are registered trademarks of the 3M Company

Wall Sleeve Kits

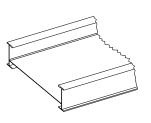


'CT' Type Wall Sleeve Sleeve is 20" long 'U' Type Wall Sleeve WS (Wall Sleeve) shown Sleeve is 20" long

- "CT" Type tray includes two (2) pair 9ZN-800* splice plates with 3/8" zinc plated hardware.
- "U" Type tray does not include splices. Example uses include Wire Basket or Half-Rack.
 - * Insert tray height.

S	1		•	ŝ
1	71	П		١
		U	L	
	•	e 1	-	

Classified by Underwriters Laboratories, Inc. as to it's suitability as an equipment grounding conductor only. 556E

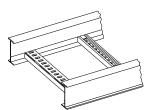

These options are in addition to the Standard Ladder Rungs and Cable Trays.

Marine Rung (Available in Aluminum, HDGAF Steel and Stainless Steel)

- Designed for Series 1 and Series 2-5 systems.
- Special rung design to accommodate stainless steel banding of cables (U.S. Coast Guard requirement) with .438" x .720" slots.
- Has applications on land, vertical installation, any location where extra cable positioning/attachment is required.
- Strut orientation may be channel opening up, channel opening down, or alternating standard is alternating unless specified otherwise.
- New design provides combination of strut fastening and marine rung fastening.

Examples: 46A12MR-36-288 or 464G12MR-36-288

 "MR" Strut rung spaces 12" apart with channel opening down (Note: replace "DN" with "UP" for channel opening up.)


Solid Bottom

- Solid flat sheet welded into the Cable Tray above the rungs.
- Standard rung spacing is 12 inches.
- The flat sheet may be installed over B54 rungs "slot down".

Examples: 24ASB-36-144

Flat sheet bottom over standard rung on 12" spacing.

24ASBB54-36-144 Flat sheet bottom over B54 strut rung slot down on 12" spacing.

(Aluminum Shown)

9A-6006 and 9A-6007 Aluminum Mid-Span Splice

Features

- Standard for H46A, H47A and 57A straight sections.
- Allows random splice location.
- Six bolt design furnished with standard 1/2" Stainless Steel Type 316 hardware.
- Furnished in pairs.
- Available on ladder bottoms only. 09" and 12" rung spacing.

	Tray
Catalog No.	Series
9A-6006	H46A
9A-6007	H47A
9A-6007	57A

Cable Tray:

H46A

Tested to:

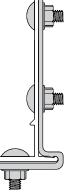
- 167 lbs/ft (safety factor 1.5)
- 125 lbs/ft (safety factor 2.0)
- 20 ft. simple beam test
 - 12" rung spacing 36" wide

Splice:

9A-6006

Tested to:

- 135 lbs/ft (safety factor 1.5)
- 101 lbs/ft (safety factor 2.0)
- 20 ft. simple beam test
 - mid-span splice

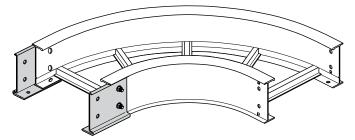

H47A

Tested to:

9A-6007

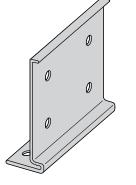
Tested to:

- 149 lbs/ft (safety factor 1.5)
- 112 lbs/ft (safety factor 2.0)
- 20 ft. simple beam test
- 12" rung spacing 36" wide


Also available:

H6A and H7A Fittings
Ladder bottom only (09" RS).
Incorporates the 9A-6006 or 9A-6007 splice.
Example: H6A-12-90HB24 or H7A-12-90HB24

- 143 lbs/ft (safety factor 1.5)107 lbs/ft (safety factor 2.0)
- 20 ft. simple beam test
- mid-span splice


Options: The 9A-6006 and 9A-6007 splice is also available with B-Line 46A and 47A series cable tray systems

- Available on ladder bottoms only (09" and 12" rung spacing).
- Available on 240" (20') or longer span straight sections.
- To order add MS* to part number: Ex. 46AMS09-24-288.
- For standard 6A or 7A fittings with H46A or H47A systems an additional pair of standard splice plates is required (9A-1006 or 9A-1007).

One pair 9A-6006 or 9A-6007 included.

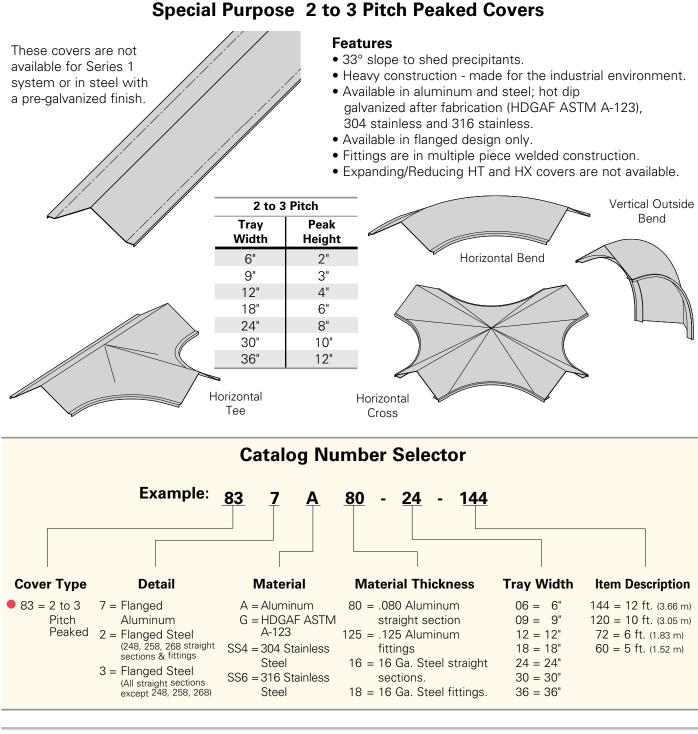
* MS designates additional hole punches in side rail to accept mid-span splices.

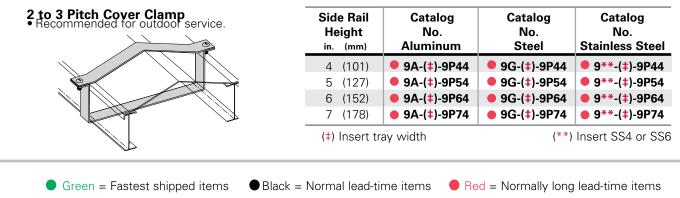
Heavy Duty Expansion Splice Plates 9A-6016 and 9A-6017 (aluminum) 9G-6016 and 9G-6017 (HDG steel) 9SS6-6016 (stainless steel)

The Heavy Duty Expansion Splice Plate is engineered to eliminate the NEMA recommended additional supports at each expansion joint where expansion splice plates are utilized. Expansion splices are common in long-run outdoor applications, where temperature variations result in thermal expansion and contraction of the cable tray system. The installer using the traditional expansion splice would be required to install two supports, one on either side of the expansion splice. By utilizing the Heavy Duty Expansion Splice Plate, no additional supports are required when the splice is placed at quarter span.

- NEMA VE 2 Compliant
- Lowest total cost of installation solution
- "Wrap around" design that supports the side rail on the bottom of each tray section
- Aluminum HD Expansion Splice includes viewing windows to correctly set the thermal expansion gap. See Figure 4.13B on MAN-39 of the cable tray catalog .
- Available in lightweight, marine-grade 6063-T6 aluminum material, hot dip galvanized steel, and stainless steel 316 for easy installation in a variety of applications
- Visit <u>https://www.eaton.com/us/en-us/site-search.searchTerm\$S00015664-series-2-5-aluminum-accessory-splice-heavy-duty-expansion.tabs\$all.html</u> for detailed installation instructions
- Splice plate hardware included
- Furnished in pairs
- Cannot be used with solid bottom or trough bottom styles of cable tray.

Heavy Duty Expansion Splice Plates are currently available with aluminum (46A, 47A, 46A, H46A, H47A & 57A), steel (464, 476 & 574), and stainless steel (464) tray systems. These tray systems are heavy duty ladders that are ideal for long-span, outdoor applications.


Patented: Patent No. US8459604 B2


Options: The 9A-6006 and 9A-6007 splice is also available with B-Line 46A and 47A series cable tray systems

				_
6	Steel Tray Series	Catalog	No.	
	464	9G-6016 or 9S	SS6-6016	
	476	9G-601	7	
	574	9G-601	7	
Steel	Aluminum Tray Series	Catalog No.		
	46A*	9A-6016		
000	H46A	9A-6016		
100	47A*	9A-6017		
	H47A	9A-6017		×
Aluminum	56A	9A-6016	¢.	4
Aldmindum	57A	9A-6017		
	* Additional field of	drilling is required	Alunain	

Note: 24" (609mm) bonding jumper (99-1620-24) available.

Aluminum heavy-duty expansion splice plates shown.

Wiring methods permitted in cable tray per the 2020 NEC®

1.	Armored cable	(Article	320)
2.	Electrical metallic tubing	(Article	358)
3.	Electrical nonmetallic tubing	(Article	362)
4.	Fire alarm cables	(Article	760)
5.	Flexible metal conduit	(Article	348)
6.	Flexible metallic tubing	(Article	360)
7.	Instrumentation tray cable	(Article	727)
8.	Intermediate metal conduit	(Article	342)
9.	Liquidtight flexible metal conduit	(Article	350)
10.	Liquidtight flexible nonmetallic conduit	(Article	356)
11.	Metal-clad cable	(Article	330)
12.	Mineral-insulated, metal-sheathed cable	(Article	332)
13.	Multiconductor service-entrance cable	(Article	338)
14.	Multiconductor underground feeder and branch-circuit cable	(Article	340)
15.	Multipurpose and communications cables	(Article	800)
16.	Nonmetallic-sheathed cable	(Article	334)
17.	Power and control tray cable	(Article	336)
18.	Power-limited tray cable	ind 725.	71(E)
19.	Optical fiber cables	(Article	770)
20.	Other factory-assembled, multiconductor control, signal, or power		
	cables that are specifically approved for installation in cable trays		
21.	Rigid metal conduit	(Article	344)
22.	Rigid nonmetallic conduit	(Article	352)

Appendix - Reference Material - Formulas

Formulas

Allowable load:	$w = \frac{F96Sx}{L^2}$
Deflection:	$\Delta = \frac{5wL^3}{384EIx}$
	$= \frac{5WL^4}{4608EIx}$
• Stress:	$F = \frac{wL^2}{96Sx}$
Deflection Multi	plier (K) = $\frac{\text{deflection}}{W}$
	$= \frac{5L^4}{4608EIx}$
• Max. Working L	oad = <u>Max. deflection</u> Deflection Multiplier

		Legend
W	=	load (lbs/ft)
W	=	total load across span (lbs)
F	=	design stress (lbs/in²)
L	=	span (inches)
Sx	=	section modulus for 2 rails (in³) (see page APP-6 for Sx values)
Е	=	10 million for Alum. (lb/in. ²) 29 million for Steel (lb/in. ²)
lx	=	moment of inertia for 2 rails (in4) (see page APP-6 for Ix values)

Cable Tray Side Rails

				5							
Aluminum	B-Line series	Side Rail Height	А (in.)	В (in.)	C (in.)	D (in.)	E (in.)	Sx (in.₃)	lx (in.₄)	Area (in.²)	Weight (lbs./ft.)
	KRA4A	4	3.86	2.970	.059	1.36	.750	0.450	0.895	0.400	0.467
	KRB4A	4	3.880	2.950	.067	1.36	.750	0.535	1.160	0.494	0.578
	KRB6A	6	5.880	4.950	.067	1.36	.750	0.955	3.080	0.624	0.730
	24	4	4.120	3.050	.060	1.75	.740	0.670	1.430	0.525	0.620
	H24	4	4.185	3.105	.070	1.75	.750	0.785	1.845	0.640	0.745
	34	4	4.200	3.080	.100	1.75	.750	1.050	2.490	0.902	1.060
→ D E ->-	25	5	5.000	3.930	.068	1.75	.748	0.900	2.310	0.620	0.720
	35	5	5.060	3.960	.090	1.75	.745	1.180	3.190	0.857	0.980
	26	6	6.120	5.040	.065	2.00	.745	1.260	3.950	0.698	0.820
	36	6	6.170	5.060	.075	2.00	.725	1.680	5.420	0.903	1.050
	46	6	6.190	5.080	.085	2.00	.650	1.790	6.090	0.989	1.170
▶+	H46	6	6.240	5.090	.130	2.00	.750	2.670	8.650	1.473	1.740
ᢤ_ᠳ	56	6	6.433	5.263	.140	2.12	.760	3.059	11.316	1.185	2.113
	27	7	7.140	6.058	.075	2.00	.725	1.465	5.640	0.810	0.943
	37	7	7.140	6.050	.075	2.00	.750	1.880	6.750	0.904	1.060
	47	7	7.240	6.130	.100	2.00	.675	2.470	8.940	1.189	1.400
	H47	7	7.240	6.090	.125	2.00	.675	3.050	11.460	1.520	1.770
	57	7	7.400	6.230	.160	2.00	.875	3.860	16.430	2.114	2.460
	S8A	8	8.000	6.170	.170	3.00	1.000	7.690	27.670	2.754	3.200

Design	Data	For	Ono	Rail
Design	Data	FUI	One	nali

Steel	B-Line series	Side Rail Height	A (in.)	В (in.)	C (in.)	D (in.)	E (in.)	Sx (in.³)	lx (in.⁴)	Area (in.²)	Weight (Ibs./ft.)
→ D -	148	4	3.625	3.125	.048	.875	_	.250	.450	.251	.840
	156	5	4.188	3.688	.060	.875		.360	.760	.340	1.160
	166	6	5.188	4.688	.060	.750		.460	1.200	.385	1.310
- → 	176	7	6.188	5.688	.060	.750		.640	1.900	.444	1.520
A	248	4	4.188	3.140	.048	1.000	.392	.320	.720	.313	1.170
<u>*</u>	346	4	4.188	3.130	.060	1.500	.655	.480	1.110	.449	1.640
	444	4	4.188	3.110	.075	1.500	.670	.640	1.470	.561	2.020
Series 148-176 Rail Only	258	5	5.188	4.140	.048	1.000	.392	.450	1.220	.361	1.340
→ D +	356	5	5.188	4.130	.060	1.500	.655	.660	1.860	.509	1.860
	454	5	5.188	4.110	.075	1.500	.670	.870	2.480	.636	2.290
	268	6	6.188	5.140	.048	1.000	.392	.590	1.900	.409	1.520
	368	6	6.188	5.130	.048	1.500	.643	.710	2.390	.457	1.700
AB	366	6	6.188	5.140	.060	1.500	.655	.850	2.870	.569	2.080
ÎLI	464	6	6.188	5.110	.075	1.500	.670	1.140	3.830	.711	2.560
<u>, </u>	378	7	7.188	6.140	.048	1.500	.643	.890	3.450	.505	1.880
All Other Steel Rails	476	7	7.188	6.130	.060	1.500	.655	1.070	4.150	.629	2.300
	574	7	7.188	6.110	.075	1.500	.670	1.430	5.550	.792	2.830

Appendix

 A - Side Rail Height
 B - Loading Depth
 C - Web Thickness

 Design Factors:
 Ix = Moment of Inertia, Sx = Section Modulus

D - Flange Width

Series 1

Steel Side Rail Weights

Tray Series		148	156	166	176
Weight for	lbs/ft	1.68	2.32	2.62	3.03
2 Side Rails	kg/m	2.50	3.45	3.90	4.51

Example:
Weight for 148P09-12-144
= 1.68 lbs/ft + .51 lbs/ft = 2.19 lbs/ft
= (2.19 lbs/ft) (12 ft) = 26.28 lbs.

Tray Bottom Weights

Tray	Width (inches)		6	9	12	18	24	30	36
	6" Spacing	lbs/ft	0.38	0.57	0.76	1.14	1.52	2.25	2.70
All	Rung Weight	kg/m	0.57	0.85	1.13	1.70	2.26	3.35	4.02
Series	9" Spacing	lbs/ft	0.25	0.38	0.51	0.76	1.01	1.50	1.80
1 Steel	Rung Weight	kg/m	0.38	0.57	0.75	1.13	1.51	2.23	2.68
oteen	12" Spacing	lbs/ft	0.19	0.29	0.38	0.57	0.76	1.13	1.35
	Rung Weight	kg/m	0.29	0.43	0.57	0.85	1.13	1.68	2.01
Series									
156, 166	Solid Bottom	lbs/ft	1.01	1.51	2.01	3.02	4.02	5.20	6.25
& 176 Steel	Weight	kg/m	1.50	2.24	2.99	4.49	5.98	7.74	9.29

When using steel tray that is hot dip galvanized after fabrication add 9.6% to weights.

Series 2, 3, 4 or 5

Aluminum Side Rail Weights

Tray Series		24	H24	34	25	35	26	36	46	H46	56	27	37	47	H47	57	S8A
Weight for	lbs/ft	1.23	1.49	2.12	1.44	1.96	1.64	2.09	2.33	3.47	4.22	1.88	2.12	2.80	3.54	4.92	
2 Side Rails	kg/m	1.83	2.22	3.15	2.14	2.92	2.44	3.11	3.47	5.16	6.29	2.80	3.15	4.16	5.27	7.32	

Steel Side Rail Weights

Tray Series	248	346	444	258	356	454	268	368	366	464	378	476	574	
Weight for	lbs/ft	2.34	3.28	4.04	2.68	3.72	4.58	3.04	3.40	4.16	5.12	3.76	4.60	5.66
2 Side Rails	kg/m	3.48	4.88	6.01	3.99	5.54	6.82	4.52	5.06	6.19	7.62	5.59	6.84	8.42

Series 2, 3, 4 or 5 weights continued on page 387.

00110	52,0,4015						••	u, 200		orginto
Tray	Width (inches)		6	9	12	18	24	30	36	42
	6" Spacing	lbs/ft	0.30	0.44	0.59	0.89	1.18	1.70	2.04	2.38
All	Rung Weight	kg/m	0.44	0.66	0.88	1.32	1.76	2.53	3.04	3.54
Series	9" Spacing	lbs/ft	0.20	0.29	0.39	0.59	0.78	1.13	1.36	1.58
2,3,4	Rung Weight	kg/m	0.29	0.44	0.58	0.87	1.16	1.68	2.02	2.35
Aluminum	12" Spacing	lbs/ft	0.15	0.22	0.29	0.44	0.58	0.85	1.02	1.19
	Rung Weight	kg/m	0.22	0.32	0.43	0.65	0.86	1.26	1.52	1.77
	6" Spacing	lbs/ft	0.62	0.92	1.23	1.85	2.46	3.67	4.40	5.14
All	Rung Weight	kg/m	0.92	1.37	1.83	2.75	3.66	5.46	6.55	7.65
Series	9" Spacing	lbs/ft	0.41	0.62	0.82	1.23	1.64	2.45	2.94	3.43
2,3,4,5	Rung Weight	kg/m	0.61	0.92	1.22	1.83	2.44	3.65	4.37	5.10
Steel	12" Spacing	lbs/ft	0.31	0.47	0.62	0.93	1.24	1.84	2.21	2.58
	Rung Weight	kg/m	0.46	0.69	0.92	1.38	1.85	2.74	3.29	3.83

Series 2, 3, 4 or 5

Tray Bottom Weights

When using steel tray that is hot dip galvanized after fabrication add 9.6% to weights.

Fiberglass

Fiberglass Side Rail Weights

Tray Series		24	36	46
Weight for	lbs/ft	1.78	2.82	3.72
2 Side Rails	kg/m	2.65	4.20	5.54

Fiberglass Bottom Weights

Tray	Width (inches)	6	9	12	18	24	30	36	
	6" Spacing	lbs/ft	0.54	0.81	1.08	1.62	2.16	2.70	3.23
	Rung Weight	kg/m	0.80	1.20	1.60	2.41	3.21	4.01	4.81
	9" Spacing	lbs/ft	0.35	.053	0.70	1.05	1.40	1.75	2.10
	Rung Weight	kg/m	0.52	0.78	1.04	1.56	2.09	2.61	3.13
	12" Spacing	lbs/ft	0.27	0.40	0.54	0.81	1.08	1.35	1.62
All	Rung Weight	kg/m	0.40	0.60	0.80	1.20	1.60	2.01	2.41
Series Fiberglass	6" Spacing	lbs/ft	0.75	1.12	1.49	2.24	2.98	3.73	4.48
Tibergiass	Marine Rung Wt.	kg/m	1.11	1.67	2.,22	3.33	4.44	5.55	6.66
	9" Spacing	lbs/ft	0.48	0.73	0.97	1.45	1.94	2.42	2.91
	Marine Rung Wt.	kg/m	0.,72	1.08	1.44	2.16	2.89	3.61	4.33
	12" Spacing	lbs/ft	0.37	0.56	0.75	1.12	1.49	1.87	2.24
	Marine Rung Wt.	kg/m	0.56	0.83	1.11	1.67	2.22	2.78	3.33

Metric Conversion Chart

To Convert From	То	Multiply By
Angle degree radian (rad)	radian (rad) degree	0.01745329 57.295780
Area foot ² inch ² circular mil sq. centimeter (cm ²) square meter (m ²) square meter (m ²) square meter (m ²)	square meter (m²) square meter (m²) square meter (m²) square inch (in²) foot² inch² circular mil	0.09290304 0.0064516 x 10² 0.00005067075 x 10⁵ 0.15500030 10.763910 1550.0030 1973523000.0
Temperature degree Fahrenheit degree Celsius	degree Celsius degree Fahrenheit	$t^{o_{c}} = (t^{o_{F}} - 32) / 1.8$ $t^{o_{F}} = 1.8t^{o_{c}} + 32$
Force pounds - force (lbf)	newtons (N)	4.4482220
Length foot (ft) inch (in) mil inch millimeters meter (m) meter (m) meter (m) micrometer (µm)	meter (m) meter (m) micrometer (µm) inch (in) foot (ft) inch (in) mil inch (in)	0.30480 0.02540 0.002540 x 10 ³ 25400.0 0.039370 3.280840 39.370080 39370.0080 0.039370080 x 10 ³
Volume foot ³ inch ³ cubic centimeter (cm ³) cubic meter (m ³) cubic meter (m ³) gallon (U.S. liquid)	cubic meter (m ³) cubic meter (m ³) cubic inch (in ³) foot ³ inch ³ cubic meter (m ³)	0.028316850 0.016387060 × 10₃ 0.061023740 35.314660 61023.760 0.0037854120
Section Properties section modulus S (in ³) moment of inertia I (in ⁴) modulus of elasticity E (psi) section modulus S (m ³) moment of inertia I (m ⁴) modulus of elasticity E (Pa)	S (m³) I (m₄) E (Pa) S (in³) I (in₄) E (psi)	0.016387060 x 10 ³ 0.00041623140 x 10 ³ 6894.7570 61023.740 2402510.0 0.014503770 x 10 ²

Metric Conversion Chart (Cont.)

To Convert From	То	Multiply By
Bending Moment or Torq lbf • ft lbf • in N•m N•m	ue newton meter (N∙m) newton meter (N∙m) lbf • ft lbf • in	1.3558180 0.11298480 0.73756210 8.8507480
Mass ounce (avoirdupois) pound (avoirdupois) ton (short, 2000 lb) ton (long, 2240 lb) kilogram (kg) kilogram (kg) kilogram (kg) kilogram (kg)	kilogram (kg) kilogram (kg) kilogram (kg) ounce (avoirdupois) pound (avoirdupois) ton (short, 2000 lb) ton (long, 2240 lb)	0.028349520 0.45359240 907.18470 1016.0470 35.273960 2.2046220 0.0011023110 0.98420640 x 10 ⁻³
Mass Per Unit Length lb/ft lb/in kilogram per meter (kg/m) kilogram per meter (kg/m)	kilogram per meter (kg/m) kilogram per meter (kg/m) lb/ft lb/in	1.4881640 17.857970 0.67196890 0.55997410
Mass Per Unit Volume lb/ft ³ lb/in ³ kilogram per cubic meter (kg/r kilogram per cubic meter (kg/r lb/ft ³		$\begin{array}{r} 16.018460\\ 27679.90\\ 0.062427970\\ 0.03612730 \times 10^{-3}\\ 1728.0\end{array}$
Mass Per Unit Area Ib/ft ² kg/m ²	kilogram per square meter (kg/m²) pound per square foot (lb/ft²)	4.8824280 0.20481610
Pressure or Stress Ibf/in² (psi) kip/in³ (ksi) Ibf/in² (psi) pascal (Pa) pascal (Pa) megapascals (MPa)	pascal (Pa) pascal (Pa) megapascals (MPa) pound-force per square inch (psi) kip per square inch (ksi) lbf/in² (psi)	$\begin{array}{c} 6894.7570 \\ 6894757.0 \\ 0.0068947570 \\ 0.0014503770 \times 10^{-1} \\ 0.0014503770 \times 10^{-4} \\ 145.03770 \end{array}$
Metric Symbols		
cm = centimeter k mm = millimeter F	N = newton KN = kilonewton Pa = pascal MPa = megapascal	

SECTION 16114 CABLE TRAYS

PART I - GENERAL

1.01 SECTION INCLUDES

- A. The work covered under this section consists of the furnishing of all necessary labor, supervision, materials, equipment, tests and services to install complete cable tray systems as shown on the drawings.
- B. Cable tray systems are defined to include, but are not limited to straight sections of [ladder type] [trough type] [solid bottom type] [channel type] cable trays, bends, tees, elbows, drop-outs, supports and accessories.

1.02 REFERENCES

- A. ANSI/NFPA 70 National Electrical Code.
- B. ASTM A123 Specification for Zinc (Hot Galvanized) Coatings on Products Fabricated from Rolled, Pressed, and Forged Steel Shapes, Plates, Bars, and Strip.
- C. ASTM A653 Specification for Steel Sheet, Zinc-Coated (Galvanized) by the Hot Dip Process, Structural (Physical) Quality.
- D. ASTM A1011 Specification for Steel, Sheet and Strip, Hot-Rolled, Carbon, Structural, High-Strength Low-Alloy and High Strength Low Alloy with Improved Formability.
- E. ASTM A1008 Specification for Steel, Sheet, Cold-Rolled, Carbon, Structural, High-Strength Low-Alloy and High-Strength Low-Alloy with Improved Formability.
- F. ASTM B633 Specification for Electrodeposited Coatings of Zinc on Iron and Steel.
- G. NEMA VE 1 Metallic Cable Tray Systems.
- H. NEMA VE 2 Cable Tray Installation Guidelines.

1.03 DRAWINGS

- A. The drawings which constitute a part of these specifications indicate the general route of the cable tray systems. Data presented on these drawings is as accurate as preliminary surveys and planning can determine until final equipment selection is made. Accuracy is not guaranteed and field verification of all dimensions, routing, etc., is required.
- B. Specifications and drawings are for assistance and guidance, but exact routing, locations, distances and levels will be governed by actual field conditions. Contractor is directed to make field surveys as part of his work prior to submitting system layout drawings.

1.04 SUBMITTALS

- A. Submittal Drawings: Submit drawings of cable tray and accessories including clamps, brackets, hanger rods, splice plate connectors, expansion joint assemblies, and fittings, showing accurately scaled components.
- B. Product Data: Submit manufacturer's data on cable tray including, but not limited to, types, materials, finishes, rung spacings, inside depths and fitting radii. For side rails and rungs, submit cross sectional properties including Section Modulus (Sx) and Moment of Inertia (Ix).

1.05 QUALITY ASSURANCE

- A. Manufacturers: Firms regularly engaged in manufacture of cable trays and fittings of types and capacities required, whose products have been in satisfactory use in similar service for not less than 5 years.
- B. NEMA Compliance: Comply with NEMA Standards Publication Number VE 1, "Cable Tray Systems".
- C. NEC Compliance: Comply with NEC, as applicable to construction and installation of cable tray and cable channel systems (Article 392, NEC).
- D. UL Compliance: Provide products which are UL classified and labeled.
- E. NFPA Compliance: Comply with NFPA 70B, "Recommended Practice for Electrical Equipment Maintenance" pertaining to installation of cable tray systems.

1.06 DELIVERY, STORAGE AND HANDLING

- A. Deliver cable tray systems and components carefully to avoid breakage, denting and scoring finishes. Do not install damaged equipment.
- B. Store cable trays and accessories in original cartons and in clean dry space; protect from weather and construction traffic.

PART 2 - PRODUCTS

2.01 ACCEPTABLE MANUFACTURERS

A. Manufacturer: Subject to compliance with these specifications, Eaton's B-Line series cable tray and cable channel, systems to be installed shall be as manufactured by Eaton.

2.02 CABLE TRAY SECTIONS AND COMPONENTS

- A. General: Except as otherwise indicated, provide metal cable trays, of types, classes and sizes indicated; with splice plates, bolts, nuts and washers for connecting units. Construct units with rounded edges and smooth surfaces; in compliance with applicable standards; and with the following additional construction features.
- B. Materials and Finish: Material and finish specifications for each tray type are as follows:
 - 1. Aluminum: Straight section and fitting side rails and rungs shall be extruded from Aluminum Association Alloy 6063. All fabricated parts shall be made from Aluminum Association Alloy 5052.
 - 2. Pre-Galvanized Steel: Straight sections, fitting side rails, rungs, and covers shall be made from structural quality steel meeting the minimum mechanical properties and mill galvanized in accordance with ASTM A653 SS, Grade 33, coating designation G90. Covers for all steel trays will also be furnished from mill galvanized steel in accordance with ASTM A653 G90.
 - 3. Hot Dip Galvanized Steel: Straight section and fitting side rails and rungs shall be made from structural quality steel meeting the minimum mechanical properties of ASTM A1011 SS, Grade 33 for 14 gauge and heavier, ASTM A1008, Grade 33, Type 2 for 16 gauge and lighter, and shall be hot dip galvanized after fabrication in accordance with ASTM A123. All covers and splice plates must also be hot dip galvanized after fabrication; mill galvanized covers are not acceptable for hot dipped galvanized cable tray. All hot dip galvanized after fabrication steel cable trays must be returned to point of manufacture after coating for inspection and removal of all icicles and excess zinc. Failure to do so can cause damage to cables and/or injury to installers.
 - 4. Stainless Steel: Straight section and fitting side rails and rungs shall be made of AISI Type 304 or Type 316 stainless steel. Transverse members (rungs) shall be welded to the side rails with Type 316 stainless steel welding wire.

2.03 TYPE OF TRAY SYSTEM

- A. Ladder type trays shall consist of two longitudinal members (side rails) with transverse members (rungs) welded to the side rails. Rungs shall be spaced [6] [9] [12] inches on center. Spacing in radiused fittings shall be 9 inches and measured at the center of the tray's width. Rungs shall have a minimum cable bearing surface of ⁷/8" with radiused edges. No portion of the rungs shall protrude below the bottom plane of the side rails.^{**} Each rung must be capable of supporting the cable load, with a safety factor of 1.5, and a 200 lb. concentrated load when tested in accordance with NEMA VE 1, section 5.4.
 - **Omit text for Series 1 cable tray systems.
- B. Non-ventilated solid bottom trays shall consist of two longitudinal members (side rails) with a flat bottom welded to the side rails on top of 12" spaced rungs.

- C. Tray Sizes shall have [3] [4] [5] [6] inch minimum usable load depth, or as noted on the drawing.
- D. Straight tray sections shall have side rails fabricated as I-Beams. All straight sections shall be supplied in standard [10] [12] [20] [24] [25] [30] [40] foot lengths, except where shorter lengths are permitted to facilitate tray assembly lengths as shown on drawings.
- E. Tray widths shall be [6] [9] [12] [18] [24] [30] [36] inches or as shown on drawings.
- F. All fittings must have a three inch tangent and a minimum radius of [12] [24] [36] [48] inches.
- G. Splice plates shall be the bolted type made as indicated below for each tray type. The resistance of fixed splice connections between an adjacent section of tray shall not exceed .00033 ohm. Splice plate construction shall be such that a splice may be located anywhere within a continuously supported span without diminishing rated loading capacity of the cable tray.
 - 1. Aluminum Tray Splice plates shall be made of 6063-T6 aluminum, using four square neck carriage bolts and serrated flange locknuts. Hardware shall be zinc plated in accordance with ASTM B633, SC1. If aluminum cable tray is to be used outdoors, then hardware shall be Type 316 stainless steel.
 - 2. Steel (including Pre-Galvanized and Hot Dip Galvanized) Splice plates shall be manufactured of high strength steel, meeting the minimum mechanical properties of ASTM A1011 HSLAS, Grade 50, Class 1. Each splice plate shall be attached with ribbed neck carriage bolts and serrated flange locknuts. Hardware shall be zinc plated in accordance with ASTM B633 SC1 for pre-galvanized cable trays, or Chromium Zinc in accordance with ASTM F-1136-88 for hot dip galvanized cable trays.

Splice plates shall be furnished with straight sections and fittings.

- H. Cable Tray Supports: Shall be placed so that the support spans do not exceed the maximum span indicated on drawings. Supports shall be constructed from 12 gauge steel formed shape channel members 1⁵/8" x 1⁵/8" with necessary hardware such as Trapeze Support Kits (9G-55XX-22SH) as manufactured by Eaton [or engineer approved equal]. Cable trays installed adjacent to walls shall be supported on wall mounted brackets such as B409 as manufactured by B-Line [or engineer approved equal].
- I. Trapeze hangers and center hung supports shall be supported by 1/2" (minimum) diameter rods.
- J. Barrier Strips: Shall be placed as specified on drawings and be fastened into the tray with self drilling screws.
- K. Accessories: Special accessories shall be furnished as required to protect, support, and install a cable tray system. Accessories shall consist of, but are not limited to; section splice plates, expansion plates, blind-end plates, specially-designed ladder drop-outs, barriers, etc.

2.04 LOADING CAPACITIES

A. Cable tray shall be capable of carrying a uniformly distributed load of ______ lbs./ft. on a ______ ft. support span with a safety factor of 1.5 when supported as a simple span and tested per NEMA VE 1, section 5.2. **In addition to the uniformly distributed load the cable tray shall support 200 lbs. concentrated load at mid-point of span.** Load and safety factors specified are applicable to both the side rails and rung capacities. Cable tray shall be made to manufacturing tolerances as specified by NEMA.

**Omit text for Series 1 cable tray systems.

PART 3 - EXECUTION

3.01 INSTALLATION

- A. Install cable trays as indicated; in accordance with equipment manufacturer's instructions, and with recognized industry practices (NEMA VE 2), to ensure that the cable tray equipment complies with requirements of NEC, and applicable portions of NFPA 70B and NECA's "Standards of Installation" pertaining to general electrical installation practices.
- B. Coordinate cable tray with other electrical work as necessary to properly interface installation of cable tray work with other work.
- C. Provide sufficient space encompassing cable trays to permit access for installing and maintaining cables.

3.02 TESTING

- A. Test cable trays to ensure electrical continuity of bonding and grounding connections, and to demonstrate compliance with specified maximum grounding resistance. See NFPA 70B, Chapter 18, for testing and test methods.
- B. Manufacturer shall provide test reports witnessed by an independent testing laboratory of the "worst case" loading conditions outlined in this specification and performed in accordance with the latest revision of NEMA VE 1.

END OF SECTION

AMPACITY:

Multiconductor Cables (2000 Volts or Less)

Cable ampacities shall comply with Tables 310.16 and 310.18 of the NEC® subject to the provisions below:

- 1. If there are <u>more</u> than 3 current carrying conductors in a cable, derate cable ampacity per section 310.15(B)(2)(A).
- 2. If tray has solid covers, use 95% of the ampacity values shown in Tables 310.16 and 310.18.
- 3. If cables are placed in a single layer, with a maintained spacing of not less than 1 cable diameter between cables, the ampacity of the cables shall not exceed the allowable ambient temperature-corrected ampacities of multiconductor cables with <u>not more than</u> 3 insulated conductors in free air in accordance with Section 310.15(C) and Table B.310.3. You must use the ambient ampacity correction factors, found below Table B.310.3, for ambient temperatures other than 40°C (104°F).

Multiconductor Cables (2001 Volts and over) Type MV and Type MC Cables

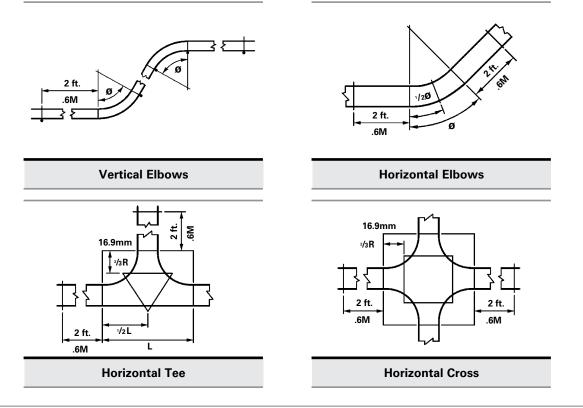
- 1. Where cable trays are covered for more than 6 ft. with solid, unventilated covers, use not more than 95% of the ampacity values of Tables 310.75 and 310.76.
- 2. Where cables are installed in a single layer in uncovered trays with a maintained spacing of not less than one cable diameter between cables, you can use the ampacity values listed in Tables 310.71 and 310.72.

Single Conductor Cables

Ampacity of Cables Rated 2000 Volts or Less in Cable Tray (single conductor cables)

Ampacity of Type MV and Type MC Cables (2001 Volts or over) in Cable Trays (single conductor cables)

Cable Sizes	Solid Unventilated Cable Tray Cover ?	Applicable Ampacity Tables (*)	Mult. Amp. Table Values By	Special Conditions	Cable Sizes	Solid Unventilated Cable Tray Cover ?	Applicable Ampacity Tables (*)	Mult. Amp. Table Values By	Special Conditions
600 kcmil and Larger	No (**)	310.17 and 310.19	0.75		1/0 AWG and Larger	No (**)	310.69 and 310.70	0.75	
600 kcmil and Larger	Yes	310.17 and 310.19	0.70		1/0 AWG and Larger	Yes	310.69 and 310.70	0.70	
1/0 AWG through 500 kcmil	No (**)	310.17 and 310.19	0.65		1/0 AWG & Larger In Single	No (**)	310.69 and	1.00	Maintained Spacing Of One Cable
1/0 AWG through 500 kcmil	Yes	310.17 and 310.19	0.60		Layer Single Conductors		310.70		Diameter Spacing Of
1/0 AWG & Larger In Single Layer	No (**)	310.17 and 310.19	1.00	Maintained Spacing Of One Cable Diameter	In Triangle Config. 1/0 AWG and Larger	No (**)	310.67 and 310.68	1.05	2.15 x One Conductor O.D. Between Cables
Single Conductors In Triangle Config. 1/0 AWG and Larger	No (**)	310.20 [See NEC Section 310.15(B)]	1.00	Spacing Of 2.15 x One Conductor O.D. Between Cables	(**) At a specific	mpacity correction position, where it is le cable tray cover of	determined that	the tray cables r	


Cable Fill in Hazardous (Classified) Locations:

Section 392.3 of the NEC regulates the use of cable tray wiring systems in hazardous (classified) locations. This section states that if cable tray wiring systems are installed in hazardous (classified) locations, the cables that they support must be suitable for installation in those hazardous (classified) locations. The cable carries the installation restriction, not the cable tray except that the cable tray installation must comply with Section 392.4.

Some hazardous (classified) locations require special spacing of the cables. When installing Type MC, MI & TC cables in cable tray in Class II, Division 2 Hazardous (classified) areas, (combustible dusts), the cables are limited to a single layer with spacing between cables equal to the diameter of the largest adjacent cable. This is the only hazardous (classified) location where the spacing of the cables is required although it is recommended that this wiring method also be employed in Class III, Division I, and Class III, Division 2 (Ignitable Fibers & Flyings). Please note that this will alter the cable tray sizing information obtained from the sizing flow chart on page C-20 & C-21 of this catalog.

Please reference NEMA VE 2, metal cable tray installation guideline, for more complete information. www.cabletrays.com

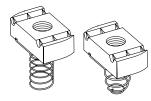
- **Supports** Eaton's B-Line series cable tray shall be sized and installed as a complete cable support system appropriate for the cable types installed. Recommended cable tray support locations are as shown below. Do not exceed the maximum support spacing and design load as printed on the side rail label. Refer to Canadian Electrical Code (CEC) section 12-2202 for minimum cable tray clearances. For Series 2-5 trays and KSCC, see our <u>Structural Steel Savings Guide</u> and <u>KwikSplice cable</u> channel system technical guide for approved support reductions.
- **Splice Plates** Use factory supplied splice plates only. Splice plates located at the quarter span between supports are preferred. Avoid placing splices at midspan and directly above supports. Torque all splice plate fasteners to 19 ft. lbs. for ³/8" and 50 ft. lbs. for ¹/2". Expansion splice plate fasteners should be loosened ¹/₂ turn after reaching full torque to allow for travel. Set the side rail gap for expansion plates according to the chart on page C-8 and ensure that a support is located within 2 feet on each side of the expansion splice.
- **Conductors** The Cable Tray system installation shall be completed prior to pulling conductors. Cable support distances for conductor size should be referenced in CEC Part 1, Table 21. Single conductor cables placed one diameter or more apart in ventilated or ladder type tray are allowed to use the free air rating per the CEC. Any conductor in vertical runs of cable tray and all single conductor cables must be fastened to the rungs with nylon cable ties or stainless steel clamps. Carbon steel cable clamps should not be used due to induction heating, per CEC section 12-2204 (5).
- **Covers** Vertical cable trays which penetrate dry floors must be covered for 2m (two meter) above the floor level. All cable tray dead ends must be closed with blind ends per CEC section 12-2202.
- **Handling** Cable tray is shipped without exterior crating, therefore careful material handling practices should be used. Cable tray straight sections should be lifted with wide slings and an overhead crane. If a crane is not available and a fork lift is to be used, only single bundles should be lifted. Ensure that each bundle is properly centered. Cable tray fittings that are not crated should be unbanded and off-loaded by hand.
- **Storage** All cable tray materials are subject to storage stain (white rust) if improperly stored. If cable tray is stored as shipped, it must be stored indoors. If the cable tray material must be stored outside, it must be unbanded and loosely stacked on an angle to minimize the components' contact area as well as provide for adequate drainage.

NEMA RECOMMENDED SUPPORT LOCATIONS FOR FITTINGS

Appendix

T 11	Char Dimer	sions		Material 8	& Thicknes Stair		Cł SH	annel Hole S	Patterns * H1 ⁷ /8	*
TH Channel Type	Height	Width	1 Steel	Aluminum	Ste 30%	Type 316	4000000		Q: iiii	10000 10000 10000
B11	31/4"	1₅ / 8"	12 Ga.				1	1	1	
B12	2 ⁷ /16"	1₅/8"	12 Ga.	.105	_		1,2	1	1,2	
B22	1₅/8"	1₅/8"	12 Ga.	.105	12 Ga.	12 Ga.	1,2,3,4	1	1,2,3,4	1
B24	1₅/8"	1₅/8"	14 Ga.	.080	14 Ga.	14 Ga.	1,2,3,4	1	1,2,3,4	
B32	1³/8"	1₅/8"	12 Ga.	—	12 Ga.	—	1,3	1	1,3	—
B42	1"	1₅/8"	12 Ga.		12 Ga.		1,3	1	1,3	
B52	¹³ /16"	1₅/8"	12 Ga.		12 Ga.	_	1,3	1	1,3	
B54	¹³ /16"	1₅/8"	14 Ga.	.080	14 Ga.	14 Ga.	1,2,3,4	1	1,2,3,4	_

Channel Sizes & Hole Patterns Selection Chart


Available Finishes on Steel: Plain (Oil Coated), Dura-Green Epoxy, Pre-Galvanized, and Hot Dip Galvanized are standard.

** 1 - Steel

2 - Aluminum 3 - Type 304 Stainless Steel 4 - Type 316 Stainless Steel

Channel Nuts

	Vith Sprii		Without		Twirl		Thread		
B11 B12	B22 B24 B32	B42 B52 B54	B11 B22 B12 B24 B32	B42 B52 B54	B11 B22 B12 B24 B32	B42 B52 B54	Size	Thickness	
N728	N228	N528	N228WO	N228WO	TN228	TN228	³ /8"-16	³ /8" for all nuts	
N725	N225	N525	N225WO	N525WO	TN225	TN525	¹ /2"-13	¹ /2" for N725,N225,N225WO,TN225 ³ /8" for N525,N525WO,TN525	
N755	N255	N555	N255WO	N555WO	-	-	⁵ /8"-11	¹ /2" for N755,N255,N255WO ³ /8" for N555,N555WO	

Channel Nut With Spring

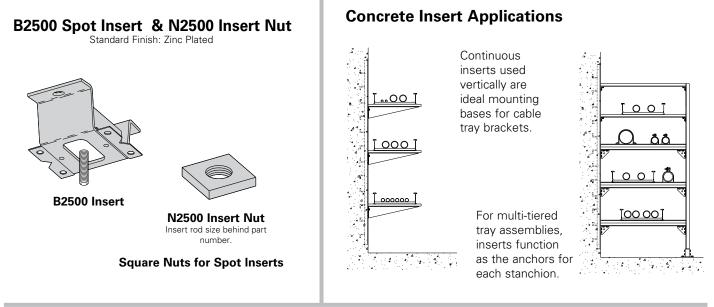
Channel Nut Without Spring

Twirl Nut

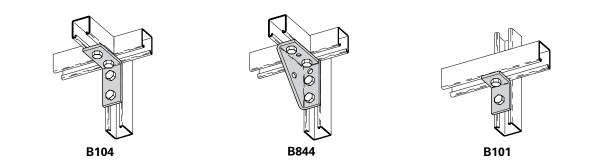
For other channels, channel nuts, and fittings see B-Line Strut Systems Catalog.

Continuous Concrete Insert

Number fo	alog or Channel 240" (20 ft.)	Channel Size	Maximum Depth	Load
B22I-120	B22I-240	B22	15/8"	2000 lbs./ft.
B32I-120	B32I-240	B32	1 ³ /8"	2000 lbs./ft.
B52I-120	B52I-240	B52	¹³ /16"	1500 lbs./ft.


Safety factor of 3 on loading.

Other lengths available upon request.


Furnished with end caps and styrofoam filler installed.

Standard finishes: Plain (Oil Coated) Dura Green Epoxy Pre-Galvanized Hot Dip Galvanized

Angle Fittings

Appendix - Notes

U.S. Customer Service Center is staffed Monday through Friday from 7 a.m. to 5:00 p.m. Central Standard Time. For more information, visit <u>Eaton.com</u>.

Eaton 509 West Monroe Street Highland, IL 62249 4AQ United States Phone: (800) 851-7415 Eaton Walrow Industrial Estate Somerset, TA9

United Kingdom Phone: (44) 1278 772600

Eaton 5925 McLaughlin Road Mississauga, ON L5R 1B8 Canada Phone: (800) 569-3660 Eaton

PO Box 70160 - Al Khobar - 31952 Kingdom of Saudi Arabia Phone: 00966 3 812 2236

Eaton 1000 Eaton Boulevard Cleveland, OH 44122 United States Eaton.com

Eaton's B-Line Division 509 West Monroe Street Highland, IL 62249 Phone: 800-851-7415 Fax: 618-654-1917

© 2024 Eaton All Rights Reserved Printed in USA Publication No. CA302006EN July 2024

Eaton is a registered trademark.

All other trademarks are property of their respective owners.

Follow us on social media to get the latest product and support information.

