Proportional Pressure Relief Valves
Technical Catalog

KBCG-6-1*
KBCG-8-1*
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Description</td>
<td>3</td>
</tr>
<tr>
<td>Typical Section</td>
<td>3</td>
</tr>
<tr>
<td>Functional Symbol</td>
<td>4</td>
</tr>
<tr>
<td>Model Codes</td>
<td>5</td>
</tr>
<tr>
<td>Operating Data</td>
<td>6</td>
</tr>
<tr>
<td>Performance Data</td>
<td></td>
</tr>
<tr>
<td>Pressure Override, Off-Load</td>
<td>8</td>
</tr>
<tr>
<td>Pressure Override when Relieving</td>
<td>9</td>
</tr>
<tr>
<td>Pressure Gain</td>
<td>9</td>
</tr>
<tr>
<td>Step Response</td>
<td>9</td>
</tr>
<tr>
<td>Installation Dimensions</td>
<td></td>
</tr>
<tr>
<td>KBCG-6/8 Models</td>
<td>10</td>
</tr>
<tr>
<td>Mounting Surfaces</td>
<td>11</td>
</tr>
<tr>
<td>CGVM-6-10-R Subplate</td>
<td>11</td>
</tr>
<tr>
<td>Electrical Information</td>
<td></td>
</tr>
<tr>
<td>Block Diagram</td>
<td>12</td>
</tr>
<tr>
<td>Typical Connection Arrangements</td>
<td>13</td>
</tr>
<tr>
<td>Further Information</td>
<td>14</td>
</tr>
</tbody>
</table>

This product has been designed and tested to meet specific standards outlined in the European Electromagnetic Compatibility Directive (EMC) 89/336/EEC, amended by 91/263/EEC, 92/31/EEC and 93/68/EEC, article 5. For instructions on installation requirements to achieve effective protection levels, see this leaflet and the Installation Wiring Practices for Vickers™ Electronic Products leaflet 2468. Wiring practices relevant to this Directive are indicated by Electromagnetic Compatibility (EMC).
These two-stage pressure relief valves offer extensive application possibilities through their ability to control the pressure setting in proportion to an applied electrical input (up to a pressure limit which is manually adjustable and lockable).

The integral amplifier allows the pressure to be controlled from a low power command signal: either a voltage or current command. The amplifier is mounted in a robust metal housing and electrical connections are via an industry standard 7-pin plug. Factory-set adjustments ensure high reproducibility valve-to-valve.

Basic Characteristics
- Max. pressure.............. 350 bar (5000 psi)
- Max. flow rate........... 400 L/min (106 USgpm)

Mounting face to ISO 6264:
- For KBCG-6............... AR-06-2-A
- For KBCG-8............... AS-08-2-A

Features and Benefits
- Remote electrical proportional control of pressure from a choice of five pressure ranges per valve size.
- Excellent repeatability and stable performance results from cartridge design of mainstage elements.
- Low installed cost and space requirement from high power/size ratios (more than double that of many conventional designs).
- On-board ramp adjustment.

Typical Section

EATON Vickers Proportional Pressure Relief Valves V-VLPO-MC003-E May 2003
Manual and electrical pilots internally drained to port T.

Model code $7 = $ Blank

Manual and electrical pilots drained to side drain port \bullet.

Model code $7 = 1$

Manual pilot internally drained to port T; electrical pilot drained to side drain port \bullet.

Model code $7 = 3$
Model Codes

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>KB</td>
<td>Proportional valve with integral amplifier, B series</td>
</tr>
<tr>
<td>C</td>
<td>Pressure relief</td>
</tr>
<tr>
<td>G</td>
<td>Subplate mounted</td>
</tr>
<tr>
<td>ISO 6264</td>
<td>Interface - ISO 6264</td>
</tr>
<tr>
<td>AR-06-2-A</td>
<td>With B port high pressure inlet, A port reduced pressure outlet</td>
</tr>
<tr>
<td>AS-08-2-A</td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>Micrometer with keylock</td>
</tr>
<tr>
<td>M</td>
<td>Micrometer without keylock</td>
</tr>
<tr>
<td>W</td>
<td>Screw/locknut</td>
</tr>
<tr>
<td>ZM</td>
<td>for KBC</td>
</tr>
<tr>
<td>1</td>
<td>Valve Type</td>
</tr>
<tr>
<td>2</td>
<td>Type</td>
</tr>
<tr>
<td>3</td>
<td>Mounting</td>
</tr>
<tr>
<td>4</td>
<td>Interface - ISO 6264</td>
</tr>
<tr>
<td>5</td>
<td>Manual Adjustment</td>
</tr>
<tr>
<td>6</td>
<td>Controlled Pressure Range</td>
</tr>
<tr>
<td>7</td>
<td>Drain</td>
</tr>
<tr>
<td>8</td>
<td>Standard Features</td>
</tr>
<tr>
<td>9</td>
<td>Electrical Command Options</td>
</tr>
<tr>
<td>10</td>
<td>Ramps</td>
</tr>
<tr>
<td>11</td>
<td>Command/Pressure Characteristic</td>
</tr>
<tr>
<td>12</td>
<td>Electrical Connection</td>
</tr>
<tr>
<td>13</td>
<td>Coil Rating</td>
</tr>
<tr>
<td>14</td>
<td>Design Number, 1st Series</td>
</tr>
</tbody>
</table>

Valve Type

- **KB**: Proportional valve with integral amplifier, B series

Type

- **C**: Pressure relief

Mounting

- **G**: Subplate mounted

Interface - ISO 6264

With B port high pressure inlet, A port reduced pressure outlet

- **6**: AR-06-2-A
- **8**: AS-08-2-A

Manual Adjustment

- **K**: Micrometer with keylock
- **M**: Micrometer without keylock
- **W**: Screw/locknut

Controlled Pressure Range

Based on inlet pressure of 350 bar (5000 psi).

<table>
<thead>
<tr>
<th>Pressure Range</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>40 - 6-40 bar</td>
<td>40 - 6-40 bar (87-580 psi)</td>
</tr>
<tr>
<td>100 - 7,75-100</td>
<td>100 - 7,75-100 bar (112-1450 psi)</td>
</tr>
<tr>
<td>160 - 8,5-160</td>
<td>160 - 8,5-160 bar (125-2300 psi)</td>
</tr>
<tr>
<td>250 - 8,5-250</td>
<td>250 - 8,5-250 bar (125-3625 psi)</td>
</tr>
<tr>
<td>350 - 9-350</td>
<td>350 - 9-350 bar (139-5000 psi)</td>
</tr>
</tbody>
</table>

Drain

- **Blank**: Manual and electrical pilots drain internally to T port
- **1**: Manual and electrical pilots drained to side port drain
- **3**: Manual pilot internally drained to T port, electrical pilot drained to side port drain

Standard Features

- **ZM**: for KBC

Electrical Command Options

- **1**: +/- 10 volts control signal
- **2**: 4-20 mA control signal

Ramps

- **3**: Standard ramp for KBC-G-6/8 valve types

Command/Pressure Characteristic

- **A**: Standard

Electrical Connection

- **PC7**: 7 pin connector, without plug supplied
- **PE7**: 7 pin connector, with plug supplied
- **PH7**: As PE7 but with pin ‘C’ used for enable signal
- **PR7**: As PC7 but with pin ‘C’ used for enable signal

Coil Rating

- **H1**: 24V DC amplifier supply

Design Number, 1st Series

Subject to change. Installation dimensions unaltered for design numbers 10 to 19 inclusive.

Warning

To conform to the EC Electromagnetic Compatibility directive (EMC) this KBCG valve must be fitted with a metal 7-pin plug. The screen of the cable must be securely connected to the shell of the metal connector. A suitable IP67 rated connector is available from Eaton, part no. 934939. Alternatively a non IP67 rated connector is available from ITT-Cannon, part no. CA 02 COM-E 14S A7 P.
Standard test conditions are with antiwear hydraulic oil at 36 cSt (168 SUS) and 50°C (122°F)

Maximum pressures:
- Ports P and X: 350 bar (5000 psi)
- Port T in KBCG-***-**Z valves: 2 bar (30 psi)
- Port T in KBCG-***-***-1/3-Z valves: 350 bar (5000 psi)
- Side drain port: 2 bar (30 psi)

▲ Back pressure at these ports additive to the pressure setting of the valve.

Rated flow at \(\Delta p = 6\) bar (87 psi):
- KBCG-6: 200 L/min (52.8 USgpm)
- KBCG-8: 400 L/min (105.7 USgpm)

Vent: Flow with valve at rated flow

◆ See "Venting", page 8.

Pilot control drain flow, when valve is limiting system pressure, i.e. flow P to T occurring:
- KBCG-6: 1,3 L/min (0.34 USgpm)
- KBCG-8: 2,0 L/min (0.53 USgpm)

Coil or amplifier rating:
- 24V x 40W max. (22 to 36V including 10% pk.-to-pk. max. ripple)

Command signal:
- Volts (see model code -1): 0 to +10V or 0 to -10V
- Input impedance: 47 kΩ
- Common mode voltage to pin B: 4V
- Current (see model code -2): 4 to 20 mA
- Input impedance: 100Ω

Valve enable signal:
- Enable: >9.0V (36V max)
- Disable: <2.0V
- Input impedance: 36 kΩ

7-pin plug connector

<table>
<thead>
<tr>
<th>Pin</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Power supply positive (+)</td>
</tr>
<tr>
<td>B</td>
<td>Power supply 0V and current command return</td>
</tr>
<tr>
<td>C</td>
<td>Valve enable (PH7 & PR7)</td>
</tr>
<tr>
<td>D</td>
<td>Command signal (+V or current in)</td>
</tr>
<tr>
<td>E</td>
<td>Command signal (-V or current GND)</td>
</tr>
<tr>
<td>F</td>
<td>Output monitor</td>
</tr>
<tr>
<td>G</td>
<td>Protective ground</td>
</tr>
</tbody>
</table>

Electromagnetic compatibility (EMC):
- Emission (10 V/m): EN 50081-2
- Immunity (10 V/m): EN 50082-2
- Monitor signal (pin F): 1.7 V/amp solenoid current
- Output impedance: 10 kΩ

Pressure gain: See graph

Factory setting - Maximum with 100% command signal.
Pressure override when relieving and when off-load: See graphs

Linearity, between 10% and 100% of rated pressure:
- KBCG-6 models at 100 L/min (26 USgpm): <6%
- KBCG-8 models at 200 L/min (52 USgpm): <6%
- Hysteresis: <6% (with factory-set dither)
- Repeatability: <1.3% of rated pressure
Reproducibility, valve-to-valve (at factory settings):
Pressure at 100% command signal ≤5%

Protection:
- Electrical: Reverse polarity protected
- Environmental: IEC 529, Class IP67

Mass (weight):
- KBCG-6: 5.36 kg (11.8 lb)
- KBCG-8: 6.26 kg (13.8 lb)

Supporting products:
- Auxiliary electronic modules (DIN-rail mounting):
 - EHA-CON-201-A-2* Signal converter: See catalog 2410B
 - EHD-DSG-201-A-1* Command signal generator: See catalog 2470
 - EHA-RMP-201-A-2* Ramp generator: See catalog 2410B
 - EHA-PID-201-A-2* PID controller: See catalog 2427
 - EHA-PSU-201-A-10 Power supply: See catalog 2410B
 - Subplates, size 03: See catalog 2425
 - Mounting bolts: See catalog 2314A

- Note: If not using Vickers™ recommended bolt kits, bolts must be to ISO 898 grade 12.9 or stronger.

Mounting attitude: No restriction, provided that the valve is kept full of fluid through port T.
Performance Data

Data is typical with oil at 36 cSt (168 SUS) and at 50°C (122°F)

Pressure Override, Off-Load

Graphs show the minimum pressures obtainable:

a) With 0 mA current to the solenoid coil

b) When the valve is vented (see following explanation).

Venting

When the vent port X (or alternative vent port in the valve body) is connected to the reservoir via a suitable 2-way pilot valve, the mainstage of the relief valve opens to allow full flow from P to T at low pressure drop. The minimum pressure drop is obtained when the pilot valve is also de-energized. The total pressure drop through the venting 2-way valve and pipework is additive to the pressure at P.

While the valve is vented the system pressure cannot be controlled via the proportional solenoid.

This control feature is frequently used during off-load periods in machine cycle times. If lower off-load system pressures are required then additional full flow unloading valves are recommended, e.g. Vickers™ CV series cartridge valves.

Note: All valves are with pilot valve de-energized.
Pressure Gain

Typical pressure versus command signal response of KBCG-6-250 model.

Step Response

KBCG models with factory-set gain.

Test method

1. Trapped volume between pump and test valve, as in table.
2. Flow rate set at pump, as in table.
3. Response = time from step input signal until pressure reaches 90% of step change, as measured by transducer.

Pressure Override when Relieving

MODEL **CURVE NUMBER**

<table>
<thead>
<tr>
<th>MODEL</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>KBCG-**.40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KBCG-**.100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KBCG-**.160</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KBCG-**.250</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KBCG-**.350</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
KBCG-6/8 Models

Dimensions are shown in mm (inches)

To bleed air, loosen plug in end of core tube; re-tighten to 2.4 +/- 0.2 Nm (1.85 +/- 0.15 lbf ft) after bleeding is complete.

Micrometer Adjustment Options

"K" or "M" in Model Code

- **Type K only:** 43.0 (1.7) for key removal

- **Mainstage overall dimension with adjuster knob fully out:**
 - 196.0 (7.7) for KBCG-6 models
 - 203.0 (8.0) for KBCG-8 models

"K" Feature:

To adjust pressure setting, insert key and turn clockwise. Turn micrometer knob clockwise to increase pressure setting; counterclockwise to decrease setting. When the key is removed the knob can spin freely without affecting the pressure setting.

Warning

To conform to the EC Electromagnetic Compatibility directive (EMC) this KBCG valve must be fitted with a metal 7-pin plug. The screen of the cable must be securely connected to the shell of the metal connector. A suitable IP67 rated connector is available from Eaton, part no. 934939. Alternatively a non IP67 rated connector is available from ITT-Cannon, part no. CA 02 COM-E 14S A7 P.
Mounting Surfaces, ISO 6264

AR-06-2-A
AS-08-2-A

When a subplate is not used, a raised pad must be provided for mounting. The pad must be flat within 0.001 mm/100 mm (0.0001"/10") and smooth within 0.8 µm (32 µin). Dimensional tolerances are ±0.2 mm (±0.008") except where indicated.

Port functions:
P = Pressure inlet
T = Outlet to reservoir
X = Vent, or remote control port

<table>
<thead>
<tr>
<th>SIZE</th>
<th>A (min.)</th>
<th>B (min.)</th>
<th>C (min.)</th>
<th>D (min.)</th>
<th>E (min.)</th>
<th>F (min.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AR-06 80 (3.2)</td>
<td>13.1 (0.5)</td>
<td>53.8 (2.12)</td>
<td>53.8 (2.12)</td>
<td>13.1 (0.5)</td>
<td>47.5 (1.87)</td>
<td>22.1 (0.87)</td>
</tr>
<tr>
<td>AS-08 118 (4.7)</td>
<td>35.0 (1.4)</td>
<td>66.7 (2.63)</td>
<td>66.7 (2.63)</td>
<td>16.3 (0.7)</td>
<td>55.6 (2.19)</td>
<td>33.4 (1.35)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SIZE</th>
<th>M (min.)</th>
<th>N ØP (DIA)</th>
<th>Q ØT (DIA)</th>
<th>ØX (DIA)</th>
<th>Y THREAD</th>
</tr>
</thead>
<tbody>
<tr>
<td>AR-06 13.1 (0.5)</td>
<td>26.9 (1.06)</td>
<td>14.7 (0.58)</td>
<td>80 (3.2)</td>
<td>14.7 (0.58)</td>
<td>4.8 (0.19)</td>
</tr>
<tr>
<td>AS-08 16.0 (0.63)</td>
<td>35.0 (1.38)</td>
<td>23.4 (0.92)</td>
<td>102 (4.0)</td>
<td>23.4 (0.92)</td>
<td>6.3 (0.25)</td>
</tr>
</tbody>
</table>

Plug or omit if this vent / hydraulic remote port is not to be used

Ø 7.5 (0.29 dia) x 6.0 (0.24) deep min.

CGVM-6-10-R Subplate

4 holes, Ø 11.0 (0.43 dia) through, Ø 17.5 (0.68 dia) spotface
Ø 7.5 (0.29 dia) x 6.0 (0.24) deep, for valve locating pin
2 ports, G1 (1" BSPF) x 19.0 (0.75) min. depth full thread, from underside
4 holes tapped M12 x 21.0 (0.82) min. depth full thread

Tolerance on bolt and pin locations ±0.1 mm (±0.004").

These ISO standard dimensions can be used, but improved flow paths to and from valve are obtained by using 48,0 (1.89) instead of 47,5 (1.87), and 22,6 (0.89) instead of 22,1 (0.87).

ISO standard does not give UNC bolt sizes. These are recommended equivalents to metric sizes specified in the standard.
Electrical Information

Block Diagram

7-pin plug connections

+24V
Power 0V

Enable ▲
Non-inverting
Inverting

Current monitor
Protective ground G

PWM modulator

Command signal

Ramp
Gain

Solenoid drive

▲ In valves with PH7 or PR7 type electrical connection.

Wiring

Connections must be made via the 7-pin plug mounted on the amplifier. See this leaflet and Installation Wiring Practices for Vickers™ Electronic Products leaflet 2468. Recommended cable sizes are:

Power Cables
For 24V supply:
- 0.75 mm² (18 AWG) up to 20 m (65 ft)
- 1.00 mm² (16 AWG) up to 40 m (130 ft)

Signal Cables
- 0.50 mm² (20 AWG)

Screen (Shield)
A suitable cable should have at least 6 cores with pairs of conductors individually screened and an overall screen. Cable outside diameter 8.0-10.5 mm (0.31-0.41 inches). See connection diagrams on next page.

Warning
All power must be switched off before connecting or disconnecting any plugs.
Typical Connection Arrangements

Wiring Connections

User Panel

<table>
<thead>
<tr>
<th>Power Supply</th>
<th>+24V</th>
<th>0V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demand Signal</td>
<td>0V</td>
<td>+/-10V</td>
</tr>
<tr>
<td>Solenoid Current Monitor</td>
<td>0V</td>
<td>Input</td>
</tr>
</tbody>
</table>

Enclosure

0V must be connected to ground

Outer Screen KB..PC7/PE7 valve

A
B
C
D or E
E or D
F

Inner Screen

DRAIN Wire

Valve must be connected to ground via subplate

Connector shell

Warning
Electromagnetic Compatibility (EMC)

It is necessary to ensure that the valve is wired up as above. For effective protection the user electrical cabinet, the valve subplate or manifold and the cable screens should be connected to efficient ground points. The metal 7-pin connector part no. 934939 should be used for the integral amplifier.

In all cases both valve and cable should be kept as far away as possible from any sources of electromagnetic radiation such as cables carrying heavy current, relays and certain kinds of portable radio transmitters, etc. Difficult environments could mean that extra screening may be necessary to avoid the interference.

Note:

- Pin C may be connected to ground or left unconnected.
- Output monitor voltage (pin F) will be referenced to the power 0 volts (pin B).
- The multi-core cable should have at least two screens to separate the demand signal and monitor output from the power lines.

Wiring Connections for Valves with “Enable” Feature

User Panel

<table>
<thead>
<tr>
<th>Power Supply</th>
<th>+24V</th>
<th>0V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enable Signal</td>
<td>0V</td>
<td>+8.5V to 36V</td>
</tr>
<tr>
<td>Demand Signal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solenoid Current Monitor</td>
<td>0V</td>
<td>Input</td>
</tr>
</tbody>
</table>

0V must be connected to ground

Outer Screen KB..PR7/PH7 valve

A
B
C
D or E
E or D
F

Inner Screen

DRAIN Wire

Valve must be connected to ground via subplate

Connector shell

Note:
In applications where the valve must conform to European RFI/EMC regulations, the outer screen (shield) must be connected to the outer shell of the 7-pin connector, and the valve body must be fastened to the earth ground. Proper earth grounding practices must be observed in this case, as any differences in command source and valve ground potentials will result in a screen (shield) ground loop.

It is important to connect the 0V lines as shown above. The multi-core cable should have at least two screens to separate the demand signal and monitor output from the power lines.
Further Information

Hydraulic Fluids
Materials and seals used in these valves are compatible with:
Anti-wear petroleum oils...LHM
Non-alkyl based phosphate esters..............LHFD
The extreme operating range is 500 to 13 cSt (270 to 70 SUS) but the recommended running range is 54 to 13 cSt (245 to 70 SUS). For further technical information about fluids see 694.

Contamination Control Requirements
Recommendations on contamination control methods and the selection of products to control fluid condition are included in publication 9132 or 561, "Guide to Systemic Contamination Control". The book also includes information on the concept of "ProActive Maintenance". The following recommendations are based on ISO cleanliness levels at 2 µm, 5 µm and 15 µm.

For products in this catalog the recommended levels are:
Up to 210 bar (3000 psi)..................18/16/13
Above 210 bar (3000 psi)..................17/15/12

Installation and Start-up Guidelines
The proportional valves in this catalog can be mounted in any attitude but it may be necessary, in certain demanding applications, to ensure that the solenoids are kept full of hydraulic fluid.
If this proves to be the case any accumulated air can be bled from the solenoid bleed screw. This task is easier if the valve has been mounted base downwards. Good installation practice dictates that the tank port, and any drain port, are piped so as to keep the valve full of fluid once the system start-up has been completed.

Temperatures
For petroleum oil:
Min.................................-20°C (-4°F)
Max.................................+70°C (158°F)
For fluids where limits are outside those of petroleum oil, consult fluid manufacturer or Eaton representative. Whatever the actual temperature range, ensure that viscosities stay within those specified under "Hydraulic Fluids".

Ambient for:
Valves at full performance specification: -20 to +70°C (-4 to +158°F).
Valves, as above, will operate at temperatures of 0 to -20°C (32 to -4°F) but with a reduced dynamic response.
Storage:
-25 to +85°C (-13 to +185°F)

Seal Kits
Pilot valve:
KBCG-3.........................02-352521
Mainstage valves:
KBCG-6.........................614824
KBCG-8.........................614931