VB1-VR PowerVac
Replacement Circuit Breaker

VB1-VR PowerVac 1200A Shown

EATON
Powering Business Worldwide
DISCLAIMER OF WARRANTIES AND LIMITATION OF LIABILITY

The information, recommendations, descriptions and safety notations in this document are based on Eaton’s experience and judgment and may not cover all contingencies. If further information is required, an Eaton sales office should be consulted. Sale of the product shown in this literature is subject to the terms and conditions outlined in appropriate Eaton selling policies or other contractual agreement between Eaton and the purchaser.

THERE ARE NO UNDERSTANDINGS, AGREEMENTS, WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE OR MERCHANTABILITY, OTHER THAN THOSE SPECIFICALLY SET OUT IN ANY EXISTING CONTRACT BETWEEN THE PARTIES. ANY SUCH CONTRACT STATES THE ENTIRE OBLIGATION OF EATON. THE CONTENTS OF THIS DOCUMENT SHALL NOT BECOME PART OF OR MODIFY ANY CONTRACT BETWEEN THE PARTIES.

In no event will Eaton be responsible to the purchaser or user in contract, in tort (including negligence), strict liability or otherwise for any special, indirect, incidental or consequential damage or loss whatsoever, including but not limited to damage or loss of use of equipment, plant or power system, cost of capital, loss of power, additional expenses in the use of existing power facilities, or claims against the purchaser or user by its customers resulting from the use of the information, recommendations and descriptions contained herein. The information contained in this manual is subject to change without notice.

This product was manufactured by Eaton at the Power Breaker Center (PBC): 310 Maxwell Avenue, Greenwood, SC 29646.

All possible contingencies which may arise during installation, operation or maintenance, and all details and variations of this equipment do not purport to be covered by these instructions. If further information is desired by purchaser regarding his particular installation, operation or maintenance of particular equipment, contact a Eaton representative.
Table of Contents

SECTION 1: INTRODUCTION 4
 1.1 AVAILABLE VB1-VR CIRCUIT BREAKERS 4

SECTION 2: SAFE PRACTICES 6

SECTION 3: RECEIVING, HANDLING, AND STORAGE 7
 3.1 RECEIVING 7
 3.2 HANDLING 7
 3.3 STORAGE 8
 3.4 VB1-VR APPROXIMATE WEIGHTS 8

SECTION 4: DESCRIPTION AND OPERATION 11
 4.1 VACUUM INTERRUPTER 11
 4.1.1 THE INTERRUPTER ASSEMBLY 11
 4.1.2 CONTACT EROSION INDICATOR 11
 4.1.3 CONTACT WIPE AND STROKE 12
 4.2 BUSHINGS AND DISCONNECTING CONTACT ASSEMBLIES 12
 4.3 STORED ENERGY MECHANISM 12
 4.4 CLOSING SPRING CHARGING 12
 4.4.1 CLOSING OPERATION 12
 4.4.2 TRIPPING OPERATION 13
 4.4.3 TRI-P-FREE OPERATION 13
 4.5 CONTROL SCHEMES 13
 4.5.1 TIMING 13
 4.6 SECONDARY CONNECTION BLOCK 13
 4.7 INTERLOCKS 13
 4.7.1 ANTI-CLOSE INTERLOCK 13
 4.7.2 BREAKER / CELL INTERFERENCE CODE PLATES 13
 4.7.3 Passive Interlock 13
 4.7.4 Active Interlock 13
 4.7.5 Position Closing Interlock 13
 4.7.6 STORED ENERGY DISCHARGE INTERLOCK 13

SECTION 5: INSPECTION & INSTALLATION 18
 5.1 EXAMINATION FOR DAMAGE 18
 5.1.1 NAMEPLATE VERIFICATION 18
 5.2 SURE CLOSE MECHANISM 18
 5.3 MANUAL OPERATION CHECK 18
 5.4 VACUUM INTERRUPTER INTEGRITY 19
 5.5 LOW FREQUENCY WITHSTAND TEST 19
 5.6 CONTACT EROSION AND WIPE 19
 5.7 PRIMARY CIRCUIT RESISTANCE 19
 5.8 ELECTRICAL OPERATIONS CHECK 19
 5.9 LOCK-OUT PROVISION 19
 5.10 RACKING MECHANISM 19
 5.11 INSERTION PROCEDURE 20
 5.12 REMOVAL PROCEDURE 20

SECTION 6: INSPECTION & MAINTENANCE 22
 6.1 INSPECTION FREQUENCY 22
 6.2 INSPECTION AND MAINTENANCE PROCEDURES 22
 6.3 VACUUM INTERRUPTER INTEGRITY TEST 23
 6.4 CONTACT EROSION AND WIPE 23
 6.5 INSULATION 24
 6.6 INSULATION INTEGRITY CHECK 24
 6.7 PRIMARY CIRCUIT RESISTANCE CHECK 25
 6.8 MECHANISM CHECK 25
 6.8.1 CLOSURE™ TEST 25
 6.9 LUBRICATION 26

SECTION 7: REPLACEMENT PARTS 30
 7.1 GENERAL 30
 7.2 ORDERING INSTRUCTIONS 30
SECTION 1: INTRODUCTION

The purpose of this book is to provide instructions for receiving and handling, storage, installation, operation and maintenance of the General Electric type VB1 VR-Series circuit breaker. The Vacuum Replacement Circuit Breakers (also referred to as VR-Series) are designed to be used in existing VB1 metal-clad switchgear and provide equal or superior electrical and mechanical performance as compared to the design ratings of the original circuit breaker. VR-Series Circuit Breakers provide reliable control, protection and performance, with ease of handling and maintenance. Like ratings are interchangeable with each other.

This book is intended to be used in conjunction with the technical information provided with the original equipment order which includes, but is not limited to electrical control schematics and wiring diagrams, outline diagrams, installation plans, and procedures for installation and maintenance of accessory items.

Satisfactory performance is dependant upon proper application, correct installation, and adequate maintenance. It is strongly recommended that this instruction book be carefully read and followed in order to realize optimum performance and long useful life of the circuit breaker.

Table 1. VB1-VR Availability and Interchangeability

<table>
<thead>
<tr>
<th>Breaker Type</th>
<th>Nominal Voltage Class (kV)</th>
<th>Existing Breaker MVA Rating</th>
<th>Existing Breaker Rated Continuous Current at 60 Hz (Amps)</th>
<th>Rated Voltage Factor K</th>
<th>Rated Withstand ANSI Test Voltage</th>
<th>Rated Short-Circuit ANSI Test Voltage Max kV</th>
<th>Closing and Latching Capabilities (Momentary) kA Peak</th>
</tr>
</thead>
<tbody>
<tr>
<td>VB-VR</td>
<td>4.16</td>
<td>250</td>
<td>1200</td>
<td>250</td>
<td>1.24</td>
<td>19</td>
<td>60</td>
</tr>
<tr>
<td>VB-VR</td>
<td>4.16</td>
<td>250</td>
<td>2000</td>
<td>250</td>
<td>1.24</td>
<td>19</td>
<td>60</td>
</tr>
<tr>
<td>VB-VR</td>
<td>4.16</td>
<td>350</td>
<td>1200</td>
<td>350</td>
<td>1.19</td>
<td>19</td>
<td>60</td>
</tr>
<tr>
<td>VB-VR</td>
<td>4.16</td>
<td>350</td>
<td>2000</td>
<td>350</td>
<td>1.19</td>
<td>19</td>
<td>60</td>
</tr>
<tr>
<td>VB1-VR</td>
<td>4.16</td>
<td>250</td>
<td>1200</td>
<td>250</td>
<td>1.24</td>
<td>19</td>
<td>60</td>
</tr>
<tr>
<td>VB1-VR</td>
<td>4.16</td>
<td>250</td>
<td>2000</td>
<td>250</td>
<td>1.24</td>
<td>19</td>
<td>60</td>
</tr>
<tr>
<td>VB1-VR</td>
<td>4.16</td>
<td>350</td>
<td>1200</td>
<td>350</td>
<td>1.19</td>
<td>19</td>
<td>60</td>
</tr>
<tr>
<td>VB1-VR</td>
<td>4.16</td>
<td>350</td>
<td>2000</td>
<td>350</td>
<td>1.19</td>
<td>19</td>
<td>60</td>
</tr>
</tbody>
</table>

WARNING

SATISFACTORY PERFORMANCE OF THESE BREAKERS IS CONTINGENT UPON PROPER APPLICATION, CORRECT INSTALLATION AND ADEQUATE MAINTENANCE. THIS INSTRUCTION BOOK MUST BE CAREFULLY READ AND FOLLOWED IN ORDER TO OBTAIN OPTIMUM PERFORMANCE FOR LONG USEFUL LIFE OF THE CIRCUIT BREAKERS. IT IS FURTHER RECOMMENDED THAT THE INSTALLATION BE PERFORMED BY A EATON CORPORATION TRAINED ENGINEER OR TECHNICIAN.

VR-SERIES BREAKERS ARE PROTECTIVE DEVICES, AS SUCH, THEY ARE MAXIMUM RATED DEVICES. THEREFORE, THEY SHOULD NOT UNDER ANY CIRCUMSTANCE BE APPLIED OUTSIDE THEIR NAMEPLATE RATINGS.

ALL POSSIBLE CONTINGENCIES WHICH MIGHT ARISE DURING INSTALLATION, OPERATION, OR MAINTENANCE, AND ALL DETAILS AND VARIATIONS OF THIS EQUIPMENT ARE NOT COVERED BY THESE INSTRUCTIONS. IF FURTHER INFORMATION IS DESIRED BY THE PURCHASER REGARDING A PARTICULAR INSTALLATION, OPERATION, OR MAINTENANCE OF THIS EQUIPMENT, THE LOCAL EATON REPRESENTATIVE SHOULD BE CONTACTED.

1.1 AVAILABLE VB1-VR CIRCUIT BREAKERS

Refer to Table 1.
Table 2. VB1-VR Dimensions

<table>
<thead>
<tr>
<th>Breaker Type</th>
<th>Existing Breaker</th>
<th>Rated Continuous Current at 60 Hz (Amps)</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>VB-VR / VB1-VR</td>
<td>1200 / 2000</td>
<td></td>
<td>32.79</td>
<td>29.31</td>
<td>29.26</td>
<td>12.50</td>
<td>10.98</td>
<td>17.23</td>
</tr>
</tbody>
</table>
SECTION 2: SAFE PRACTICES

VR-Series breakers are equipped with high speed, high energy operating mechanisms. They are designed with several built-in interlocks and safety features to provide safe and proper operating sequences.

⚠️ WARNING

TO PROTECT THE PERSONNEL ASSOCIATED WITH INSTALLATION, OPERATION, AND MAINTENANCE OF THESE BREAKERS, THE FOLLOWING PRACTICES MUST BE FOLLOWED:

• Only qualified persons, as defined in the National Electrical Safety Code, who are familiar with the installation and maintenance of medium voltage circuits and equipment, should be permitted to work on these breakers.

• Read these instructions carefully before attempting any installation, operation or maintenance of these breakers.

• Always remove the breaker from the enclosure before performing any maintenance. Failure to do so could result in electrical shock leading to death, severe personnel injury or property damage.

• Do not work on a breaker with the secondary test coupler engaged. Failure to disconnect the test coupler could result in an electrical shock leading to death, personnel injury or property damage.

• Do not work on a closed breaker or a breaker with closing springs charged. The closing spring should be discharged and the main contacts open before working on the breaker. Failure to do so could result in cutting or crushing injuries.

• Do not use a circuit breaker by itself as the sole means of isolating a high voltage circuit. Remove the breaker to the TEST position and follow all lockout and tagging rules of the National Electrical Code and any and all applicable codes, regulations and work rules.

• Do not leave the breaker in an intermediate position in the cell. Always have the breaker either in the Test or Connected position. Failure to do so could result in a flash over and possible death, personnel injury or property damage.

• Always remove the maintenance tool from the breaker after charging the closing springs.

• Breakers are equipped with safety interlocks. Do not defeat them. This may result in death, bodily injury or equipment damage.
SECTION 3: RECEIVING, HANDLING, AND STORAGE

Type VB1 VR-series circuit breakers are subjected to complete factory production tests and inspection before being packed. They are shipped in packages designed to provide maximum protection to the equipment during shipment and storage and at the same time to provide convenient handling. Accessories such as the maintenance tool, cell code plate, (if applicable) etc. are shipped with the breaker (Figure 3.1).

3.1 RECEIVING

Until the breaker is ready to be delivered to the switchgear site for installation, DO NOT remove it from the shipping crate. If the breaker is to be placed in storage, maximum protection can be obtained by keeping it in its crate.

Upon receipt of the equipment, inspect the crates for any signs of damage or rough handling. Open the crates carefully to avoid any damage to the contents. Use a nail puller rather than a crow bar when required.

When opening the crates, be careful that any loose items or hardware are not discarded with the packing material. Check the contents of each package against the packing list.

Examine the breaker for any signs of shipping damage such as broken, missing or loose hardware, damaged or deformed insulation and other components. File claims immediately with the carrier if damaged or loss is detected and notify the nearest Eaton’s Electrical Services & Systems office.

Tools and Accessories

Maintenance Tool: This tool is used to manually charge the closing spring. One maintenance tool is provided with each vacuum unit replacement breaker. (Style# 8064A02G01)

Racking Handle: The racking handle is used to drive the racking mechanism which moves the circuit breaker into and out of the cell. The original OEM racking handle will interface switchgear racking mechanism therefore not provided as part of the vacuum replacement breaker.

Secondary Connection Block Extension Cable: An extension cable can be used to connect the circuit breaker to a “test cabinet” or to the switchgear cell’s secondary receptacle block so that the breaker can be electrically operated while not installed in the switchgear cell. The original OEM extension cable will interface with the VR-Series replacement breaker therefore an additional extension cable is not included as part of the vacuum replacement breaker.

Figure 3.1. Typical Manual Charge Handle

3.2 HANDLING

⚠️ WARNING

DO NOT USE ANY LIFTING DEVICE AS A PLATFORM FOR PERFORMING MAINTENANCE, REPAIR OR ADJUSTMENT OF THE BREAKER OR FOR OPENING, CLOSING THE CONTACTS OR CHARGING THE SPRINGS. THE BREAKER MAY SLIP OR FALL CAUSING SEVERE PERSONAL INJURY. ALWAYS PERFORM MAINTENANCE, REPAIR AND ADJUSTMENTS ON A WORKBENCH CAPABLE OF SUPPORTING THE BREAKER TYPE.

VR-Series breaker shipping containers are designed to be handled either by use of a rope sling and overhead lifting device or by a fork lift truck. If containers must be skidded for any distance, it is preferable to use roller conveyors or individual pipe rollers.

Once a breaker has been inspected for shipping damage, it is best to return it to its original shipping crate until it is ready to be installed in the Metal-Clad Switchgear.

When a breaker is ready for installation, a lifting harness in conjunction with an overhead lift or portable floor lift can be used to move a breaker, if this is preferable to rolling the breaker on the floor using self contained wheels. If the breaker is to be lifted, position the lifting device (lifting straps should have at least a 1600 pound capacity) over the breaker and insert the lifting harness hooks into the breaker side openings and secure. Be sure the hooks are firmly attached before lifting the breaker. Stand a safe distance away from the breaker while lifting and moving.

Figure 3.2. Lifting VB1-VR
3.3 STORAGE

If the circuit breaker is to be placed in storage, maximum protection can be obtained by keeping it in the original shipping crate. Before placing it in storage, checks should be made to make sure that the breaker is free from shipping damage and is in satisfactory operating condition.

The breaker is shipped with its contacts open and closing springs discharged. The indicators on the front panel should confirm this. Insert the maintenance tool in the manual charge socket opening (Figure 3.3, 3.5, & 3.7). Charge the closing springs by pumping the handle up and down about 36 times until a crisp metallic “click” is heard. This indicates that the closing springs are charged and is shown by the closing spring “charged” (yellow) indicator. Remove the maintenance tool. Push the “manual close” button. The breaker will close as shown by the breaker contacts “closed” (red) indicator. Push the “manual trip” button. The breaker will trip as shown by the breaker contacts “open” (green) indicator. After completing this initial check, leave the closing springs “discharged” and breaker contacts “open”.

Outdoor storage is NOT recommended. If unavoidable, the outdoor location must be well drained and a temporary shelter from sun, rain, snow, corrosive fumes, dust, dirt, falling objects, excessive moisture, etc. must be provided. Containers should be arranged to permit free circulation of air on all sides and temporary heaters should be used to minimize condensation. Moisture can cause rusting of metal parts and deterioration of high voltage insulation. A heat level of approximately 400 watts for each 100 cubic feet of volume is recommended with the heaters distributed uniformly throughout the structure near the floor.

Indoor storage should be in a building with sufficient heat and circulation to prevent condensation. If the building is not heated, the same general rule for heat as for outdoor storage should be applied.

3.4 VB1-VR APPROXIMATE WEIGHTS

Refer to Table 3.

Table 3. Maximum Weight by Type

<table>
<thead>
<tr>
<th>Type</th>
<th>Amperes</th>
<th>LBs</th>
</tr>
</thead>
<tbody>
<tr>
<td>VB1-VR 250</td>
<td>1200</td>
<td>340</td>
</tr>
<tr>
<td>VB1-VR 250</td>
<td>2000</td>
<td>395</td>
</tr>
<tr>
<td>VB1-VR 350</td>
<td>1200</td>
<td>450</td>
</tr>
<tr>
<td>VB1-VR 350</td>
<td>2000</td>
<td>475</td>
</tr>
</tbody>
</table>
Figure 3.3.a. Front External View of VB1-VR (1200A Shown)

Front External View

1. Lifting Point
2. Racking Latch
3. Passive Interlock
4. Active Interlock
5. Removable Front Cover
6. Secondary Disconnect Engagement Handle
7. Manual Charging Socket
8. Operations Counter
9. Spring Charged / Discharged Indicator
10. Breaker Status Indicator
11. Push To Open Button
12. Push To Close Button
Figure 3.3.b. Rear External View of VB1-VR (1200A Shown)

- 1. Lifting Point
- 2. Stored Energy Discharge Interlock
- 3. Primary Disconnect
- 4. Track Rollers
- 5. Lock-Out Provision
- 6. Code Plate
- 7. Secondary Disconnect
- 8. Ground Contact
SECTION 4: DESCRIPTION AND OPERATION

VR-Series vacuum replacement breakers are designed to be used with existing installations of equivalent switchgear circuit breaker. The front mounted spring type stored energy mechanism facilitates inspection and provides improved access to components for servicing. The long life characteristics of the vacuum interrupters and proven high reliability of spring-type stored energy mechanisms assure long, trouble-free service with minimum maintenance.

4.1 VACUUM INTERRUPTER

Vacuum interrupters offer the advantages of enclosed arc interruption, small size and weight, longer life, reduced maintenance, minimal mechanical shock, and elimination of contact degradation caused by environmental contamination.

In the closed position, current flows through the interrupter moving and fixed stems and the faces of the main contacts. As the contacts part, an arc is drawn between the contact surfaces. The arc is rapidly moved away from the main contacts to the slotted contact surfaces by self-induced magnetic effects. This minimizes contact erosion and hot spots on the contact surfaces. The arc flows in an ionized metal vapor and as the vapor leaves the contact area, it condenses into the metal shield which surrounds the contacts.

At current zero, the arc extinguishes and vapor production ceases. Very rapid dispersion, cooling, recombination, and deionization of the metal vapor plasma and fast condensation of metal vapor causes the vacuum to be quickly restored and prevents the transient recovery voltage from causing a restrike across the gap of the open contacts.

4.1.1 THE INTERRUPTER ASSEMBLY

Each interrupter is assembled at the factory as a unit to assure correct dimensional relationships between working components. The interrupter assembly consists of a vacuum interrupter, a molded glass polyester stand-off insulator, upper and lower clamps, flexible shunts, bell crank, operating rod, and contact load spring. The vacuum interrupter is mounted vertically with the fixed stem upward and the moving stem downward. The upper and lower glass polyester stand-off insulator and clamps support the interrupter and are fastened to the breaker’s stored energy mechanism frame. Upper and lower flexible shunts provide electrical connections from each interrupter to the breaker’s primary bushings while providing isolation from mechanical shock and movement of the interrupter’s moving stem. The operating rod, loading spring, and bell crank transfer mechanical motion from the breaker’s operating mechanism to the moving stem of the interrupter. A vacuum interrupter contact erosion indicator is located on the moving stem of the interrupter. It is visible when the breaker is withdrawn and is viewed from the rear of the breaker. (See Figure 6.1 and Figure 6.2)

4.1.2 CONTACT EROSION INDICATOR

The purpose of the contact erosion indicator is to monitor the erosion of the vacuum interrupter contacts, which is very minimal over time with Eaton vacuum interrupters utilizing copperchrome contact material. A contact erosion indicator mark is located on the moving stem of the interrupter (Figure 6.1 and 6.2).

In order to determine if the contacts have eroded to the extent that the interrupter must be replaced, close the breaker and observe the erosion mark placed on each moving stem from the rear of the breaker. If the mark on the interrupter stem is visible, the interrupter is satisfactory. If the mark is no longer visible, the interrupter assembly must be replaced.

The erosion indicator is easily viewed from the rear on the 5, 7.5 or 15kV designs.
4.1 CONTACT WIPE AND STROKE

Contact wipe is the indication of (1) the force holding the vacuum interrupter contacts closed and (2) the energy available to hammer the contacts open with sufficient speed for interruption.

Stroke is the gap between fixed and moving contacts of a vacuum interrupter with the breaker open.

The circuit breaker mechanism provides a fixed amount of motion to the operating rods. The first portion of the motion is used to close the contacts (i.e., stroke) and the remainder is used to further compress the preloaded wipe spring. This additional compression is called wipe. Wipe and stroke are thus related to each other.

As the stroke increases due to the erosion of contacts, the wipe decreases. A great deal of effort and ingenuity has been spent in the design of VR-Series breakers, in order to eliminate any need for field adjustment of wipe or stroke.

4.2 BUSHINGS AND DISCONNECTING CONTACT ASSEMBLIES

The line and load bushing assemblies, which are the primary circuit terminals of the circuit breaker, consist of six silver plated conductors. Multiple finger type primary disconnecting contacts at the ends of the conductors provide means for connecting and disconnecting the breaker to the bus terminals in the switchgear compartment.

4.3 STORED ENERGY MECHANISM

The spring-type stored energy operating mechanism is mounted on the breaker frame and in the front of the breaker. Manual closing and opening controls are at the front panel (Figure 3.3). They are accessible while the breaker is in any of its four basic positions. (See Section 5 in this manual)

The mechanism stores the closing energy by charging the closing springs. When released, the stored energy closes the breaker, charges the wipe and resets the opening springs. The mechanism may rest in any one of the four positions shown in Figure 4.6 as follows:

a. Breaker open, closing springs discharged.

b. Breaker open, closing springs charged.

c. Breaker closed, closing springs discharged.

d. Breaker closed, closing springs charged.

The mechanism is a mechanically “trip-free” design. Trip-free is defined later in this section.

In normal operation the closing spring is charged by the spring charging motor, and the breaker is closed electrically by the switchgear control circuit signal to energize the spring release coil. Tripping is caused by energizing the trip coil through the control circuit.

For maintenance inspection purposes the closing springs can be charged manually by using the maintenance tool and the breaker can be closed and tripped by pushing the “Push to Close” and “Push to Open” buttons on the front panel.

4.4 CLOSING SPRING CHARGING

The major component of the mechanism is a cam shaft assembly which consists of a shaft to which are attached two closing spring cranks (one on each end), the closing cam, drive plate, and a free-wheeling ratchet wheel.

The ratchet wheel (6) is actuated by an oscillating ratchet lever (12) and drive pawl (10) driven by the motor eccentric cam. As the ratchet wheel rotates, it pushes the drive plates which in turn rotate the closing spring cranks and the closing cam on the cam shaft.

The motor will continue to run until the limit switch “LS” contact disconnects the motor.

The closing spring cranks have spring ends connected to them, which are in turn coupled to the closing springs. As the cranks rotate, the closing springs get charged.

The closing springs are completely charged, when the spring cranks go over dead center and the closing stop roller (9) comes against the spring release latch (1). The closing springs are now held in the fully charged position.

The closing springs may also be charged manually as follows: Insert the maintenance tool in the manual charging socket. Move it up and down several times (about 36) until a clicking sound is heard and closing spring status indicator shows “charged” (Figure 3.3). Any further motion of the maintenance tool will result in free wheeling of the ratchet wheel and will not result into advance of charging.

4.4.2 CLOSING OPERATION

Figure 4.6 shows the positions of the closing cam and tripping linkage for four different operational states. In Figure 4.6.a the breaker is open and the closing springs are discharged. In this state, the trip latch is disengaged from the trip “D” shaft (unlatched). After the closing springs become charged, the trip latch snaps into the fully reset or latched position (Figure 4.6.b)

When the spring release clapper (Figure 4.5, Item 13) moves into the face of the spring release coil (electrically or manually), the upper portion of the clapper pushes the spring release latch (1) upward. When the spring release latch moves, the cam shaft assembly is free to rotate. The force of the closing cam (Figure 4.6.b, Item 5), moving the main link (2), rotating the pole shaft (4) (which charges the opening spring). This moves the three operating rods (3), closes the main contacts and charges the contact loading springs (not shown). The operational state immediately after the main contacts close but before the spring charging motor recharges the closing springs is illustrated in Figure 4.6.c. Interference of the trip “D” shaft with the trip latch prevents the linkage from collapsing, and holds the breaker closed.

Figure 4.6.d shows the breaker in the closed state after the closing springs have been recharged. The recharging of the spring rotates...
Table 4. Time Per Event

<table>
<thead>
<tr>
<th>Event</th>
<th>Milliseconds / Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Closing Time</td>
<td>75</td>
</tr>
<tr>
<td>(From Initiation of Close Signal to Contact Make)</td>
<td></td>
</tr>
<tr>
<td>Opening Time</td>
<td>45</td>
</tr>
<tr>
<td>(Initiation of Trip Signal to Contact Break)</td>
<td></td>
</tr>
<tr>
<td>Reclosing Time</td>
<td>190</td>
</tr>
<tr>
<td>(Initiation of Trip Signal to Contact Make)</td>
<td></td>
</tr>
</tbody>
</table>
VR-Series Circuit Breaker dc Control Schematic

- Breaker Control Switch - close
- Breaker Control Switch - trip
- Anti Pump Relay
- Spring Release Coil (Close Coil)
- Spring Charging Motor
- Shunt Trip Coil
- Protective Relay
- Terminal Block or Accessible Terminal
- Position Switch 1
- Position Switch 2

OPERATION
- Closed until springs are fully charged
- Open until springs are fully charged
- Open until mechanism is reset
- Open in all except between ‘Test’ and ‘Connect’ positions
- Closed in all except between ‘Test’ and ‘Connect’ positions

SWITCH TERMINAL
- ‘C’ and ‘NO’ Brown Switch
- ‘C’ and ‘NC’ Black Switch
- ‘C’ and ‘NO’ Black Switch
- ‘C’ and ‘NO’ Brown Switch

VR-Series Circuit Breaker ac Control Schematic

- Breaker Control Switch - close
- Breaker Control Switch - trip
- Anti Pump Relay
- Spring Release Coil (Close Coil)
- Spring Charging Motor
- Shunt Trip Coil
- Protective Relay
- Terminal Block or Accessible Terminal
- Position Switch 1
- Position Switch 2

OPERATION
- Closed until springs are fully charged
- Open until springs are fully charged
- Open until mechanism is reset
- Open in all except between ‘Test’ and ‘Connect’ positions
- Closed in all except between ‘Test’ and ‘Connect’ positions

SWITCH TERMINAL
- ‘C’ and ‘NO’ Brown Switch
- ‘C’ and ‘NC’ Black Switch
- ‘C’ and ‘NO’ Black Switch
- ‘C’ and ‘NO’ Brown Switch
29WR Vacuum Element

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>LH Closing Spring</td>
</tr>
<tr>
<td>2</td>
<td>Motor Cutoff Switch</td>
</tr>
<tr>
<td>3</td>
<td>Latch Check Switch (Rear)</td>
</tr>
<tr>
<td>4</td>
<td>Operations Counter</td>
</tr>
<tr>
<td>5</td>
<td>Closing Cam</td>
</tr>
<tr>
<td>6</td>
<td>Spring Release Assembly</td>
</tr>
<tr>
<td>7</td>
<td>Shunt Trip Assembly</td>
</tr>
<tr>
<td>8</td>
<td>RH Closing Spring</td>
</tr>
<tr>
<td>9</td>
<td>Reset Opening Spring</td>
</tr>
<tr>
<td>10</td>
<td>Manual Charge Socket</td>
</tr>
<tr>
<td>11</td>
<td>Ratchet wheel</td>
</tr>
<tr>
<td>12</td>
<td>Charging Motor</td>
</tr>
</tbody>
</table>
Figure 4.5. Closing Cam and Trip Linkage

- Breaker Open, Springs Discharged
- Breaker Closed, Springs Charged

<table>
<thead>
<tr>
<th>Closing Cam and Trip Linkage</th>
<th>6</th>
<th>7</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Spring Release (Close) Latch</td>
<td>Ratchet Wheel</td>
<td>Spring Crank</td>
<td>Anti-Close Interlock</td>
</tr>
<tr>
<td>2 Pole Shaft</td>
<td>8 Cam Shaft</td>
<td>Motor Ratchet Lever</td>
<td></td>
</tr>
<tr>
<td>3 Closing Spring Fixed End</td>
<td>9 Spring Release Latch (Close Roller)</td>
<td>Spring Release (Close) Clapper</td>
<td></td>
</tr>
<tr>
<td>4 Closing Spring</td>
<td>10 Drive Pawl</td>
<td>Spring Release (Close) Coil</td>
<td></td>
</tr>
<tr>
<td>5 Holding Pawl</td>
<td>14 Spring Release (Close) Coi</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figure 4.6. Charging Schematic

4.6.a. Breaker Open and Closing Spring Not Charged

4.6.b. Breaker Open and Closing Spring Charged

4.6.c. Breaker Closed and Closing Spring Not Charged

4.6.d. Breaker Closed and Closing Spring Charged

<table>
<thead>
<tr>
<th>Charging Schematic</th>
<th>1 Main Link Roller</th>
<th>2 Main Link</th>
<th>3 Operating Rod</th>
<th>4 Pole Shaft</th>
<th>5 Closing Cam</th>
<th>6 Cam Shaft</th>
<th>7 Banana Link</th>
<th>8 Trip latch</th>
<th>9 Trip Bar "D" Shaft</th>
<th>10 Trip Latch Reset Spring</th>
<th>11 Shunt Trip Lever</th>
<th>12 Shunt Trip Coil</th>
</tr>
</thead>
</table>
SECTION 5: INSPECTION & INSTALLATION

WARNING

BEFORE PLACING THE BREAKER IN SERVICE, CAREFULLY FOLLOW THE INSTALLATION PROCEDURE BELOW AND THE SAFE PRACTICES SET FORTH IN SECTION 2. NOT FOLLOWING THE PROCEDURE MAY RESULT IN INCORRECT BREAKER OPERATION LEADING TO DEATH, BODILY INJURY, AND PROPERTY DAMAGE.

When the breaker is first commissioned into service and each time the breaker is returned to service, it should be carefully examined and checked to make sure it is operating correctly.

5.1 EXAMINATION FOR DAMAGE

Examine the breaker for loose or obviously damaged parts. Never attempt to install nor operate a damaged breaker.

5.1.1 NAMEPLATE VERIFICATION

Verify the information on the new VR-Series nameplate matches the information on the purchase order. If any discrepancies exist, notify Eaton’s Electrical Services & Systems for resolution prior to proceeding.

WARNING

ALWAYS DE-ENERGIZE/ISOLATE THE POWER SOURCE FEEDING THE POWER CIRCUIT BREAKERS/SWITCHGEAR AND LOCK-OUT/TAG-OUT THE POWER SOURCE PRIOR TO INSERTION OR REMOVAL OF ANY POWER CIRCUIT BREAKER. NEVER ATTEMPT TO MAINTAIN OR MODIFY A CIRCUIT BREAKER WHILE INSERTED IN A SWITCHGEAR CELL STRUCTURE. ALWAYS REMOVE THE POWER CIRCUIT BREAKER AND MOVE IT TO A SUITABLE AREA FOR MAINTENANCE OR REPAIR.

FOLLOW ALL LOCKOUT AND TAG-OUT REQUIREMENTS OF THE NATIONAL ELECTRIC CODE, OSHA AND ANY OTHER APPLICABLE LOCAL CODES, REGULATIONS AND PROCEDURES.

5.2 SURE CLOSE MECHANISM

WARNING

FOR ALL TYPE BREAKER HOUSINGS EQUIPPED WITH MECHANISM OPERATED CELL (MOC) SWITCHES, THE STEPS OUTLINED IN THIS SECTION MUST BE PERFORMED BEFORE INSTALLING A REPLACEMENT VR-SERIES CIRCUIT BREAKER. FAILURE TO COMPLY COULD CAUSE SEVERE PERSONAL INJURY, DEATH, EQUIPMENT DAMAGE AND/OR IMPROPER OPERATION.

All type VB1-VR breakers utilize the VB1-VR SURE CLOSE mechanism to control kinetic energy transfer.

The breaker has been factory adjusted to operate one mechanism operated cell (MOC) switch in the cell. This means that for applications with either no MOC switch or one MOC switch, no field adjustments are required.

Finally, the SURE CLOSE mechanism provides an effective way to evaluate the condition of the MOC in the cell. If the SURE CLOSE drive spring is properly adjusted, but the MOC does not fully open or close, it is time to maintain the MOC in the cell. Maintenance usually means cleaning and lubricating the MOC mechanism. If the MOC has seen a large number of cycles, however, worn components may have to be replaced.

To insure the proper operation of the SURE CLOSE mechanism, the MOC assembly should be cleaned and inspected for worn parts and then lubricated. A spring force gauge should be used to measure the forces needed to move the switch to the fully closed position prior to inserting the breaker. The differential force of the assembly and the breaker should be a minimum of 10 lbs. with the breaker having the higher recorded force. Should the forces be less than that contact an Eaton representative.

~

Figure 5.1. SURE CLOSE Spring Compression Setting (Factory Setting is 4.75” and Should Never Be Less than 3.75”)

Figure 5.2. VB1-VR MOC Operator

WARNING

MEASUREMENTS AND ADJUSTMENTS SHOULD NEVER BE ATTEMPTED IN AN ENERGIZED STRUCTURE. IF THE STRUCTURE CAN NOT BE DE-ENERGIZED, THEN PROPER PERSONAL PROTECTIVE EQUIPMENT PER NFPA 70E MUST BE WORN AT ALL TIMES WHILE GATHERING MOC SWITCH DATA, ADJUSTING OR SERVICING THE MOC SWITCH. FAILURE TO COMPLY WITH THIS WARNING COULD CAUSE SEVERE PERSONAL INJURY, DEATH, EQUIPMENT DAMAGE AND/OR IMPROPER OPERATION.

WARNING

WITH THE BREAKER IN THE OPEN POSITION, THE SPRING COMPRESSION IS FACTORY SET AT 4.75 INCHES AND SHOULD NEVER BE SET TO A DIMENSION LESS THAN 3.75 INCHES. SEE FIGURE 5.1.

5.3 MANUAL OPERATION CHECK

Manual operational checks must be performed before the breaker is connected to an energized circuit. Tests must be performed with the breaker withdrawn from the cell or in the TEST position. While the breaker is withdrawn or in the TEST position, place the maintenance tool into the manual charge socket opening and charge the closing springs with about 36 up and down strokes of the handle. When charging is complete, the closing crank goes over center with an audible “click” and the springs Charged / Discharged Indicator shows “Charged”. Remove the maintenance tool.

NOTICE

IF THE SPRINGS ARE TO BE CHARGED ON A CLOSED BREAKER, NO CLICK IS HEARD AT THE END OF CHARGING OPERATION. DISCONTINUE CHARGING AND REMOVE THE MAINTENANCE TOOL AS SOON AS “CHARGED” FLAG IS FULLY VISIBLE. CONTINUE ATTEMPTS TO FURTHER CHARGE MAY RESULT IN DAMAGE TO THE MECHANISM.
5.4 VACUUM INTERRUPTER INTEGRITY
Using a dry lint-free cloth or a paper towel, clean all the insulating surfaces of the pole units. Conduct a vacuum interrupter integrity check as described in Section 6.

5.5 LOW FREQUENCY WITHSTAND TEST (INSULATION CHECK)
Check breaker primary and secondary insulation per Section 6.

5.6 CONTACT EROSION AND WIPE
Manually charge the closing springs and close the breaker. Check contact erosion and wipe as described in Section 6.

5.7 PRIMARY CIRCUIT RESISTANCE
Check the primary circuit resistance as described in Section 6. The resistance should not exceed the values specified. Record the values obtained for future reference.

5.8 ELECTRICAL OPERATIONS CHECK
After going through the above steps, the breaker is now ready to be operated electrically. It is preferred that this check be made with the breaker in the Test position in the breaker compartment.

These checks can be performed with the breaker in its withdrawn or removed from switchgear cell position and connecting the breaker to a test cabinet or to the switchgear cell’s secondary receptacle using the special extension cable designed for this purpose and described in Section 3.

Since the Type VB1-VR Circuit Breaker is for use in existing PowerVac Metal-Clad Switchgear, installation procedures are similar. If it is necessary to reference anything in the breaker compartment, refer to the original instruction books supplied with the assembly.

5.9 LOCK-OUT PROVISION
Each VB1-VR vacuum replacement breaker is provided with a lock-out provision to prevent insertion of the circuit breaker. The lock-out provision can be viewed in Figure 3.3.a. To lock-out the circuit breaker, insert the padlock or locking hasp as illustrated in Figure 5.2. and secure with lock(s).

5.10 RACKING MECHANISM
The purpose of the racking device is to move the circuit breaker between the TEST and CONNECTED positions. For Type VB1-VR circuit breakers, the device is a drive screw and drive nut. Although the device is mounted in the switchgear compartment, a brief description here will help understand the operation. For additional information on the insertion and removal of a circuit breaker from its compartment refer to the Insertion and Removal Sections in this manual.

The racking device consists of a drive screw, a drive nut, two side rails and a sliding cage. In the TEST position, the nut is all the way to the front. As the circuit breaker is pushed in, the racking latch snaps on the nut. Turning the handle clockwise while pushing forward advances the circuit breaker toward the CONNECTED position. During this travel, the Active interlock is engaged to hold the circuit breaker trip free. When the circuit breaker reaches the CONNECTED position, the handle cannot be turned any further. The switchgear mounted circuit breaker position indicator will indicate that the circuit breaker is fully engaged.

If the circuit breaker is closed in the CONNECTED position, the slider cannot be pushed forward to permit engagement of the racking handle. After tripping the circuit breaker, the racking handle can be engaged and the circuit breaker withdrawn to the TEST position by turning the racking handle counterclockwise. This position is indicated by no further motion of the handle.

The circuit breaker racking latch can be disengaged only when the circuit breaker is in the TEST position by lifting the latch release. As the circuit breaker is withdrawn, it comes out with the contacts open and the springs discharged because of the stored energy discharge interlock.
5.11 INSERTION PROCEDURE

![Figure 5.4. VB1-VR in the TEST Position](image)

WARNING

VB1-VR CIRCUIT BREAKERS INSTALLED IN UPPER COMPARTMENT OF THEIR SWITCHGEAR MUST BE RACKED TO THE ‘TEST’ POSITION AT A MINIMUM TO PREVENT THEM FROM ROLLING OUT OF THE CIRCUIT BREAKER COMPARTMENT AND FALLING FROM THE SWITCHGEAR.

The VB1-VR device has interference interlocking (code plates) that will only allow the correctly sized circuit breaker to be inserted in the circuit breaker compartment. Example: A 1200A circuit breaker cannot be inserted into a 2000A circuit breaker compartment. Do not remove or alter the interference interlocking.

1. Inspect the circuit breaker compartment to confirm that the shutters are closed and that there is no foreign material in the circuit breaker compartment. Key interlocking in the circuit breaker compartment, if any, must also be cleared.

2. Move the VB1-VR to the circuit breaker compartment in which it is to be inserted using the original manufacturer’s lifting device provided with the original switchgear.

Note: The VB1-VR device has interference interlocking (code plates) that will only allow the correctly sized circuit breaker to be inserted in the circuit breaker compartment. These code plates prevent incorrect circuit breakers from being inserted into the wrong circuit breaker compartments. Example: A 1200A circuit breaker cannot be inserted into a 2000A circuit breaker compartment. Do not remove or alter the interference interlocking.

3. The VB1-VR circuit breaker is installed and locked onto the original manufacturer’s lifting device in the same way as the original device. See original manufacturer instructions for the use of the original manufacturer’s lifting device.

4. Confirm that the racking system of the circuit breaker compartment is in the “Disc/Test” position. See Figure 5.5

5. Push the VB1-VR device into the metal-clad switchgear circuit breaker compartment until the racking arms are engaged in the racking mechanism. A safety catch on the right hand metal-clad rail will prevent the circuit breaker from rolling back out in case the racking arms are not engaged. The drive nuts on the jack screws should be in the forward position against their respective stops. Once that is done the lifting device may be removed per the original manufacturer’s lifting device guidelines.

6. Electrical and mechanical tests in the circuit breaker compartment for the Eaton VB1-VR may be performed in the same manner as those tests for the original manufacturer’s circuit breaker by using the circuit breaker mounted handle to manually engage the breaker secondary disconnects with the circuit breaker compartment secondary disconnects. If the circuit breaker compartment secondary disconnects are energized, the spring charging motor will charge when complete secondary disconnect engagement is accomplished.

7. After any required tests, the VB1-VR circuit breaker can be racked to the connected position.

8. For personnel safety reasons, the VB1-VR circuit breaker must be racked into the circuit breaker compartment with the compartment front door closed.

9. Attach the racking handle to the racking mechanism shaft on the left side of the circuit breaker enclosure and push it in fully.

10. Rack the VB1-VR by rotating the handle clockwise approximately 60 full turns until a positive stop is felt. See Figure 5.6

11. The VB1-VR is now in the fully connected position as indicated by the tape indicator which should read “Conn”. Do not exceed 60 ft-lbs of force on the racking shaft. See Figure 5.7 which shows the circuit breaker in the connected position (door is open for demonstration purposes).

5.12 REMOVAL PROCEDURE

1. When circuit breaker removal is required, the circuit breaker can be racked from the connected position. Confirm that the circuit breaker is open prior to attempting to remove it.

2. Attach the racking handle to the racking mechanism shaft on the left side of the circuit breaker enclosure and push it in fully.

3. Rotate the racking handle counter-clockwise to move the VB1-VR to the “Disc/Test” position as indicated on the tape indicator.

4. Disengage the secondary disconnects prior to circuit breaker removal.

5. It will be necessary to lift the safety catch on the right side of the circuit breaker compartment to remove the VB1-VR from the circuit breaker compartment and move it onto the original manufacturer’s lifting device.

6. Follow the instructions provided by the original manufacturer for the use of the lifting device and circuit breaker removal.
Figure 5.5. Racking Handle Engagement (1200A Shown)

Figure 5.6. Engagement of Secondary Disconnect

Figure 5.7. VB1-VR in the Connect Position
SECTION 6: INSPECTION & MAINTENANCE

⚠️ WARNING

DO NOT WORK ON A BREAKER IN THE "CONNECTED" POSITION.

DO NOT WORK ON A BREAKER WITH SECONDARY DISCONNECTS ENGAGED.

DO NOT WORK ON A BREAKER WITH SPRINGS CHARGED OR CONTACTS CLOSED.

DO NOT DEFEAT ANY SAFETY INTERLOCKS.

DO NOT LEAVE MAINTENANCE TOOL IN THE SOCKET AFTER CHARGING THE CLOSING SPRINGS.

6.1 INSPECTION FREQUENCY

Inspect the breaker once a year when operating in a clean, non corrosive environment. For a dusty and corrosive environment, inspection should be performed twice a year. Additionally, it is recommended to inspect the breaker every time it interrupts fault current.

Note: Refer to the table below for maintenance and inspection check points.

6.2 INSPECTION AND MAINTENANCE PROCEDURES

<table>
<thead>
<tr>
<th>No. / Section</th>
<th>Inspection Item</th>
<th>Criteria</th>
<th>Inspection Method</th>
<th>Corrective Action If Necessary</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Insulation</td>
<td>Stand Off Insulators, Operating Rods, Tie-Bars and Barriers</td>
<td>No Dirt</td>
<td>Visual Check</td>
<td>Clean With Lint-Free Cloth</td>
</tr>
<tr>
<td></td>
<td>Vacuum Integrity</td>
<td>No Cracking</td>
<td>Visual Check</td>
<td>Replace Cracked Unit</td>
</tr>
<tr>
<td></td>
<td>Between Main Circuit With Terminals Ungrounded</td>
<td>Withstand 27k 60Hz For 1 Minute</td>
<td>Hipot Tester</td>
<td>Clean And Retest Or Replace</td>
</tr>
<tr>
<td></td>
<td>Insulation Integrity</td>
<td>Main Circuit To Ground</td>
<td>Withstand 15kV, 60Hz For 1 Minute (5kV Rating) 27kV, 60Hz For 1 Minute (15kV Rating)</td>
<td>Hipot Tester</td>
</tr>
<tr>
<td></td>
<td>Control Circuit To Ground (Charging Motor Disconnected)</td>
<td>Withstand 1125V, 60Hz For 1 Minute</td>
<td>Hipot Tester</td>
<td>Clean And Retest Or Replace</td>
</tr>
<tr>
<td>2. Power Element</td>
<td>Vacuum Interrupters</td>
<td>Contact Erosion Visibility Of Mark</td>
<td>Visual - Close The Breaker And Look For Green Mark On Moving Stem From The Rear Of The Breaker (See Figure 6.1 and 6.2)</td>
<td>If Mark Is Not Visible, Replace Interrupter Assembly</td>
</tr>
<tr>
<td></td>
<td>Contact Wipe Visible</td>
<td>Visual (Figure 6.3 and 6.4)</td>
<td>Replace VI Assembly</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Adequate Vacuum</td>
<td>See Section 6.3</td>
<td>Replace Interrupter Assembly If Vacuum Is Not Adequate</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dirt On Ceramic Body</td>
<td>Visual Check</td>
<td>Clean With Dry Lint-Free Cloth</td>
<td></td>
</tr>
<tr>
<td>3. Control Circuit Parts</td>
<td>Closing And Tripping Devices Including Disconnects</td>
<td>Smooth And Correct Operation By Control Power</td>
<td>Test Closing And Tripping Of The Breaker Twice</td>
<td>Replace Any Defective Device-Identify Per Trouble-Shooting Chart</td>
</tr>
<tr>
<td></td>
<td>Wiring</td>
<td>Securely Tied In Proper Place</td>
<td>Visual Check</td>
<td>Repair Or Tie As Necessary</td>
</tr>
<tr>
<td></td>
<td>Terminals</td>
<td>Tight</td>
<td>Visual Check</td>
<td>Tighten Or Replace If Necessary</td>
</tr>
<tr>
<td></td>
<td>Motor</td>
<td>Smooth And Correct Operation By Control Power</td>
<td>Test Closing And Tripping Of The Breaker Twice</td>
<td>Replace Brushes Or Motor</td>
</tr>
<tr>
<td></td>
<td>Tightness Of Hardware</td>
<td>No Loose Or Missing Parts</td>
<td>Visual And Tightening With Appropriate Tools</td>
<td>Tighten Or Reinstate If Necessary</td>
</tr>
<tr>
<td>4. Operating Mechanism</td>
<td>Dust Or Foreign Matter</td>
<td>No Dust Or Foreign Matter</td>
<td>Visual Check</td>
<td>Clean As Necessary</td>
</tr>
<tr>
<td></td>
<td>Lubrication</td>
<td>Smooth Operation And No Excessive Wear</td>
<td>Sight And Feel</td>
<td>Lubricate Very Sparingly With Light Machine Oil</td>
</tr>
<tr>
<td></td>
<td>Deformation Or Excessive Wear</td>
<td>No Excessive Deformation Or Wear</td>
<td>Visual And Operational</td>
<td>Remove Cause And Replace Parts</td>
</tr>
<tr>
<td></td>
<td>Manual Operation</td>
<td>Smooth Operation</td>
<td>Manual Charging Closing And Tripping</td>
<td>Correct Per Trouble-Shooting Chart If Necessary</td>
</tr>
<tr>
<td></td>
<td>CloSure™ Test</td>
<td>≥ 0.6 Inch Over Travel</td>
<td>CloSure™ Test 6.8.1</td>
<td>If < 0.6 Contact PB.C. At 1-877-276-9379</td>
</tr>
</tbody>
</table>

BOLT SIZE

<table>
<thead>
<tr>
<th>BOLT SIZE</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 - 32</td>
</tr>
<tr>
<td>10 - 32</td>
</tr>
<tr>
<td>25 - 20</td>
</tr>
<tr>
<td>31 - 18</td>
</tr>
<tr>
<td>38 - 16</td>
</tr>
<tr>
<td>50 - 13</td>
</tr>
</tbody>
</table>

TORQUE Lb. In.

<table>
<thead>
<tr>
<th>TORQUE Lb. In.</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
</tr>
<tr>
<td>36</td>
</tr>
<tr>
<td>72</td>
</tr>
<tr>
<td>144</td>
</tr>
<tr>
<td>300</td>
</tr>
<tr>
<td>540</td>
</tr>
</tbody>
</table>
6.3 VACUUM INTERRUPTER INTEGRITY TEST

Vacuum interrupters used in Type VR-Series circuit breakers are highly reliable interrupting elements. Satisfactory performance of these devices is dependent upon the integrity of the vacuum in the interrupter and the internal dielectric strength. Both of these parameters can be readily checked by a one minute AC high potential test. (See Table 6.1 for appropriate test voltage.) During this test, the following warning must be observed:

⚠️ WARNING

APPLYING ABNORMALLY HIGH VOLTAGE ACROSS A PAIR OF CONTACTS IN VACUUM MAY PRODUCE X-RADIATION. THE RADIATION MAY INCREASE WITH THE INCREASE IN VOLTAGE AND/OR DECREASE IN CONTACT SPACING. X-RADIATION PRODUCED DURING THIS TEST WITH RECOMMENDED VOLTAGE AND NORMAL CONTACT SPACING IS EXTREMELY LOW AND WELL BELOW MAXIMUM PERMITTED BY STANDARDS. HOWEVER, AS A PRECAUTIONARY MEASURE AGAINST POSSIBILITY OF APPLICATION OF HIGHER THAN RECOMMENDED VOLTAGE AND/OR BELOW NORMAL CONTACT SPACING, IT IS RECOMMENDED THAT ALL OPERATING PERSONNEL STAND AT LEAST ONE METER AWAY IN FRONT OF THE BREAKER.

With the breaker open and securely sitting on the floor, connect all top/front primary studs (bars) together and the high potential machine lead. Connect all bottom/rear studs together and the high potential return lead. Do not ground them to the breaker frame. Start the machine at zero potential, increase to appropriate test voltage and maintain for one minute.

Successful withstand indicates that all interrupters have satisfactory vacuum level. If there is a breakdown, the defective interrupter or interrupters should be identified by an individual test and replaced before placing the breaker in service.

After the high potential is removed, discharge any electrical charge that may be retained, particularly from the center shield of vacuum interrupters. To avoid any ambiguity in the AC high potential test due to leakage or displacement (capacitive) current, the test unit should have sufficient volt-ampere capacity. It is recommended that the equipment be capable of delivering 25 milliamperes for one minute.

Although an AC high potential test is recommended, a DC test may be performed if only a DC test unit is available, but is not recommended.

In this case the equipment must be capable of delivering 5 milliamperes for one minute to avoid ambiguity due to field emission or leakage currents and the test voltage shall be as shown in Table 6.1.

The current delivery capability of 25 mA AC and 5 mA DC apply when all three VI’s are tested in parallel. If individual VI’s are tested, current capability may be one third of these values.

⚠️ WARNING

SOME DC HIGH POTENTIAL UNITS, OPERATING AS UNFILTERED HALF-WAVE RECTIFIERS, ARE NOT SUITABLE FOR USE TO TEST VACUUM INTERRUPTERS BECAUSE THE PEAK VOLTAGE APPEARING ACROSS THE INTERRUPTERS CAN BE SUBSTANTIALLY GREATER THAN THE VALUE READ ON THE METER.

<table>
<thead>
<tr>
<th>Breaker Rated Maximum Voltage</th>
<th>AC 60Hz</th>
<th>DC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Up to and including 15.0 kV</td>
<td>27 kV</td>
<td>40 kV</td>
</tr>
</tbody>
</table>

6.4 CONTACT EROSION AND WIPE

Since the contacts are contained inside the interrupter, they remain clean and require no maintenance. However, during high current interruptions there may be a minimal amount of erosion from the contact surfaces. To determine contact erosion, close the breaker and observe the vacuum interrupter moving stem from the rear of the breaker. If the mark on each stem is visible, erosion has not reached maximum value thus indicating satisfactory contact surface of the interrupter. If the mark is not visible, the vacuum interrupter assembly must be replaced (Figure 6.1 and 6.2).

The adequacy of contact wipe can be determined by simply observing the vacuum interrupter side of the operating rod assembly on a closed breaker. Figures 6.3 and 6.4 show the procedure for determining the contact wipe. It maybe necessary to use a small mirror and flashlight to clearly see the “T” shape indicator. If the wipe is not adequate, the vacuum interrupter assembly (Pole Unit) must be replaced. Field adjustment is not possible.

⚠️ WARNING

FAILURE TO REPLACE A VACUUM INTERRUPTER ASSEMBLY WHEN CONTACT EROSION MARK IS NOT VISIBLE OR WIPE IS UNSATISFACTORY, WILL CAUSE THE BREAKER TO FAIL TO INTERRUPT AND THEREBY CAUSE PROPERTY DAMAGE OR PERSONNEL INJURY.
6.5 **INSULATION**

In VR-Series breakers, insulation maintenance primarily consists of keeping all insulating surfaces clean. This can be done by wiping off all insulating surfaces with a dry lint free cloth or dry paper towel. In case there is any tightly adhering dirt that will not come off by wiping, it can be removed with a mild solvent or distilled water. But be sure that the surfaces are dry before placing the breaker in service. If a solvent is required to cut dirt, use Isopropyl Alcohol or commercial equivalent. Secondary control wiring requires inspection for tightness of all connections and damage to insulation.

6.6 **INSULATION INTEGRITY CHECK**

PRIMARY CIRCUIT:

The integrity of primary insulation may be checked by the AC high potential test. The test voltage depends upon the maximum rated voltage of the breaker. For the breakers rated 4.76 kV, 8.25 kV and 15 kV the test voltages are 15 kV, 27 kV and 27 kV RMS, 60 Hz respectively. Conduct the test as follows:

Close the breaker. Connect the high potential lead of the test machine to one of the poles of the breaker. Connect the remaining poles and breaker frame to ground. Start the machine with output potential at zero and increase to the test voltage. Maintain the test voltage for one minute. Repeat for the remaining poles. Successful withstand indicates satisfactory insulation strength of the primary circuit.

Open the breaker. Connect the high potential lead of the test machine to one of the poles of the breaker. Connect the remaining poles and breaker frame to ground. Start the machine with output potential at zero and increase to the test voltage. Maintain the test voltage for one minute. Repeat for the remaining poles. Successful withstand indicates satisfactory insulation strength of the primary circuit.

If a DC high potential machine is used, make certain that the peak voltage does not exceed the peak of the corresponding AC RMS test voltage.

SECONDARY CIRCUIT:

Isolate the motor by disconnecting the two motor leads from the terminal block. Connect all points of the secondary disconnect pins with a shooting wire. Connect this wire to the high potential lead of the test machine. Ground the breaker frame. Starting with zero, increase the voltage to 1125 RMS, 60 Hz. Maintain the voltage for one minute. Successful withstand indicates satisfactory insulation strength of the secondary control circuit. Remove the shooting wire and reconnect the motor leads.
6.7 PRIMARY CIRCUIT RESISTANCE CHECK

Since the main contacts are inside the vacuum chamber they remain clean and require no maintenance at any time. Unlike most typical circuit breaker designs, VR-Series breakers do not have sliding contacts at the moving stem either. Instead they use a highly reliable and unique flexible clamp design that eliminates the need for lubrication and inspection for wear.

If desired, the DC resistance of the primary circuit may be measured as follows: close the breaker, pass at least 100 amps DC current through each primary conductor path of the breaker (Connect the current leads to the ends of the line and load bushings). Using a low resistance measurement instrument, measure resistance across the complete current path of each phase of the breaker. The measured resistance should not exceed the original factory test values by more than 15% when adjusted to the same temperature recorded during the factory test. Refer to the original Power Breaker Center test forms.

6.8 MECHANISM CHECK

Make a careful visual inspection of the mechanism for any loose parts such as bolts, nuts, pins, rings, etc. Check for excessive wear or damage to the breaker components. Operate the breaker several times manually and electrically. Check the closing and opening times to verify that they are in accordance with the limits in Table 4.1.

6.8.1 CLOSURE™ TEST

Introduction: The CloSure™ Test is a simple yet extremely effective means to determine and monitor the ability of the mechanism to close the breaker contacts fully. It provides a quantitative measure of the extra energy available in terms of over travel in inches to close the breaker contacts to their full extent. It may be used periodically to monitor the health of the mechanism.

General Information: The CloSure™ Test can be performed on all VR-Series circuit breakers. (Refer to Table 6.1.) If the CloSure™ travel obtained is as specified, the mechanism performance is satisfactory. If the CloSure™ travel does not conform as shown in Figure 6.15, contact Eaton’s Electrical Services & Systems for further information. (See Step 13).

⚠️ WARNING

DO NOT ATTEMPT TO INSTALL OR PERFORM MAINTENANCE OR TESTS ON THE EQUIPMENT WHILE IT IS ENERGIZED. NEVER PUT YOUR HANDS NEAR THE MECHANISM WHEN THE CIRCUIT BREAKER IS IN THE CHARGED OR CLOSED POSITION. DEATH OR SEVERE PERSONAL INJURY CAN RESULT FROM CONTACT WITH ENERGIZED EQUIPMENT. ALWAYS VERIFY THAT NO VOLTAGE IS PRESENT BEFORE PROCEEDING WITH THE TASK, AND ALWAYS FOLLOW GENERALLY ACCEPTED SAFETY PROCEDURES.

Safety Precautions: Read and understand these instructions before attempting any maintenance, repair or testing on the breaker. The user is cautioned to observe all recommendations, warnings and cautions relating to the safety of personnel and equipment.

The recommendations and information contained herein are based on Eaton Electrical experience and judgment, but should not be considered to be all-inclusive or covering every application or circumstance which may arise. If further information is required, you should consult Eaton’s Electrical Services & Systems.

Testing Procedures: Assuming that the circuit breaker is safely removed from the switchgear enclosure and positioned in an area outside the arc fault boundary, follow this procedure to perform the CloSure™ test. For further instructions on removal of the circuit breaker from the switchgear, refer to the appropriate section of this manual.

Step 1 - On the front cover, identify the status indicators. Make sure the closing spring status indicates “DISCHARGED” and the main contact indicator shows “OPEN” (Figure 6.5).

Step 2 - Remove the circuit breaker front cover. Be sure to save the original fasteners for reassembly.

Step 3 - Charge the circuit breaker, close the circuit breaker, then open the circuit breaker. Alternately depress the Open and Close clappers a few times to ensure the circuit breaker is completely discharged.

Step 4 - Cut a piece of one inch wide drafting / masking tape approximately 8 to 10 inches long.

Step 5 - Clean the far left cam with a mild solvent such as alcohol. Place the tape around the cam starting from the bottom up. Make certain that the tape adheres well to the cam surface. (Figure 6.6).

Step 6 - Mount the transparent CloSure™ Test Tool (Figure 6.7b) with two bolts and washers. Refer to Figure 6.7a and Table 6.1 for approximate mounting holes. Hand tighten the bolts.

Step 7 - Using a red Sanford® Sharpie® fine point permanent marker (or equivalent), place the marker tip in the proper hole (“C”) located over the cam and make a heavy mark on the tape by moving the marker as described in Figures 6.9, 6.11, and 6.12. Remove the marker from the hole.

Figure 6.5. Status Indicators (“A” shows the contact status indication and “B” shows the spring indication.)

Figure 6.6. Wrapping Tape Around Cam
Step 8 - Charge the closing springs with the maintenance tool (Charging handle). Continue charging the closing springs until a “click” is heard and the status indicator shows “CHARGED” (Figure 6.8).

Step 9 - Place the marker back in the hole. While holding the marker tip against the tape, close the breaker (Figure 6.10). Remove the marker from the hole.

Step 10 - While closely observing the pole shaft at the right side of the circuit breaker (Figure 6.11), recharge the closing springs with the maintenance tool. As the circuit breaker is recharged, there should be no movement of the pole shaft. If there is movement of the pole shaft while recharging, this indicates a problem with the circuit breaker - stop the test and consult the factory.

Step 11 - Open the circuit breaker, then close it, then reopen it. Verify that the mark made in Step 7 is aligned with the pen opening. If it is not aligned, this indicates a problem with the circuit breaker - stop the test and consult the factory.

Step 12 - Inspect the circuit breaker to assure it is in the open position and the closing springs are discharged. Alternately depress the Open and Close clappers a few times to ensure the circuit breaker is completely discharged. Remove the transparent CloSure™ Tool.

Step 13 - Remove the tape from the cam and place it on a sheet of paper that can be kept as a record of the test. Record the date of the test, person conducting the test, circuit breaker serial number, and the operations counter on the tape or paper (Figures 6.14 and 6.15).

Step 14 - Evaluate the CloSure™ performance by comparing the test tape with the illustration in Figure 6.16. Measure the over travel “X”. If “X” is not greater than or equal to 0.6”, this indicates a problem with the circuit breaker - consult the factory.

Step 14 - Reassemble the front cover onto the circuit breaker. Return the circuit breaker to its original configuration and setup.

6.9 LUBRICATION

All parts that require lubrication have been lubricated during the assembly with molybdenum disulphide grease. Eaton No. 53701QB. Over a period of time, this lubricant may be pushed out of the way or degrade. Proper lubrication at regular intervals is essential for maintaining the reliable performance of the mechanism. The breaker should be relubricated once a year or per the operations table (Table 6.2), which ever comes first. The locations shown in Figure 6.17...

Table 6.1. CloSure™ Tool Mounting/Testing Locations by Circuit Breaker Type

<table>
<thead>
<tr>
<th>BREAKER LINE</th>
<th>APPROXIMATE MECHANISM CABINET WIDTH (INCH)</th>
<th>UPPER MOUNTING HOLE</th>
<th>LOWER MOUNTING HOLE</th>
<th>MARKER PLACEMENT HOLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>18WR</td>
<td>18</td>
<td>A1</td>
<td>B2</td>
<td>C1</td>
</tr>
<tr>
<td>20WR</td>
<td>20</td>
<td>A1</td>
<td>B2</td>
<td>C2</td>
</tr>
<tr>
<td>29WR</td>
<td>27</td>
<td>A1</td>
<td>B2</td>
<td>C5</td>
</tr>
</tbody>
</table>

Figure 6.7a. Attaching CloSure™ Test Tool at Hole “A” & “B”
Figure 6.8. Manually Charging Closing Springs

Figure 6.9. Make a Clear and Heavy Mark

Figure 6.10. With Marker in Hole “C”, While Closing Breaker

Figure 6.11. Pole Shaft Located On Right Side Of Circuit Breaker

Figure 6.12. Move the Sharpie® 15° Left and Right

Figure 6.13. Top view of Cam and Marker Interface
should be lubricated with a drop of light machine oil. After lubrication, operate the breaker several times manually and electrically.

Roller bearings are used on the pole shaft, the cam shaft, the main link and the motor eccentric. These bearings are packed at the factory with a top grade slow oxidizing grease which normally should be effective for many years. They should not be disturbed unless there is definite evidence of sluggishness, dirt or parts are dismantled for some reason.

If it becomes necessary to disassemble the mechanism, the bearings and related parts should be thoroughly cleaned, remove old grease in a good grease solvent. Do not use carbon tetrachloride. They should then be washed in light machine oil until the cleaner is removed. After the oil has been drawn off, the bearings should be packed with Eaton Grease 53701 QB or equivalent.

Table 6.2. Proper Lubrication Times Per Rating

<table>
<thead>
<tr>
<th>RATINGS</th>
<th>OPERATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>29kA and below</td>
<td>750</td>
</tr>
<tr>
<td>Above 29kA</td>
<td>400</td>
</tr>
<tr>
<td>3000 Amp</td>
<td>400</td>
</tr>
</tbody>
</table>

Figure 6.17. Lubrication Areas

- Apply one drop of non-synthetic light machine oil at locations shown.
Table 6.3. Troubleshooting Chart

<table>
<thead>
<tr>
<th>SYMPTOM</th>
<th>INSPECTION AREA</th>
<th>PROBABLE DEFECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>FAILS TO CLOSE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Closing Springs Not Charged</td>
<td>Control Circuit</td>
<td>• Control Power (Fuse Blown Or Switch Off)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Secondary Disconnects</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Motor Cut-off Switch (Poor Or Burned Contacts, Lever Not Operational.)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Terminals And Connectors (Poor Or Burned Contacts)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Motor (Brushes Worn Or Commutator Segment Open)</td>
</tr>
<tr>
<td></td>
<td>Mechanism</td>
<td>• Pawls (Slipping Or Broken)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Ratchet Wheel (Teeth Worn Or Broken)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Cam Shaft Assembly (Sluggish Or Jammed)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Oscillator (Reset Spring Off Or Broken)</td>
</tr>
<tr>
<td>Closing Springs Not Charged Breaker Does Not Close</td>
<td>Control Circuit</td>
<td>• Control Power (Fuse blown or switch off)</td>
</tr>
<tr>
<td></td>
<td>(Close Coil Does Not Pick Up)</td>
<td>• Secondary Disconnects</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Anti Pump Relay (Y Relay N.C. Contact Open Or Burned Or Relay Picks Up)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Close Coil (Open Or Burned)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Latch Check Switch (Contact Open - Bad Switch Or Trip Bar Not Reset)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Auxiliary Switch (B Contact Open Or Burned)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Motor Cut-Off (Contacts Open Or Burned)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Trip Coil Assembly (Clapper Fails To Reset)</td>
</tr>
<tr>
<td></td>
<td>Closing Sound But No Close</td>
<td>• Pole Shaft (Not Open Fully)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Trip Latch Reset Spring (Damaged Or Missing)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Trip Bar-D Shaft (Fail To Remain Reset)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Trip Latch-Hatchet (Fails To Remain Reset)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Trip Floor Tripper (Fails To Remain Reset)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Close Latch (Binding)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Close Latch Roller (Binding)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Trip Circuit Energized</td>
</tr>
<tr>
<td>UNDESIRABLY CLOSES</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Control Circuit</td>
<td>• Close Circuit (CS/C Getting shorted)</td>
</tr>
<tr>
<td></td>
<td>Mechanism</td>
<td>• Close Release Latch (Fails To Reset)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Close Floor Tripper (Fails To Reset)</td>
</tr>
<tr>
<td>FAILS TO CLOSE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No Trip Sound</td>
<td>Control Circuit</td>
<td>• Control Power (Fuse Blown Or Switch Off)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Secondary Disconnects</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Auxiliary Switch (A Contact Not Making Poor Or Burned)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Trip Coil (Burned Or Open)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Terminals And Connections (Poor Or Burned Or Open)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Trip Clapper (Jammed)</td>
</tr>
<tr>
<td></td>
<td>Trip Mechanism</td>
<td>• Trip Bar, Trip Latch (Jammed)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Pole Shaft (Jammed)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Operating Rod Assembly (Broken Or Pins Out)</td>
</tr>
<tr>
<td></td>
<td>Vacuum Interrupter</td>
<td>(One Or More Welded)</td>
</tr>
<tr>
<td></td>
<td>One Or More Welded</td>
<td></td>
</tr>
<tr>
<td>UNDESIRABLY TRIPS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Control Circuit</td>
<td>• Control Power (CS/T Switch, remains made)</td>
</tr>
<tr>
<td></td>
<td>Mechanism</td>
<td>• Trip Coil Clapper (Not Resetting)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Trip Bar or Trip Latch (Poor Engagement Of Mating Or Worm Surfaces)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Trip Bar Reset Sprint (Loss Of Torque)</td>
</tr>
</tbody>
</table>
SECTION 7: REPLACEMENT PARTS

7.1 GENERAL

In order to minimize production downtime, it is recommended that an adequate quantity of spare parts be carried in stock. The quantity will vary from customer to customer, depending upon the service severity and continuity requirements. Each customer should develop his own level based on operating experience. However, when establishing a new operating record, it is a good practice to stock one set of control components for every six circuit breakers of the same control voltage. This quantity should be adjusted with time and frequency of operation of the circuit breakers.

| Table 7.1 Common Replacement Parts - Descriptions and Style Numbers |
|---|---|---|
| 1. | ANTI-PUMP (Y) RELAY (48vDC) (125vDC) (250vDC) (120vAC) (240vAC) | 94C9525H01 94C9525H02 94C9525H03 94C9525H04 94C9525H05 |
| 2. | RECTIFIER Rectifier | 94C9525G09 |
| 3. | SPRING CHARGING MOTOR (48vDC) (125vDC) (250vDC / 240vAC) | 94C9525G10 94C9525G11 94C9525G12 |
| 4. | BREAKER AUXILIARY SWITCH Breaker Auxiliary Switch | 94C9525G13 |
| 5. | BREAKER POSITION SWITCH Breaker Position Switch PS1 | 94C9525H06 |
| 6. | BREAKER POSITION SWITCH Breaker Position Switch PS2 | 94C9525H07 |
| 7. | LATCH CHECK SWITCH Latch Check Switch (LC) | 94C9525H08 |
| 8. | MOTOR CUTOFF SWITCHES (LS) (20WR/29WR) (LS) (18WR) | 94C9525G14 94C9525G15 |
| 9. | SPRING RELEASE COILS / SHUNT TRIPS 24vDC 48vDC 125vDC / 120vAC 250vDC / 240vAC | 94C9525G16 94C9525G17 94C9525G18 94C9525G19 |
| 10. | CONTROL COMPONENTS KIT 48vDC 125vDC 250vDC 120vAC-C/M 48vDC-T 240vAC-C/M 48vDC-T 120vAC-C/M 120vAC-CT 240vAC-C/M 240vAC-CT | 94C9525G01 94C9525G02 94C9525G03 94C9525G04 94C9525G05 94C9525G06 94C9525G07 |

7.2 ORDERING INSTRUCTIONS

a. The style numbers in Table 7.1 should be sufficient to purchase control components for most applications. Some breakers have special control schemes. Supply complete nameplate information for verification or if additional components are needed.
b. Specify the method of shipping desired.
c. Send all orders or correspondence to the nearest Eaton sales office or contact the PBC direct at 1-877-276-9379.
d. Include negotiation number with order when applicable.