DST-2-VR
Replacement Circuit Breaker

DST-2-15-VR 1200A Shown

DISCLAIMER OF WARRANTIES AND LIMITATION OF LIABILITY

The information, recommendations, descriptions and safety notations in this document are based on Eaton's experience and judgment and may not cover all contingencies. If further information is required, an Eaton sales office should be consulted. Sale of the product shown in this literature is subject to the terms and conditions outlined in appropriate Eaton selling policies or other contractual agreement between Eaton and the purchaser.

THERE ARE NO UNDERSTANDINGS, AGREEMENTS, WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE OR MERCHANTABILITY, OTHER THAN THOSE SPECIFICALLY SET OUT IN ANY EXISTING CONTRACT BETWEEN THE PARTIES. ANY SUCH CONTRACT STATES THE ENTIRE OBLIGATION OF EATON. THE CONTENTS OF THIS DOCUMENT SHALL NOT BECOME PART OF OR MODIFY ANY CONTRACT BETWEEN THE PARTIES.

In no event will Eaton be responsible to the purchaser or user in contract, in tort (including negligence), strict liability or other wise for any special, indirect, incidental or consequential damage or loss whatsoever, including but not limited to damage or loss of use of equipment, plant or power system, cost of capital, loss of power, additional expenses in the use of existing power facilities, or claims against the purchaser or user by its customers resulting from the use of the information, recommendations and descriptions contained herein. The information contained in this manual is subject to change without notice.

--

⚠️ WARNING
IMPROPERLY INSTALLING OR MAINTAINING THESE PRODUCTS CAN RESULT IN DEATH, SERIOUS PERSONAL INJURY OR PROPERTY DAMAGE.

READ AND UNDERSTAND THESE INSTRUCTIONS BEFORE ATTEMPTING ANY UNPACKING, ASSEMBLY, OPERATION OR MAINTENANCE OF THE CIRCUIT BREAKERS.

INSTALLATION OR MAINTENANCE SHOULD BE ATTEMPTED ONLY BY QUALIFIED PERSONNEL. THIS INSTRUCTION BOOK SHOULD NOT BE CONSIDERED ALL INCLUSIVE REGARDING INSTALLATION OR MAINTENANCE PROCEDURES. IF FURTHER INFORMATION IS REQUIRED, YOU SHOULD CONSULT EATON'S ELECTRICAL SERVICES & SYSTEMS.

THE CIRCUIT BREAKERS DESCRIBED IN THIS BOOK ARE DESIGNED AND TESTED TO OPERATE WITHIN THEIR NAMEPLATE RATINGS. OPERATION OUTSIDE OF THESE RATINGS MAY CAUSE THE EQUIPMENT TO FAIL, RESULTING IN DEATH, BODILY INJURY AND PROPERTY DAMAGE.

ALL SAFETY CODES, SAFETY STANDARDS AND/OR REGULATIONS AS THEY MAY BE APPLIED TO THIS TYPE OF EQUIPMENT MUST BE STRICTLY ADHERED TO.

These vacuum replacement circuit breakers are designed to be installed pursuant to the American National Standards Institute (ANSI). Serious injury, including death, can result from failure to follow the procedures outlined in this manual.

This product was manufactured by Eaton at the Power Breaker Center (PBC): 310 Maxwell Avenue, Greenwood, SC 29646. All possible contingencies which may arise during installation, operation or maintenance, and all details and variations of this equipment do not purport to be covered by these instructions. If further information is desired by purchaser regarding his particular installation, operation or maintenance of particular equipment, contact a Eaton representative.
Table of Contents

SECTION 1: INTRODUCTION
1.1 AVAILABLE DST-2-VR CIRCUIT BREAKERS 4

SECTION 2: SAFE PRACTICES 8

SECTION 3: RECEIVING, HANDLING, AND STORAGE 9
 3.1 RECEIVING 9
 3.2 HANDLING 9
 3.3 STORAGE 10
 3.4 DST-2-VR APPROXIMATE WEIGHTS 10

SECTION 4: DESCRIPTION AND OPERATION 17
 4.1 VACUUM INTERRUPTER 17
 4.1.1 THE INTERRUPTER ASSEMBLY 17
 4.1.2 CONTACT EROSION INDICATOR 17
 4.1.3 CONTACT WIPE AND STROKE 18
 4.2 PHASE BARRIERS 18
 4.3 BUSHINGS AND DISCONNECTING CONTACT ASSEMBLIES 18
 4.4 STORED ENERGY MECHANISM 18
 4.4.1 CLOSING SPRING CHARGING 18
 4.4.2 CLOSING OPERATION 18
 4.4.3 TRIPPING OPERATION 19
 4.4.4 TRIP-FREE OPERATION 19
 4.5 CONTROL SCHEMES 19
 4.5.1 TIMING 19
 4.6 SECONDARY CONNECTION BLOCK 19
 4.7 INTERLOCKS 19
 4.7.1 ANTI-CLOSE INTERLOCK 19
 4.7.2 SHUTTER OPERATING MECHANISM 19
 4.7.3 RACKING SYSTEM TRIP AND SPRING RELEASE INTERLOCKS 19
 4.8 RACKING MECHANISM 21
 4.8.1 LEVERING SYSTEM TRIP AND SPRING RELEASE INTERLOCKS 21
 4.9 GROUNDING CONTACT 21
 4.10 MISCELLANEOUS ITEMS 21
 4.10.1 OPERATIONS COUNTER 21

SECTION 5: INSPECTION & INSTALLATION 25
 5.1 EXAMINATION FOR DAMAGE 25
 5.1.1 NAMEPLATE VERIFICATION 25
 5.2 SURE CLOSE MECHANISM ADJUSTMENT 25
 5.3 MANUAL OPERATION CHECK 26
 5.4 VACUUM INTERRUPTER INTEGRITY 26
 5.5 LOW FREQUENCY WITHSTAND TEST (INSULATION CHECK) 26
 5.6 CONTACT EROSION AND WIPE 26
 5.7 PRIMARY CIRCUIT RESISTANCE 26
 5.8 ELECTRICAL OPERATIONS CHECK 26
 5.9 MECHANICAL INTERLOCK (FLOOR TRIP) OPERATIONAL CHECKS 26
 5.10 OPERATION, INSERTION AND REMOVAL (LEVERING-IN VERSION) 26
 5.10.1 OPERATIONAL POSITIONS (LEVERING-IN VERSION) 26
 5.10.2 INSERTION PROCEDURE (LEVERING-IN VERSION) 28
 5.10.3 REMOVAL PROCEDURE (LEVERING-IN VERSION) 29
 5.11 OPERATION, INSERTION, AND REMOVAL FOR 5KV AND 15KV MODELS WITH ROTARY RACKING PROVISIONS 29
 5.11.1 OPERATIONAL POSITIONS (DOMESTIC AND SOME CANADIAN ROTARY RACKING VERSIONS) 29
 5.11.2 5KV INSERTION PROCEDURE (DST-2-5-VR 250/250U/350, DOMESTIC AND CANADIAN ROTARY RACKING VERSION) 29
 5.11.3 5KV REMOVAL PROCEDURE (DST-2-5-VR 250/250U/350, DOMESTIC AND CANADIAN ROTARY RACKING VERSION) 30
 5.11.4 15KV INSERTION PROCEDURE (DST-2-15-VR 500/750 DOMESTIC AND CANADIAN ROTARY RACKING VERSION) 30
 5.11.5 15KV REMOVAL PROCEDURE (DST-2-15-VR 500/750 DOMESTIC AND CANADIAN ROTARY RACKING VERSION) 31

SECTION 6: INSPECTION & MAINTENANCE 32
 6.1 INSPECTION FREQUENCY 32
 6.2 INSPECTION AND MAINTENANCE PROCEDURES 32
 6.3 VACUUM INTERRUPTER INTEGRITY TEST 33
 6.4 CONTACT EROSION AND WIPE 33
 6.5 INSULATION 34
 6.6 INSULATION INTEGRITY CHECK 34
 6.7 PRIMARY CIRCUIT RESISTANCE CHECK 35
 6.8 MECHANISM CHECK 35
 6.8.1 CLOSURE™ RESISTANCE CHECK 35
 6.9 LUBRICATION 38

SECTION 7: REPLACEMENT PARTS 40
 7.1 GENERAL 40
 7.2 ORDERING INSTRUCTIONS 40
SECTION 1: INTRODUCTION

The purpose of this book is to provide instructions for receiving and handling, storage, installation, operation and maintenance of the Federal Pacific type DST-2 VR-Series circuit breaker. The Vacuum Replacement Circuit Breakers (also referred to as VR-Series) are designed to be used in existing DST-2 metal-clad switchgear and provide equal or superior electrical and mechanical performance as compared to the design ratings of the original circuit breaker. VR-Series Circuit Breakers provide reliable control, protection and performance, with ease of handling and maintenance. Like ratings are interchangeable with each other.

This book is intended to be used in conjunction with the technical information provided with the original equipment order which includes, but is not limited to electrical control schematics and wiring diagrams, outline diagrams, installation plans, and procedures for installation and maintenance of accessory items.

Satisfactory performance is dependant upon proper application, correct installation, and adequate maintenance. It is strongly recommended that this instruction book be carefully read and followed in order to realize optimum performance and long useful life of the circuit breaker.

Table 1. DST-2-VR Availability and Interchangeability

<table>
<thead>
<tr>
<th>Breaker Type</th>
<th>Nominal Voltage Class (kV)</th>
<th>Existing Breaker MVA Rating</th>
<th>Existing Breaker Rated Continuous Current at 60 Hz (Amps)</th>
<th>MVA Designation of VR-Series Breaker</th>
<th>Rated Voltage Factor K</th>
<th>Rated Withstand ANSI Test Voltage Low Freq. kV RMS</th>
<th>Impulse kV Crest</th>
<th>Rated Short-Circuit kA RMS at Rated Max kV</th>
<th>Closing and Latching / Momentary Capabilities kA RMS/Peak</th>
</tr>
</thead>
<tbody>
<tr>
<td>DST-2-VR</td>
<td>5</td>
<td>250</td>
<td>1200 / 2000</td>
<td>250</td>
<td>1.24</td>
<td>19</td>
<td>60</td>
<td>29</td>
<td>58 / 97</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>350</td>
<td>1200</td>
<td>350</td>
<td>1.19</td>
<td>19</td>
<td>60</td>
<td>41</td>
<td>78 / 132</td>
</tr>
<tr>
<td></td>
<td>7.2</td>
<td>500</td>
<td>1200 / 2000</td>
<td>500</td>
<td>1.25</td>
<td>36</td>
<td>95</td>
<td>33</td>
<td>66 / 111</td>
</tr>
<tr>
<td></td>
<td>13.8</td>
<td>500</td>
<td>1200 / 2000</td>
<td>500</td>
<td>1.30</td>
<td>36</td>
<td>95</td>
<td>18</td>
<td>37 / 63</td>
</tr>
<tr>
<td></td>
<td>13.8</td>
<td>750</td>
<td>1200 / 2000</td>
<td>750</td>
<td>1.30</td>
<td>36</td>
<td>95</td>
<td>28</td>
<td>58 / 98</td>
</tr>
</tbody>
</table>

1.1 AVAILABLE DST-2-VR CIRCUIT BREAKERS

Refer to Table 1.

WARNING

SATISFACTORY PERFORMANCE OF THESE BREAKERS IS CONTINGENT UPON PROPER APPLICATION, CORRECT INSTALLATION AND ADEQUATE MAINTENANCE. THIS INSTRUCTION BOOK MUST BE CAREFULLY READ AND FOLLOWED IN ORDER TO OBTAIN OPTIMUM PERFORMANCE FOR LONG USEFUL LIFE OF THE CIRCUIT BREAKERS. IT IS FURTHER RECOMMENDED THAT THE INSTALLATION BE PERFORMED BY A EATON CORPORATION TRAINED ENGINEER OR TECHNICIAN.

VR-SERIES BREAKERS ARE PROTECTIVE DEVICES, AS SUCH, THEY ARE MAXIMUM RATED DEVICES. THEREFORE, THEY SHOULD NOT UNDER ANY CIRCUMSTANCE BE APPLIED OUTSIDE THEIR NAMEPLATE RATINGS.

ALL POSSIBLE CONTINGENCIES WHICH MIGHT ARISE DURING INSTALLATION, OPERATION, OR MAINTENANCE, AND ALL DETAILS AND VARIATIONS OF THIS EQUIPMENT ARE NOT COVERED BY THESE INSTRUCTIONS. IF FURTHER INFORMATION IS DESIRED BY THE PURCHASER REGARDING A PARTICULAR INSTALLATION, OPERATION, OR MAINTENANCE OF THIS EQUIPMENT, THE LOCAL EATON REPRESENTATIVE SHOULD BE CONTACTED.
<table>
<thead>
<tr>
<th>Breaker Type</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
</tr>
</thead>
<tbody>
<tr>
<td>DST-2-5-VR 250/250U/350</td>
<td>57.13</td>
<td>18.50</td>
<td>5.50</td>
<td>31.87</td>
<td>11.00</td>
<td>19.87</td>
<td>6.75</td>
<td>24.00</td>
<td>8.25</td>
</tr>
<tr>
<td>DST-2-5-VR 500/750</td>
<td>57.13</td>
<td>18.50</td>
<td>5.50</td>
<td>34.00</td>
<td>11.00</td>
<td>19.87</td>
<td>6.75</td>
<td>24.00</td>
<td>8.25</td>
</tr>
</tbody>
</table>

Table 2. DST-2-5-VR Dimensions

Existing Breaker
Rated Continuous
Current at 60 Hz
(Amps)
DST-2-VR Replacement Circuit Breaker

Table 3. DST-2-5-VR Dimensions (Centered Secondary Disconnect Model)

<table>
<thead>
<tr>
<th>Breaker Type</th>
<th>Rated Continuous Current at 60 Hz (Amps)</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>J</th>
<th>K</th>
<th>L</th>
<th>M</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>DST-2-5-VR 250/250U/350</td>
<td>1200</td>
<td>57.20</td>
<td>18.50</td>
<td>5.50</td>
<td>33.88</td>
<td>11.00</td>
<td>19.87</td>
<td>23.75</td>
<td>0.75</td>
<td>22.73</td>
<td>7.50</td>
<td>1.00</td>
<td>4.80</td>
<td>7.7125</td>
<td>15.458</td>
</tr>
<tr>
<td>DST-2-15-VR 250/250U/350</td>
<td>1200</td>
<td>63.30</td>
<td>18.34</td>
<td>7.88</td>
<td>34.089</td>
<td>11.00</td>
<td>19.813</td>
<td>28.80</td>
<td>0.75</td>
<td>23.33</td>
<td>7.50</td>
<td>4.90</td>
<td>3.60</td>
<td>10.54</td>
<td>21.025</td>
</tr>
</tbody>
</table>
Table 4. DST-2-15-VR Dimensions (Rotary Racking Design) (Domestic & Canadian)

<table>
<thead>
<tr>
<th>Breaker Type</th>
<th>A (Amps)</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>DST-2-15-VR 500</td>
<td>1200</td>
<td>63.30</td>
<td>25.50</td>
<td>7.88</td>
<td>34.00</td>
<td>11.00</td>
<td>19.87</td>
<td>23.00</td>
</tr>
<tr>
<td>DST-2-15-VR 750</td>
<td>2000</td>
<td>63.30</td>
<td>25.50</td>
<td>7.88</td>
<td>37.76</td>
<td>11.00</td>
<td>19.87</td>
<td>23.00</td>
</tr>
</tbody>
</table>

Note: DST-2-15-VR 500 1200A with optional Self Adjuster and MOC Operator shown.
SECTION 2: SAFE PRACTICES

VR-Series breakers are equipped with high speed, high energy operating mechanisms. They are designed with several built-in interlocks and safety features to provide safe and proper operating sequences.

⚠️ WARNING

TO PROTECT THE PERSONNEL ASSOCIATED WITH INSTALLATION, OPERATION, AND MAINTENANCE OF THESE BREAKERS, THE FOLLOWING PRACTICES MUST BE FOLLOWED:

- Only qualified persons, as defined in the National Electrical Safety Code, who are familiar with the installation and maintenance of medium voltage circuits and equipment, should be permitted to work on these breakers.
- Read these instructions carefully before attempting any installation, operation or maintenance of these breakers.
- Always remove the breaker from the enclosure before performing any maintenance. Failure to do so could result in electrical shock leading to death, severe personnel injury or property damage.
- Do not work on a breaker with the secondary test coupler engaged. Failure to disconnect the test coupler could result in an electrical shock leading to death, personnel injury or property damage.
- Do not work on a closed breaker or a breaker with closing springs charged. The closing spring should be discharged and the main contacts open before working on the breaker. Failure to do so could result in cutting or crushing injuries.
- Do not use a circuit breaker by itself as the sole means of isolating a high voltage circuit. Remove the breaker to the Disconnect position and follow all lockout and tagging rules of the National Electrical Code and any and all applicable codes, regulations and work rules.
- Do not leave the breaker in an intermediate position in the cell. Always have the breaker either in the Test or Connected position. Failure to do so could result in a flash over and possible death, personnel injury or property damage.
- Always remove the maintenance tool from the breaker after charging the closing springs.
- Breakers are equipped with safety interlocks. Do not defeat them. This may result in death, bodily injury or equipment damage.
SECTION 3: RECEIVING, HANDLING, AND STORAGE

Type DST-2 VR-series circuit breakers are subjected to complete factory production tests and inspection before being packed. They are shipped in packages designed to provide maximum protection to the equipment during shipment and storage and at the same time to provide convenient handling. Accessories such as the maintenance tool, cell code plate, (if applicable) etc. are shipped with the breaker (Figure 3.1).

3.1 RECEIVING

Until the breaker is ready to be delivered to the switchgear site for installation, DO NOT remove it from the shipping crate. If the breaker is to be placed in storage, maximum protection can be obtained by keeping it in its crate.

Upon receipt of the equipment, inspect the crates for any signs of damage or rough handling. Open the crates carefully to avoid any damage to the contents. Use a nail puller rather than a crow bar when required.

When opening the crates, be careful that any loose items or hardware are not discarded with the packing material. Check the contents of each package against the packing list.

Examine the breaker for any signs of shipping damage such as broken, missing or loose hardware, damaged or deformed insulation and other components. File claims immediately with the carrier if damaged or loss is detected and notify the nearest Eaton’s Electrical Services & Systems office.

Tools and Accessories

Maintenance Tool: This tool is used to manually charge the closing spring. One maintenance tool is provided with each vacuum unit replacement breaker. (Style# 8064A02G01)

Rotary Racking Handle: Rotary racking is possible utilizing a speed-handle. One rotary racking handle is provided per order. If necessary, additional racking handles may be purchased directly from Eaton. (Style# 94B4102G21) This handle is used with the rotary racking system for insertion and removal.

Levering Handle: The original DST-2 levering handle is used to assist in moving the circuit breaker into and out of the cell. However, it cannot be used with the rotary racking system. Its use is illustrated in section 4.2.1.

Secondary Connection Block Extension Cable: The extension cable can be used to connect the circuit breaker to a “test cabinet” or to the switchgear cell’s secondary receptacle block so that the breaker can be electrically operated while not installed in the switchgear cell. This extension cable is the same one provided with the original Federal Pacific breaker and is therefore not included as part of the vacuum replacement breaker.

3.2 HANDLING

⚠️ WARNING

DO NOT USE ANY LIFTING DEVICE AS A PLATFORM FOR PERFORMING MAINTENANCE, REPAIR OR ADJUSTMENT OF THE BREAKER OR FOR OPENING, CLOSING THE CONTACTS OR CHARGING THE SPRINGS. THE BREAKER MAY SLIP OR FALL CAUSING SEVERE PERSONAL INJURY. ALWAYS PERFORM MAINTENANCE, REPAIR AND ADJUSTMENTS ON A WORKBENCH CAPABLE OF SUPPORTING THE BREAKER TYPE.

VR-Series breaker shipping containers are designed to be handled either by use of a rope sling and overhead lifting device or by a fork lift truck. If containers must be skidded for any distance, it is preferable to use roller conveyors or individual pipe rollers.

Once a breaker has been inspected for shipping damage, it is best to return it to its original shipping crate until it is ready to be installed in the Metal-Clad Switchgear.

When a breaker is ready for installation, a lifting harness in conjunction with an overhead lift or portable floor lift can be used to move a breaker, if this is preferable to rolling the breaker on the floor using self contained wheels. If the breaker is to be lifted, position the lifting device (lifting straps should have at least a 1600 pound capacity) over the breaker and insert the lifting harness hooks into the breaker side openings and secure. Be sure the hooks are firmly attached before lifting the breaker. Stand a safe distance away from the breaker while lifting and moving.

Figure 3.1.a. Typical Manual Charge Handle

Figure 3.1.b. Rotary Racking Handle
3.3 STORAGE

If the circuit breaker is to be placed in storage, maximum protection can be obtained by keeping it in the original shipping crate. Before placing it in storage, checks should be made to make sure that the breaker is free from shipping damage and is in satisfactory operating condition.

The breaker is shipped with its contacts open and closing springs discharged. The indicators on the front panel should confirm this. Insert the maintenance tool in the manual charge socket opening (Figure Set 3.3). Charge the closing springs by pumping the handle up and down about 36 times until a crisp metallic “click” is heard. This indicates that the closing springs are charged and is shown by the closing spring “charged” (yellow) indicator. Remove the maintenance tool. Push the “manual close” button. The breaker will close as shown by the breaker contacts “closed” (red) indicator. Push the “manual trip” button. The breaker will trip as shown by the breaker contacts “open” (green) indicator. After completing this initial check, leave the closing springs “discharged” and breaker contacts “open”.

Outdoor storage is NOT recommended. If unavoidable, the outdoor location must be well drained and a temporary shelter from sun, rain, snow, corrosive fumes, dust, dirt, falling objects, excessive moisture, etc. must be provided. Containers should be arranged to permit free circulation of air on all sides and temporary heaters should be used to minimize condensation. Moisture can cause rusting of metal parts and deterioration of high voltage insulation. A heat level of approximately 400 watts for each 100 cubic feet of volume is recommended with the heaters distributed uniformly throughout the structure near the floor.

Indoor storage should be in a building with sufficient heat and circulation to prevent condensation. If the building is not heated, the same general rule for heat as for outdoor storage should be applied.

3.4 DST-2-VR APPROXIMATE WEIGHTS

Refer to Table 3.

<table>
<thead>
<tr>
<th>Type</th>
<th>Amperes</th>
<th>LBs</th>
</tr>
</thead>
<tbody>
<tr>
<td>DST-2-VR 250</td>
<td>1200</td>
<td>550*</td>
</tr>
<tr>
<td>DST-2-VR 250</td>
<td>2000</td>
<td>615*</td>
</tr>
<tr>
<td>DST-2-VR 350</td>
<td>1200</td>
<td>610*</td>
</tr>
<tr>
<td>DST-2-VR 350</td>
<td>2000</td>
<td>620*</td>
</tr>
<tr>
<td>DST-2-VR 500</td>
<td>1200</td>
<td>650*</td>
</tr>
<tr>
<td>DST-2-VR 500</td>
<td>2000</td>
<td>710*</td>
</tr>
<tr>
<td>DST-2-VR 750</td>
<td>1200</td>
<td>630*</td>
</tr>
<tr>
<td>DST-2-VR 750</td>
<td>2000</td>
<td>710*</td>
</tr>
</tbody>
</table>

Note: * = An additional 75lbs is added with the optional internal Rotary Racking system.
Figure 3.3.a. Front External View of DST-2-15-VR (500MVA Levering-In Version)

Note: DST-2-15-VR 500 1200A with optional Self Adjuster and MOC Operator shown.
Figure 3.3.b. Rear External View of DST-2-15-VR (500MVA Levering-In Version)

Rear External View

1. Primary Disconnects
2. Secondary Disconnects
3. Shutter Roller
4. Ground Contact

Note: This domestic levering-in version represents some Canadian versions with 120Vac or 125Vdc control power.
Figure 3.3.c. Rear External View of DST-2-7.5-VR (Centered Secondary Disconnect Model)

Rear External View

1. Primary Disconnects
2. Secondary Disconnects
3. Shutter Roller
4. TOC Operator
5. Ground Contact

Note: This DST-2-7.5 was designed for a specific application and may not compare to other Canadian DST-2-7.5 models.
Figure 3.3.d. Front External View of DST-2-15-VR (500MVA Rotary Racking Version)

1. Manual Charging Socket
2. Push To Close Button
3. Interlock Pedal
4. Breaker Position Indicator
5. Tow Hitch
6. Breaker Contacts Indicator
7. Spring Charged / Discharged Indicator
8. Operations Counter
9. Push To Open Button
10. Racking Handle Access
11. Manual Motor Cut-Off Switch
12. Lock Out / Tag Out
Figure 3.3.e. Rear External View of DST-2-15-VR (500MVA Rotary Racking Version)

Rear External View

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Primary Disconnects</td>
</tr>
<tr>
<td>2</td>
<td>Secondary Disconnects</td>
</tr>
<tr>
<td>3</td>
<td>SURE CLOSE Spring</td>
</tr>
<tr>
<td>4</td>
<td>Shutter Roller</td>
</tr>
<tr>
<td>5</td>
<td>Anti Rotation Self Adjuster (Optional)</td>
</tr>
<tr>
<td>6</td>
<td>Ground Contact</td>
</tr>
</tbody>
</table>
DST-2-VR Replacement Circuit Breaker

Figure 3.3.f. Front External View of DST-2-15-VR (750MVA Rotary Racking Version)

Front External View

1 Manual Charging Socket
2 Push To Close Button
3 Interlock Pedal
4 Breaker Position Indicator
5 Tow Hitch
6 Breaker Contacts Indicator
7 Spring Charged / Discharged Indicator
8 Operations Counter
9 Push To Open Button
10 Racking Handle Access
11 Manual Motor Cut-Off Switch
12 Lock Out / Tag Out
SECTION 4: DESCRIPTION AND OPERATION

VR-Series vacuum replacement breakers are designed to be used with existing installations of equivalent air-magnetic metal-clad switchgear breaker. The front mounted spring type stored energy mechanism facilitates inspection and provides improved access to components for servicing. The long life characteristics of the vacuum interrupters and proven high reliability of spring-type stored energy mechanisms assure long, trouble-free service with minimum maintenance.

4.1 VACUUM INTERRUPTER

Vacuum interrupters offer the advantages of enclosed arc interruption, small size and weight, longer life, reduced maintenance, minimal mechanical shock, and elimination of contact degradation caused by environmental contamination.

In the closed position, current flows through the interrupter moving and fixed stems and the faces of the main contacts. As the contacts part, an arc is drawn between the contact surfaces. The arc is rapidly moved away from the main contacts to the slotted contact surfaces by self-induced magnetic effects. This minimizes contact erosion and hot spots on the contact surfaces. The arc flows in an ionized metal vapor and as the vapor leaves the contact area, it condenses into the metal shield which surrounds the contacts.

At current zero, the arc extinguishes and vapor production ceases. Very rapid dispersion, cooling, recombination, and deionization of the metal vapor plasma and fast condensation of metal vapor causes the vacuum to be quickly restored and prevents the transient recovery voltage from causing a restrike across the gap of the open contacts.

4.1.1 THE INTERRUPTER ASSEMBLY

Each interrupter is assembled at the factory as a unit to assure correct dimensional relationships between working components. The interrupter assembly consists of a vacuum interrupter, a molded glass polyester stand-off insulator, upper and lower clamps, flexible shunts, bell crank, operating rod, and contact load spring. The vacuum interrupter is mounted vertically with the fixed stem upward and the moving stem downward. The upper and lower glass polyester stand-off insulator and clamps support the interrupter and are fastened to the breaker’s stored energy mechanism frame. Upper and lower flexible shunts provide electrical connections from each interrupter to the breaker’s primary bushings while providing isolation from mechanical shock and movement of the interrupter’s moving stem. The operating rod, loading spring, and bell crank transfer mechanical motion from the breaker’s operating mechanism to the moving stem of the interrupter. A vacuum interrupter contact erosion indicator is located on the moving stem of the interrupter. It is visible when the breaker is withdrawn and is viewed from the rear of the breaker. (See Figure 6.1 and Figure 6.2)

4.1.2 CONTACT EROSION INDICATOR

The purpose of the contact erosion indicator is to monitor the erosion of the vacuum interrupter contacts, which is very minimal over time with Eaton vacuum interrupters utilizing copperchrome contact material. A contact erosion indicator mark is located on the moving stem of the interrupter (Figure 6.1 and 6.2).

In order to determine if the contacts have eroded to the extent that the interrupter must be replaced, close the breaker and observe the erosion mark placed on each moving stem from the rear of the breaker. If the mark on the interrupter stem is visible, the interrupter is satisfactory. If the mark is no longer visible, the interrupter assembly must be replaced.

The erosion indicator is easily viewed from the rear on the 7.5 or 15kV designs. Because of the nature of the 5kV 20-WR element inverted design, the erosion indicator is not easily viewed, although it is possible with the use of a light and an inspection type mirror.
4.3 BUSHINGS AND DISCONNECTING CONTACT ASSEMBLIES
The line and load bushing assemblies, which are the primary circuit terminals of the circuit breaker, consist of six silver plated conductors. Multiple finger type primary disconnecting contacts at the ends of the conductors provide means for connecting and disconnecting the breaker to the bus terminals in the switchgear compartment.

4.4 STORED ENERGY MECHANISM
The spring-type stored energy operating mechanism is mounted on the breaker frame and in the front of the breaker. Manual closing and opening controls are at the front panel (Figure Set 3.3). They are accessible while the breaker is in any of its four basic positions. (See Section 5 in this manual)

The mechanism stores the closing energy by charging the closing springs. When released, the stored energy closes the breaker, charges the wipe and resets the opening springs. The mechanism may rest in any one of the four positions shown in Figure 4.6 as follows:

a. Breaker open, closing springs discharged.
b. Breaker open, closing springs charged.
c. Breaker closed, closing springs discharged.
d. Breaker closed, closing springs charged.

The mechanism is a mechanically “trip-free” design. Trip-free is defined later in this section.

In normal operation the closing spring is charged by the spring charging motor, and the breaker is closed electrically by the switchgear control circuit signal to energize the spring release coil. Tripping is caused by energizing the trip coil through the control circuit.

For maintenance inspection purposes the closing springs can be charged manually by using the maintenance tool and the breaker can be closed and tripped by pushing the “Push to Close” and “Push to Open” buttons on the front panel.

4.1.3 CONTACT WIPE AND STROKE
Contact wipe is the indication of (1) the force holding the vacuum interrupter contacts closed and (2) the energy available to hammer the contacts open with sufficient speed for interruption.

Stroke is the gap between fixed and moving contacts of a vacuum interrupter with the breaker open.

The circuit breaker mechanism provides a fixed amount of motion to the operating rods. The first portion of the motion is used to close the contacts (i.e. stroke) and the remainder is used to further compress the preloaded wipe spring. This additional compression is called wipe. Wipe and stroke are thus related to each other. As the stroke increases due to the erosion of contacts, the wipe decreases. A great deal of effort and ingenuity has been spent in the design of VR-Series breakers, in order to eliminate any need for field adjustment of wipe or stroke.

4.2 PHASE BARRIERS
Phase barriers are sheets of insulation located between the interrupter pole assemblies and on the sides of the breaker frame. The phase barriers are designed to isolate energized conductor components in each phase from the adjacent phase and ground.

4.4.2 CLOSING OPERATION
Figure 4.6 shows the positions of the closing cam and tripping linkage for four different operational states. In Figure 4.6.a the breaker is open and the closing springs are discharged. In this state, the trip latch is disengaged from the trip “D” shaft (unlatched). After the closing springs become charged, the trip latch snaps into the fully reset or latched position (Figure 4.6.b)
When the spring release clapper (Figure 4.5, Item 13) moves into the face of the spring release coil (electrically or manually), the upper portion of the clapper pushes the spring release latch (1) upward. When the spring release latch moves, the cam shaft assembly is free to rotate. The force of the closing cam (Figure 4.6.b, Item 5), moving the main link (2), rotating the pole shaft (4) (which charges the opening spring). This moves the three operating rods (3), closes the main contacts and charges the contact loading springs (not shown). The operational state immediately after the main contacts close but before the spring charging motor recharges the closing springs is illustrated in Figure 4.6.c. Interference of the trip “D” shaft with the trip latch prevents the linkage from collapsing, and holds the breaker closed.

Figure 4.6.d shows the breaker in the closed state after the closing springs have been recharged. The recharging of the spring rotates the closing cam one half turn. In this position the main link roller rides on the cylindrical portion of the cam, and the main link does not move out of position.

4.4.3 TRIPPING OPERATION

When the trip bar “D” shaft (Figure 4.6.b, Item 9) is turned by movement of the shunt trip clapper (11), the trip latch will slip past the straight cut portion of the trip bar shaft and will allow the banana link and main link roller to rise. The energy of the opening spring and contact loading springs is released to open the main contacts. The mechanism is in the state illustrated (Figure 4.6.b) after the breaker is tripped open.

4.4.4 TRIP-FREE OPERATION

When the manual trip button is held depressed, any attempt to close the breaker results in the closing springs discharging without any movement of the pole shaft or vacuum interrupter stem.

4.5 CONTROL SCHEMES

There are two basic control schemes for each series of Type VCP-WR breakers, one for DC control and one for AC control voltages (Figure 4.3). Specific wiring schematics and diagrams are included with each breaker.

There may be different control voltages or more than one tripping element, but the principal mode of operation is as follows:

As soon as the control power is applied, the spring charging motor automatically starts charging the closing spring. When the springs are charged, the motor cut off LS1/bb switch turns the motor off. The breaker may be closed by making the control switch close (CS/C) contact. Automatically upon closing of the breaker, the motor starts charging the closing springs. The breaker may be tripped any time by making the control switch (CS/T) contacts.

Note the position switch (PS1) contact in the spring release circuit in the scheme. This contact remains made while the breaker is being racked between the TEST and CONNECTED positions for appropriately retrofitted breakers. Consequently, it prevents the breaker from closing automatically, even though the control close contact may have been made while the breaker is racked to the CONNECTED position.

When the CS/C contact is made, the SR closes the breaker. If the CS/C contact is maintained after the breaker closes, the Y relay is picked up. The Y/a contact seals in Y until CS/C is opened. The Y/b contact opens the SR circuit, so that even though the breaker would subsequently open, it could not be reclosed before CS/C was released and remade. This is the anti-pump function.

4.5.1 TIMING

The opening and closing times for the circuit breakers vary depending upon the control voltage, power rating, environment and test equipment. Differences in timing are expected between initial factory measurements and field inspections. Circuit breaker timing can be measured by service personnel using available equipment before installation and in conjunction with regular maintenance periods to assist in tracking the general health of the breaker. Typical ranges as observed using nominal control voltages are listed in Table 4.

<table>
<thead>
<tr>
<th>Event</th>
<th>Time Per Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>Closing Time</td>
<td>75 milliseconds</td>
</tr>
<tr>
<td>Opening Time</td>
<td>45 milliseconds</td>
</tr>
<tr>
<td>Reclosing Time</td>
<td>190 milliseconds</td>
</tr>
</tbody>
</table>

4.6 SECONDARY CONNECTION BLOCK

The breaker control circuit is connected to the switchgear control through secondary connection block, located at the lower left rear of the breaker. The contacts engage automatically when the breaker is racked into the “test” and “connect” positions. The socket half of the connection is located in the cubicle and a jumper of multiconductor cable can complete the control connections (for testing) when the breaker is withdrawn from the cell.

4.7 INTERLOCKS

WARNING

INTERLOCKS ARE PROTECTIVE DEVICES FOR PERSONNEL AND EQUIPMENT. DO NOT BYPASS, MODIFY, OR MAKE INOPERATIVE ANY INTERLOCKS. DOING SO COULD CAUSE DEATH, SERIOUS PERSONAL INJURY, AND/OR PROPERTY DAMAGE.

There are several interlocks built into the VR-Series vacuum replacement breakers. Each of these interlocks, though different in form, duplicate or exceed in function that of the original breaker. These interlocks exist to safeguard personnel and equipment. The basic premise behind the interlocking arrangement on the vacuum replacement breaker is that the breaker must not be inserted into or removed from a live circuit while the main contacts are closed. Also considered in the interlocking is that the breaker should pose no greater risk than necessary to the operator in or out of the cell. In addition to the original interlocks, VR-Series breakers provide an anti-close interlock.

4.7.1 ANTI-CLOSE INTERLOCK

The anti-close interlock prevents discharging of the closing springs if the breaker is already closed (Figure 4.5, Item 11). When the breaker is closed, the interlock component moves away from the spring release clapper so that it cannot lift the spring release latch (9).

4.7.2 SHUTTER OPERATING MECHANISM

Each breaker cell is equipped with a shutter to shield the high voltage stabs in the cubicle when the breaker is not in the cubicle. The shutter is regulated by the shutter operating mechanism located on the right side of the breaker. This mechanism opens the shutter as the breaker is racked into the cell and closes the shutter as the breaker is racked out of the cell.

4.7.3 RACKING SYSTEM TRIP AND SPRING RELEASE INTERLOCKS

4.7.3.1 INTERNAL ROTARY RACKING

An active interlock is provided to keep the breaker in a trip free position when the breaker is between the test and fully connected position; no adjustments are necessary. In addition to the active interlock, two passive interlocks are provided; one to prevent engaging the rotary racking handle into the breaker when the breaker is closed, and one to prevent turning the rotary shaft in the breaker when the breaker is closed.
Figure 4.3. Typical AC/DC Schematic

VR-Series Circuit Breaker dc Control Schematic

VR-Series Circuit Breaker ac Control Schematic

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>DESCRIPTION</th>
<th>OPERATION</th>
<th>SWITCH TERMINAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS</td>
<td>Breaker Control Switch - close</td>
<td>Closed until springs are fully charged</td>
<td>‘C’ and ‘NO’ Brown Switch</td>
</tr>
<tr>
<td>CS</td>
<td>Breaker Control Switch - trip</td>
<td>Open until springs are fully charged</td>
<td>‘C’ and ‘NC’ Black Switch</td>
</tr>
<tr>
<td>Y</td>
<td>Anti Pump Relay</td>
<td>Closed until springs are fully charged</td>
<td>‘C’ and ‘NO’ Black Switch</td>
</tr>
<tr>
<td>SR</td>
<td>Spring Release Coil (Close Coil)</td>
<td>Open until mechanism is reset</td>
<td>‘C’ and ‘NO’ Brown Switch</td>
</tr>
<tr>
<td>M</td>
<td>Spring Charging Motor</td>
<td>Open in all except between ‘Test’ and ‘Connect’ positions</td>
<td>‘C’ and ‘NC’ Brown Switch</td>
</tr>
<tr>
<td>ST</td>
<td>Shunt Trip Coil</td>
<td>Open in all except between ‘Test’ and ‘Connect’ positions</td>
<td></td>
</tr>
<tr>
<td>PR</td>
<td>Protective Relay</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O</td>
<td>Terminal Block or Accessible Terminal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PS1</td>
<td>Position Switch 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PS2</td>
<td>Position Switch 2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OPERATION

- Closed until springs are fully charged
- Open until springs are fully charged
- Closed until springs are fully charged
- Open until mechanism is reset
- Open in all except between ‘Test’ and ‘Connect’ positions
- Closed in all except between ‘Test’ and ‘Connect’ positions

SWITCH TERMINAL

- ‘C’ and ‘NO’ Brown Switch
- ‘C’ and ‘NC’ Black Switch
- ‘C’ and ‘NO’ Brown Switch
- ‘C’ and ‘NC’ Black Switch
- ‘C’ and ‘NO’ Brown Switch

NOTES

- Not available when second trip coil option is chosen.
- Must add jumpers at terminal block when ST2 option is used.
- Breaker Control Switch - close
- Breaker Control Switch - trip
- Anti Pump Relay
- Spring Release Coil (Close Coil)
- Spring Charging Motor
- Shunt Trip Coil
- Protective Relay
- Terminal Block or Accessible Terminal
- Position Switch 1
- Position Switch 2
4.7.3.2 LEVERING HANDLE RACKING (FLOOR TRIP / INTERLOCK PEDAL)

The levering interlock prevents engaging a shut breaker with live cell buss work or removing a breaker from the cell with charging springs. The basic premise of this interlock is that no breaker should be connected to or removed from cell primary circuitry when shut. The levering interlock accomplishes this by providing a trip signal to the breaker automatically from the floor trip whenever the Interlock Pedal is depressed.

4.8 RACKING MECHANISM

4.8.1 LEVERING SYSTEM TRIP AND SPRING RELEASE INTERLOCKS

The levering system tripping and spring release interlocks perform the following:

a. Set the breaker mechanically trip-free during the first 4 inches of travel into the cell and whenever the breaker receives a close signal in an intermediate or the disconnect position.

b. Set the breaker in a safe condition (breaker open, springs discharged) when removed from the cell.

c. Insert a mechanical trip signal to open a position switch preventing energizing of the spring release coil whenever the breaker is in an intermediate position.

d. Prevent inadvertent cycling (pumping) of the breaker between the test and connect positions.

e. Prevent insertion of a closed breaker into the cell.

WARNING

DO NOT FORCE THE BREAKER INTO THE CELL. DOING SO MAY DAMAGE PARTS THEREBY RISKING DEATH, PERSONAL INJURY, AND/OR PROPERTY DAMAGE.

4.9 GROUNDING CONTACT

The grounding contact is an assembly of spring loaded fingers which ground the breaker frame (static ground) by engaging the switchgear cell grounding bus when the breaker is racked into the cell. The ground contact is located at the rear of the breaker near the floor and visible from the back of the breaker when out of the cell.

4.10 MISCELLANEOUS ITEMS

4.10.1 OPERATIONS COUNTER

All DST-2-VR breakers are equipped with a mechanical operations counter (Figures 3.3). As the breaker opens, the linkage connected to the pole shaft lever advances the counter reading by one.
DST-2-VR
Replacement Circuit Breaker

Figure 4.4. 18WR Vacuum Element - Front Faceplate Removed

18WR Vacuum Element

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>LH Closing Spring</td>
</tr>
<tr>
<td>2</td>
<td>Motor Cutoff Switch</td>
</tr>
<tr>
<td>3</td>
<td>Latch Check Switch (Rear)</td>
</tr>
<tr>
<td>4</td>
<td>Closing Cam</td>
</tr>
<tr>
<td>5</td>
<td>Spring Release Assembly</td>
</tr>
<tr>
<td>6</td>
<td>Shunt Trip Assembly</td>
</tr>
<tr>
<td>7</td>
<td>RH Closing Spring</td>
</tr>
<tr>
<td>8</td>
<td>Reset Opening Spring</td>
</tr>
<tr>
<td>9</td>
<td>Manual Charge Socket</td>
</tr>
<tr>
<td>10</td>
<td>Ratchet wheel</td>
</tr>
<tr>
<td>11</td>
<td>Operations Counter</td>
</tr>
<tr>
<td>12</td>
<td>Charging Motor</td>
</tr>
</tbody>
</table>
Figure 4.5. Closing Cam and Trip Linkage

Closing Cam and Trip Linkage

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Spring Release (Close) Latch</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>Pole Shaft</td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td>Closing Spring Fixed End</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>Closing Spring</td>
<td>9</td>
</tr>
<tr>
<td>5</td>
<td>Holding Pawl</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>14</td>
</tr>
</tbody>
</table>
4.6.a. Breaker Open and Closing Spring Not Charged

4.6.b. Breaker Open and Closing Spring Charged

4.6.c. Breaker Closed and Closing Spring Not Charged

4.6.d. Breaker Closed and Closing Spring Charged

Charging Schematic

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Main Link Roller</td>
</tr>
<tr>
<td>2</td>
<td>Main Link</td>
</tr>
<tr>
<td>3</td>
<td>Operating Rod</td>
</tr>
<tr>
<td>4</td>
<td>Pole Shaft</td>
</tr>
<tr>
<td>5</td>
<td>Closing Cam</td>
</tr>
<tr>
<td>6</td>
<td>Cam Shaft</td>
</tr>
<tr>
<td>7</td>
<td>Banana Link</td>
</tr>
<tr>
<td>8</td>
<td>Trip latch</td>
</tr>
<tr>
<td>9</td>
<td>Trip Bar “D” Shaft</td>
</tr>
<tr>
<td>10</td>
<td>Trip Latch Reset Spring</td>
</tr>
<tr>
<td>11</td>
<td>Shunt Trip Lever</td>
</tr>
<tr>
<td>12</td>
<td>Shunt Trip Coil</td>
</tr>
</tbody>
</table>
SECTION 5: INSPECTION & INSTALLATION

⚠️ WARNING
BEFORE PLACING THE BREAKER IN SERVICE, CAREFULLY FOLLOW THE INSTALLATION PROCEDURE BELOW AND THE SAFE PRACTICES SET FORTH IN SECTION 2. NOT FOLLOWING THE PROCEDURE MAY RESULT IN INCORRECT BREAKER OPERATION LEADING TO DEATH, BODILY INJURY, AND PROPERTY DAMAGE.

When the breaker is first commissioned into service and each time the breaker is returned to service, it should be carefully examined and checked to make sure it is operating correctly.

5.1 EXAMINATION FOR DAMAGE
Examine the breaker for loose or obviously damaged parts. Never attempt to install nor operate a damaged breaker.

5.1.1 NAMEPLATE VERIFICATION
Verify the information on the new VR-Series nameplate matches the information on the purchase order. If any discrepancies exist, notify Eaton’s Electrical Services & Systems for resolution prior to proceeding.

⚠️ WARNING
ALWAYS DE-ENERGIZE/ISOLATE THE POWER SOURCE FEEDING THE POWER CIRCUIT BREAKERS/SWITCHGEAR AND LOCK-OUT/TAG-OUT THE POWER SOURCE PRIOR TO INSERTION OR REMOVAL OF ANY POWER CIRCUIT BREAKER. NEVER ATTEMPT TO MAINTAIN OR MODIFY A CIRCUIT BREAKER WHILE INSERTED IN A SWITCHGEAR CELL STRUCTURE. ALWAYS REMOVE THE POWER CIRCUIT BREAKER AND MOVE IT TO A SUITABLE AREA FOR MAINTENANCE OR REPAIR.

FOLLOW ALL LOCKOUT AND TAG-OUT REQUIREMENTS OF THE NATIONAL ELECTRIC CODE, OSHA AND ANY OTHER APPLICABLE LOCAL CODES, REGULATIONS AND PROCEDURES.

5.2 SURE CLOSE MECHANISM ADJUSTMENT

⚠️ WARNING
FOR ALL TYPE BREAKER HOUSINGS EQUIPPED WITH MECHANISM OPERATED CELL (MOC) SWITCHES, THE STEPS OUTLINED IN THIS SECTION MUST BE PERFORMED BEFORE INSTALLING A REPLACEMENT VR-SERIES CIRCUIT BREAKER. FAILURE TO COMPLY COULD CAUSE SEVERE PERSONAL INJURY, DEATH, EQUIPMENT DAMAGE AND/OR IMPROPER OPERATION

All type DST-2-VR breakers utilize the DST-2-VR SURE CLOSE mechanism to control kinetic energy transfer and closely mimic the dynamics and velocities of older breakers. It is imperative that this mechanism be adjusted to compensate for the force of the MOC switch mounted in the cell.

The breaker has been factory adjusted to operate one mechanism operated cell (MOC) switch in the cell. This means that for applications with either no MOC switch or one MOC switch, no field adjustments are required.

Finally, the SURE CLOSE mechanism provides an effective way to evaluate the condition of the MOC in the cell. If the SURE CLOSE drive spring is properly adjusted, but the MOC does not fully open or close, it is time to maintain the MOC in the cell. Maintenance usually means cleaning and lubricating the MOC mechanism. If the MOC has seen a large number of cycles, however, worn components may have to be replaced.

To insure the proper operation of the SURE CLOSE mechanism, the MOC assembly should be cleaned and inspected for worn parts and then lubricated. A spring force gauge should be used to measure the forces needed to move the switch to the fully closed position prior to inserting the breaker. The differential force of the assembly and the breaker should be a minimum of 10 lbs. with the breaker having the higher recorded force. Should the forces be less than that, proceed with the following steps to increase the breaker force:

⚠️ WARNING
MEASUREMENTS AND ADJUSTMENTS SHOULD NEVER BE ATTEMPTED IN AN ENERGIZED STRUCTURE. IF THE STRUCTURE CAN NOT BE DE-ENERGIZED, THEN PROPER PERSONAL PROTECTIVE EQUIPMENT PER NFPA 70E MUST BE WORN AT ALL TIMES WHILE GATHERING MOC SWITCH DATA, ADJUSTING OR SERVICING THE MOC SWITCH. FAILURE TO COMPLY WITH THIS WARNING COULD CAUSE SEVERE PERSONAL INJURY, DEATH, EQUIPMENT DAMAGE AND/OR IMPROPER OPERATION.

To adjust the SURE CLOSE drive spring for a specific number of MOC switches, proceed with the following steps:

Step 1: Locate the MOC drive spring (Figure Set 3.3). It is located in the left lower portion of the breaker as viewed from the rear of the breaker.

Step 2: From the factory, the drive spring comes set with adequate force to operate one MOC switch, however, more force can be generated. Refer to Figure 5.1 to see how that adjustment would look. Notice that there is a nut and a jam nut on the threaded rod to make the adjustment easy.

Step 3: Using a spring gauge, measure the force required to operate the MOC to the fully closed position in the cell at the interface with the breaker.

Step 4: With the breaker out of the cell, close the breaker and measure the output of the MOC drive with a spring gauge. Open the breaker. The MOC drive force should exceed the MOC cell force required by 10 - 15lbs. If not, an adjustment is required.

Step 5: Loosen the jam nut on the SURE CLOSE spring and compress the spring an additional .25 inches. Close the breaker.

⚠️ WARNING
WITH THE BREAKER IN THE OPEN POSITION, THE SPRING COMPRESSION SHOULD NEVER BE SET TO A DIMENSION LESS THAN 3 INCHES AS MEASURED IN FIGURE 5.1.

Step 6: Remeasure the MOC output spring force in the closed position. Repeat until the MOC forces are adequate.

Step 7: Insert into the cell.

Step 8: Operate the breaker to verify the new setting.

Step 9: Repeat steps 3 - 7 until acceptable operation is achieved.

Step 10: Anytime an adjustment is made, make sure the new compressed spring length (measured in the open position) is recorded if different than the dimension in this instruction book.
Step 11: After an adjustment is made, make sure that all nuts are secured in place, prior to returning to service.

5.3 MANUAL OPERATION CHECK

Manual operational checks must be performed before the breaker is connected to an energized circuit. Tests must be performed with the breaker withdrawn from the cell or in the disconnect position. While the breaker is withdrawn or in the disconnect position, place the maintenance tool into the manual charge socket opening and charge the closing springs with about 36 up and down strokes of the handle. When charging is complete, the closing crank goes over center with an audible “click” and the springs Charged / Discharged Indicator shows “Charged”. Remove the maintenance tool.

⚠️ NOTICE

IF THE SPRINGS ARE TO BE CHARGED ON A CLOSED BREAKER, NO CLICK IS HEARD AT THE END OF CHARGING OPERATION. DISCONTINUE CHARGING AND REMOVE THE MAINTENANCE TOOL AS SOON AS “CHARGED” FLAG IS FULLY VISIBLE. CONTINUE ATTEMPTS TO FURTHER CHARGE MAY RESULT IN DAMAGE TO THE MECHANISM.

⚠️ WARNING

ALWAYS REMOVE THE MAINTENANCE TOOL AFTER CHARGING THE SPRING. FAILURE TO REMOVE THE MAINTENANCE TOOL FROM THE BREAKER COULD CAUSE INJURY TO PERSONNEL AND/OR EQUIPMENT DAMAGE IF THE BREAKER WAS TO CLOSE.

Close and trip the breaker by pushing the close lever then the trip lever (Figure Set 3.3).

5.4 VACUUM INTERRUPTER INTEGRITY

Using a dry lint-free cloth or a paper towel, clean all the insulating surfaces of the pole units. Conduct a vacuum interrupter integrity check as described in Section 6.

5.5 LOW FREQUENCY WITHSTAND TEST (INSULATION CHECK)

Check breaker primary and secondary insulation per Section 6.

5.6 CONTACT EROSION AND WIPE

Manually charge the closing springs and close the breaker. Check contact erosion and wipe as described in Section 6.

5.7 PRIMARY CIRCUIT RESISTANCE

Check the primary circuit resistance as described in Section 6. The resistance should not exceed the values specified. Record the values obtained for future reference.

5.8 ELECTRICAL OPERATIONS CHECK

After going through the above steps, the breaker is now ready to be operated electrically. It is preferred that this check be made with the breaker in the Test position in the breaker compartment.

Since the Type DST-2-VR Circuit Breaker is for use in existing DST-2 Metal-Clad Switchgear, installation procedures are similar. If it is necessary to reference anything in the breaker compartment, refer to the original instruction books supplied with the assembly.

⚠️ WARNING

EXAMINE THE INSIDE OF THE CELL BEFORE INSERTING THE BREAKER FOR EXCESSIVE DIRT OR ANYTHING THAT MIGHT INTERFERE WITH THE BREAKER TRAVEL.

⚠️ WARNING

KEEP HANDS OFF THE TOP EDGE OF THE FRONT BARRIER WHEN PUSHING A BREAKER INTO A CELL. FAILURE TO DO SO COULD RESULT IN BODILY INJURY. IF FINGERS BECOME WEDGED BETWEEN THE BREAKER AND THE CELL, USE THE HANDLES PROVIDED ON THE FRONT OF THE BREAKER FACEPLATE, OR USE BOTH FULLY OPENED HANDS FLAT ON THE FRONT OF THE FACEPLATE.

These checks can be performed with the breaker in its withdrawn or disconnect position and connecting the breaker to a test cabinet or to the switchgear cell’s secondary receptacle using the special extension cable designed for this purpose and described in Section 3.

Perform electrical operations checks. Close and trip the circuit breaker electrically several times to verify that the operation is reliable and consistent. Check that the operation of the spring charging motor is reasonably prompt and that the motor makes no unusual noise.

⚠️ WARNING

DO NOT PERFORM ELECTRICAL OPERATION CHECKS WITH THE BREAKER IN THE “CONNECT” POSITION BECAUSE OF THE POSSIBILITY OF CONNECTING DE-ENERGIZED LOAD CIRCUITS TO THE ELECTRICAL POWER SOURCE, RESULTING IN DEATH, PERSONNEL INJURY OR EQUIPMENT DAMAGE.

5.9 MECHANICAL INTERLOCK (FLOOR TRIP) OPERATIONAL CHECKS

Check the operation of the mechanical interlock (floor trip) by observing the main contact status and closing spring status as the breaker is moved between the disconnect and test position. The breaker should discharge its closing springs when moved between the disconnect and test positions and remain open between the test and connect positions. (Refer to Section 4.7 for information concerning correct operation of these components).

5.10 OPERATION, INSERTION AND REMOVAL (LEVERING-IN VERSION)

The breaker has four basic operational positions:

1. Breaker withdrawn from cell. In the “withdrawn” position the breaker is out of the cell. The levering handle is not required for this position. The breaker can be operated in this position and extreme care should be exercised to avoid inadvertent operation and possible injury or equipment damage.

2. Breaker in the cell in the disconnect position. (Figure 4.1) As the breaker is pushed into the cell it will reach a position where all four wheels are on the cell floor guide rails and the floor spring discharge interlock has not activated. (For Canadian breakers the interlock plunger will rest in the first cell position.) This is the “disconnect” position and the breaker can be manually operated because there is no interface of the cell floor interlocks with breaker interlock linkage. No cell labeling is provided to verify this position.

3. Breaker in the test position. (Figure 4.2) The “test” position is achieved when the breaker has advanced into the cell from the disconnect position and the audible click of the lock engaging the interlock rail has been observed. (For Canadian breakers, the interlock plunger will rest in the second cell position.) The test position can be verified by the inability to move the breaker in or out, the Interlock Pedal is in the up position, and the cell label “test” is visible on the floor of the cell in front of the breaker’s left front wheel.
Figure 5.2. DST-2-7.5-VR in the Disconnect Position

![Image of DST-2-7.5-VR in the Disconnect Position](image)

(4) Breaker in the connect position. (Figure 4.4) The “connect” position is achieved by moving the breaker into the cell using the levering handle until a mechanical stop is reached. As the breaker is advanced from the test position, the primary voltage source shutters will open allowing the breaker stabs to engage with the source. This is the fully engaged or connected position. The connect position can be verified by the inability to move the breaker in or out, and the cell label “operating” is visible on the floor of the cell in front of the breaker’s left front wheel. The breaker is now ready for service.

Figure 5.3. DST-2-7.5-VR in the Test Position

Figure 5.4. Insertion of DST-2-7.5-VR

Figure 5.5. DST-2-7.5-VR in Connect Position
5.10.2 INSERTION PROCEDURE (LEVERING-IN VERSION)

a. Place the breaker in the withdrawn position. In the “withdrawn” position the breaker is out of the cell. The levering handle is not required for this position. The breaker can be operated in this position and extreme care should be exercised to avoid inadvertent operation and possible injury or equipment damage.

b. From the withdrawn position, align the center groove of the breaker wheels with the guide rails of the cell.

c. Check that the closing spring status indicator reads “DISCHARGED” and that the main contact status indicator reads “OPEN”. Manually trip, close, and trip the breaker as needed to obtain this status.

d. Push the circuit breaker into the cell until all the wheels are on the guide rails and the spring discharge linkage has not cycled. (For Canadian breakers, the interlock plunger will rest in the first cell position.) No mechanical stop will be reached. This is the “disconnect” position and the breaker can still be operated because there is no interface of the cell floor interlocks with breaker interlock linkage. No cell labeling is provided to verify this position.

e. Depress the pedal and push or lever the breaker further into the cell. (Figure 4.3)

Note: Depressing of the Interlock Pedal automatically positions the motor cutoff switch to “off”.

f. Once movement has started, the Interlock Pedal should be released if depressed. The levering handle may be required to move the breaker completely into the test position and its use is illustrated in Figure 4.5. An audible click of the interlock plunger engaging the interlock rail will be observed when moving from the disconnect position. The Interlock Pedal will travel down at the beginning of movement and rapidly rise to lock the breaker in the test position at the end of the normal travel from disconnect to test. The movement of the handle provides an open signal that remains throughout all intermediate breaker positions and the floor trip will be combined with a closing signal between the disconnect and test position to discharge the closing springs. The breaker remains in the trip-free state until the test position is reached. The test position can be verified by the inability to move the breaker in or out, the Interlock Pedal is in the up position, and the cell label “test” is visible on the floor of the cell in front of the breaker’s left front wheel.

g. (Domestic Version) In the “test” position, the breaker can be operated manually and electrically, thus allowing maintenance tests or checks. To operate the breaker electrically, the secondary block must be engaged. On Canadian versions, the secondary block for 250Vdc versions is located on the lower, rear, center of the breaker. Other Canadian versions, the secondary disconnect operates in a manner similar to the domestic US models detailed above. The secondary block automatically engages in the test position. Return the manual motor cut-off switch to the “on” position. The spring charging motor will begin to run and charge the closing springs. The breaker is now in the “test” position, with control voltage applied and ready for manual or electrical testing. (* For DST-2.7.5-VR with centered secondary disconnect block)

h. To install the breaker in the connected position the levering handle will have to be used. Insure the breaker is open and engage the levering handle with the breaker and floor levering cutouts. (See Figure 4.5)

i. Depress the Interlock Pedal and start levering in the breaker by shifting the levering handle back and forth. Once movement has started, the pedal should be released. The closing springs may be in the charged state but the internal PS switch will open circuit the close spring release coil (preventing an electrical close). At this point any attempt to mechanically close the breaker will cause a trip-free operation with no recharging of the closing springs (IPS2 has open-circuited the charging motor circuit and the Interlock Pedal operation has automatically turned the motor cutoff switch to “off”). As advancement into the cell continues, the primary voltage source shutters will open allowing the breaker stabs to engage with the source.

j. Continue moving the breaker into the cell using the levering handle from the test position until a mechanical stop is reached. This is the fully engaged or connected position. The connect

Figure 5.6. Levering-In Insertion of DST-2.75-VR

position can be verified by the inability to move the breaker in or out, the Interlock Pedal is up and has released the trip mechanism, and the cell label “operating” is visible on the floor of the cell in front of the breaker’s left front wheel. Manually return the motor cutoff switch to the “on” position. The breaker is now ready for service.

5.10.3 REMOVAL PROCEDURE (LEVERING-IN VERSION)
To remove the breaker from the cell it must be in the open position. Insure the breaker is open and engage the levering handle. The Interlock Pedal must be depressed which will raise the trip mechanism and trip the breaker. Move the breaker out using the levering handle illustrated in Figure 4.5. The breaker will start coming out of the cell before the main stabs are disconnected and will be in a non-operable mode and will go through a trip-free operation if any attempt to close it is made in the intermediate position. Also, the secondary control block will disengage automatically before the main stabs are disconnected.

Note: For Canadian Version: The secondary block will remain connected until the breaker is removed from the test position.

The shutters will close after the main stabs have cleared, isolating the breaker from its source. Continue levering out until the position indicator on the floor of the cell shows test and the Interlock Pedal rises to lock the breaker in position. At this time you are in the test position and the trip mechanism is released, allowing the breaker to be operated either electrically or mechanically. If you desire to electrically open or close the breaker in the test position, the secondary control block must be re-engaged and the manual motor cutoff switch turned “on”.

To remove the breaker from the test position to the disconnect position, the breaker must be tripped if closed, the Interlock Pedal must be depressed, and the secondary contact block should be disengaged. When moving out of the test position, a floor close signal will combine with the trip signal from the Interlock Pedal to force a trip-free condition. This will cause the charging springs to discharge leaving the breaker in the open position and the closing springs discharged. The breaker is in a non-operable state.

Once the breaker is withdrawn past the floor trip activation area, it is in the disconnected position. The levering handle should be removed at this point. The breaker is ready to be removed from the cell if desired.

Note: For Canadian breakers, the interlock plunger will engage in the desired at this stage, engage the secondary control block slider right hand area of the circuit breaker frame. If electrical testing is desired at this stage, engage the secondary control block slider by releasing the slide latch and pushing the slider toward the rear several inches. Push firmly on the front side of the slider until the contact block engages with the corresponding cell receptacle. Return the manual motor cutoff switch to the “on” position. The spring charging motor will begin to run and charge the closing spring. The breaker is now in the “test” position, with control voltage applied, and ready for electrical or manual testing.

The breaker has three basic operational positions:
1. Breaker withdrawn from the circuit breaker compartment (cell) in “disconnect” position.
2. Breaker in the cell in the “disconnect/test” position.

Note: Some Canadian versions of the DST-2 have four operational positions, they have a “withdrawn”, a “disconnect”, a “test”, and a “connect” position. These versions have one mechanical stop “disconnect” and one for test unlike all US versions which have a common Disc/Test position.

The “disconnect/test” and “connect” positions can be verified by the breaker position indicator shown in Figure 4.6.

5.11.2 5kV Insertion Procedure (DST-2-5-VR 250/250U/350, Domestic and Canadian Rotary Racking Version)

a. Verify that the circuit breaker racking system is in the fully withdrawn position. This is an important step, as breaker maintenance outside the breaker compartment may have required that the rotary racking be positioned so that the circuit breaker could be closed. It must be returned to the fully withdrawn condition prior to insertion in the circuit breaker compartment.

WARNING
THE BREAKER CAN BE OPERATED WHEN WITHDRAWN FROM THE CELL, HOWEVER, THE ROTARY RACKING HANDLE MUST BE USED TO RACK THE BREAKER TO THE CONNECT POSITION, AS SHOWN ON THE BREAKER POSITION INDICATOR. THE BREAKER MUST BE RACKED TO THE DISCONNECT/TEST POSITION, AS SHOWN ON THE BREAKER POSITION INDICATOR, BEFORE INSERTING IT INTO THE CELL.

b. From the withdrawn position, align the center groove of the breaker wheels with the guide rails of the cell.

c. Check that the closing spring status indicator reads “DISCHARGED” and that the main contact status indicator reads “OPEN”. Manually trip, close, and trip the breaker as needed to obtain this status.

Note: The motor cutoff switch is located on the lower cover where it can be easily accessed (See Figure Set 3.3). Position the switch to “OFF” before inserting the breaker into the cell.

d. Push the circuit breaker into the cell until the mechanical stop is reached; this will be indicated by an audible click. At this point, the mechanical stop has fallen in the front slot of the guide rail. In this position, the breaker can be operated. This position can also be verified by noting that the foot pedal moves upward as the mechanical stop drops. When the interlock foot pedal moves up, it also exposes the racking screw hex head.

Note: For Canadian versions with separate “disconnect” and “test” positions, it will be necessary to step on the racking interlock pedal and push the circuit breaker to the next mechanical stop. At that mechanical stop, the circuit breaker is in the “test” position. Provisions in the racking system prevent the circuit breaker from being pushed beyond this mechanical stop even when the interlock pedal is depressed; any additional movement toward the “connect” position must be achieved with the rotary racking feature. With the circuit breaker in the “test” position, item (e.) below can be performed.

e. In the “Disc/Test” position, the breaker can be operated manually and electrically, thus allowing maintenance tests or checks. To operate the breaker electrically, the secondary control block must be engaged at this time. The slider is located on the lower right hand area of the circuit breaker frame. If electrical testing is desired at this stage, engage the secondary control block slider by releasing the slide latch and pushing the slider toward the rear several inches. Push firmly on the front side of the slider until the contact block engages with the corresponding cell receptacle. Return the manual motor cutoff switch to the “on” position. The spring charging motor will begin to run and charge the closing spring. The breaker is now in the “test” position, with control voltage applied, and ready for electrical or manual testing.

5.11 OPERATION, INSERTION, AND REMOVAL FOR 5kV AND 15kV MODELS WITH ROTARY RACKING PROVISIONS

5.11.1 Operational Positions (Domestic and some Canadian Rotary Racking Versions)

5.7 Rotary Racking Breaker Position Indicator

Figure 5.7. Rotary Racking Breaker Position Indicator

The “disconnect” and “test” positions are shown as follows: (1) Breaker withdrawn from the circuit breaker compartment (cell) in “disconnect” position. (2) Breaker in the cell in the “disconnect/test” position. (3) Breaker in the “connect” position.
5.11.3 5kV Removal Procedure (DST-2-5-VR 250/250U/350, Domestic and Canadian Rotary Racking Version)

a. To remove the circuit breaker from the cell, verify that the breaker is in the “OPEN” position and the motor cutoff switch is in the “OFF” position. Place the rotary racking handle on the rotary racking hex head. Rotate the racking handle counterclockwise to move the circuit breaker from the “connect” position to the “Disc/Test” position. As the circuit breaker leaves the “connect” position, the shutters will start to close after the primary disconnects have cleared, isolating the breaker from the line and load connections. Continue rotating the racking handle counterclockwise until the position indicators on the breaker indicate the “Disc/Test” position and it is not possible to turn the racking handle with normal force. (Damage to the circuit breaker will occur if the racking handle is forced counterclockwise beyond this point of resistance.) In this position, the secondary disconnect power connections can be re-connected so the breaker can be operated either electrically or manually. Remove the racking handle prior to performing and breaker tests.

Note: For Canadian versions with separate “disconnect” and “test” positions, it will stop first at the “test” position. Electrical and mechanical tests of the circuit breaker can be performed in this position. Remove the racking handle prior to performing any breaker test.

b. If the circuit breaker is to be withdrawn from the cell, remove the rotary racking handle, and depress the interlock petal while pulling the breaker out of the circuit breaker compartment using the handles on the front of the breaker.

Note: For Canadian versions with separate “disconnect” and “test” positions, it will be necessary to remove the racking handle, step on the interlock petal and pull the breaker out of the circuit breaker compartment using the handles on the front of the breaker.

c. During this travel from the “Disc/Test” position, the circuit breaker closing springs will discharge automatically with a loud noise similar to the noise made when the circuit breaker is closed. At this point, the breaker will be open with the springs discharged.

Note: If through-the-door racking is desired, the cell door must be modified by cutting a hole in it which aligns with the rotary racking hex head. A sub-cover must also be installed to block access to the racking hex head until required. Even with this modification, it will be necessary to position the circuit breaker compartment door open. Only after doing that, can closed door racking be performed from the “test” position to the “connect” position. The motor disconnect switch can be accessed while the door is open for installation or removal process, or flipped on or off with the racking handle.

d. Push the circuit breaker into the cell until the mechanical stop is reached; this will be indicated by an audible click. At this point, the front plunger has fallen in the front slot of the guide rail. In this position, the breaker can be operated. This position can also be verified by noting that the foot pedal moves upward as the mechanical stop drops into the slot in the floor mounted rail. The racking hex head access handle is also released so that it can be raised for rotary racking. (Figure 4.7)

Note: For Canadian versions with separate “disconnect” and “test” positions, it will be necessary to step on the racking unlock petal and push the circuit breaker to the next mechanical stop. At that mechanical stop, the circuit breaker is in the “test” position. Provisions in the racking system prevents the circuit breaker from being un-latched and pushed beyond this mechanical stop; any additional movement toward the “connect” position must be achieved with the rotary racking feature. With the circuit breaker in the “test” position, item (e.) below can then be performed.

e. In the “Disc/Test” position, the breaker can be operated manually and electrically, thus allowing maintenance tests or checks. To operate the breaker electrically, the secondary control block must be engaged at this stage. The slider is located on the lower right hand area of the circuit breaker frame. If electrical testing is desired at this stage, engage the secondary control block slider by releasing the slide latch and pushing the slider toward the rear several inches. Push firmly on the front side of the slider until the contact block engages with the corresponding cell receptacle. Return the manual motor cutoff switch to the “ON” position. The spring charging motor will energize and charge the closing spring. The breaker is now in the “Test” position, with control voltage applied, and ready for electrical or manual testing.

5.11.4 15kV Insertion Procedure (DST-2-15-VR 500/750, Domestic and Canadian Rotary Racking Version)

a. Verify that the circuit breaker racking system is in the fully withdrawn position. This is an important step, as breaker maintenance outside the breaker compartment may have required that the rotary racking be racked-in so that the circuit breaker could be closed. It must be returned to the fully withdrawn condition prior to insertion in the circuit breaker compartment.

b. From the withdrawn position, align the center groove of the breaker wheels with the guide rails of the cell.

c. Check that the closing spring status is located on the lower cover where it can be easily accessed (See Figure Set 3.3). Position the switch to “OFF” before inserting the breaker into the cell.

d. Push the circuit breaker into the cell until the mechanical stop is reached; this will be indicated by an audible click. At this point, the front plunger has fallen in the front slot of the guide rail. In this position, the breaker can be operated. This position can also be verified by noting that the foot pedal moves upward as the mechanical stop drops into the slot in the floor mounted rail. The racking hex head access handle is also released so that it can be raised for rotary racking. (Figure 4.7)

Note: For Canadian versions with separate “disconnect” and “test” positions, it will be necessary to step on the racking unlock petal and push the circuit breaker to the next mechanical stop. At that mechanical stop, the circuit breaker is in the “test” position. Provisions in the racking system prevents the circuit breaker from being un-latched and pushed beyond this mechanical stop; any additional movement toward the “connect” position must be achieved with the rotary racking feature. With the circuit breaker in the “test” position, item (e.) below can then be performed.

e. In the “Disc/Test” position, the breaker can be operated manually and electrically, thus allowing maintenance tests or checks. To operate the breaker electrically, the secondary control block must be engaged at this stage. The slider is located on the lower right hand area of the circuit breaker frame. If electrical testing is desired at this stage, engage the secondary control block slider by releasing the slide latch and pushing the slider toward the rear several inches. Push firmly on the front side of the slider until the contact block engages with the corresponding cell receptacle. Return the manual motor cutoff switch to the “ON” position. The spring charging motor will energize and charge the closing spring. The breaker is now in the “Test” position, with control voltage applied, and ready for electrical or manual testing.

5.11.5 15kV Removal Procedure (DST-2-15-VR 500/750, Domestic and Canadian Rotary Racking Version)

a. Verify that the circuit breaker racking system is in the fully withdrawn position. This is an important step, as breaker maintenance outside the breaker compartment may have required that the rotary racking be racked-in so that the circuit breaker could be closed. It must be returned to the fully withdrawn condition prior to insertion in the circuit breaker compartment.

b. From the withdrawn position, align the center groove of the breaker wheels with the guide rails of the cell.

c. Check that the closing spring status is located on the lower cover where it can be easily accessed (See Figure Set 3.3). Position the switch to “OFF” before inserting the breaker into the cell.

d. Push the circuit breaker into the cell until the mechanical stop is reached; this will be indicated by an audible click. At this point, the front plunger has fallen in the front slot of the guide rail. In this position, the breaker can be operated. This position can also be verified by noting that the foot pedal moves upward as the mechanical stop drops into the slot in the floor mounted rail. The racking hex head access handle is also released so that it can be raised for rotary racking. (Figure 4.7)

Note: For Canadian versions with separate “disconnect” and “test” positions, it will be necessary to step on the racking unlock petal and push the circuit breaker to the next mechanical stop. At that mechanical stop, the circuit breaker is in the “test” position. Provisions in the racking system prevents the circuit breaker from being un-latched and pushed beyond this mechanical stop; any additional movement toward the “connect” position must be achieved with the rotary racking feature. With the circuit breaker in the “test” position, item (e.) below can then be performed.

e. In the “Disc/Test” position, the breaker can be operated manually and electrically, thus allowing maintenance tests or checks. To operate the breaker electrically, the secondary control block must be engaged at this stage. The slider is located on the lower right hand area of the circuit breaker frame. If electrical testing is desired at this stage, engage the secondary control block slider by releasing the slide latch and pushing the slider toward the rear several inches. Push firmly on the front side of the slider until the contact block engages with the corresponding cell receptacle. Return the manual motor cutoff switch to the “ON” position. The spring charging motor will energize and charge the closing spring. The breaker is now in the “Test” position, with control voltage applied, and ready for electrical or manual testing.
f. From the “Disc/Test” position, the breaker can be advanced to the “connect” position. It is NOT necessary to step on the racking unlock foot petal when the circuit breaker is in this position. Lift the racking access handle by pulling it up and over to the right to gain access to the racking hex head. **(This step must be performed prior to closed door racking.)** The handle will be retained allowing full exposure of the racking hex head. Place the rotary racking handle onto the rotary racking hex head. Turn the rotary racking handle clockwise until the “connect” position is reached and the handle can no longer be turned, as indicated on the switchgear floor mounted breaker position indicator, Figure 4.6. **Do not force the rotary racking handle beyond this point as breaker damage will occur.**

5.11.5 15kV Removal Procedure (DST-2-15-VR 500/750 Domestic and Canadian Rotary Racking Version)

a. To remove the circuit breaker from the cell, verify that the breaker is in the “OPEN” position and the motor cutoff switch is in the “OFF” position. Verify that the rotary racking access handle is in the retaining slot. (That handle would have been placed there at the time prior to racking the circuit breaker to the “connect” position.) Place the rotary racking handle on the rotary racking hex head. Rotate the racking handle counter-clockwise to move the circuit breaker from the “Connect” position to the “Disc/Test” position. As the circuit breaker leaves the “Connect” position, the shutters will start to close after the primary disconnects have cleared, isolating the breaker from the line and load connections. Continue rotating the racking handle counter-clockwise until the position indicators on the breaker indicate the “Disc/Test” position and it is not possible to turn the racking handle with normal force. (Damage to the circuit breaker will occur if the racking handle is forced counter-clockwise beyond this point of resistance.) In this position, the secondary disconnect control power connections remain connected so the breaker can be operated either electrically or mechanically. Remove the racking handle prior to performing any breaker tests. **Lift the racking access handle and move it to the left allowing it to drop so that the racking screw hex head is covered. This is a very important step as it unlocks the foot-operated interlock petal to allow complete withdrawal of the circuit breaker.**

Note: For Canadian versions with separate disconnect and test positions, it will stop at the “test” position. Electrical and mechanical tests of the circuit breaker can be performed in this position. Remove the racking handle and reposition the racking handle as instructed above prior to performing any breaker tests.

b. If the circuit breaker is to be withdrawn from the cell, depress the foot-operated interlock petal while pulling the breaker our of the circuit breaker compartment using the handles on the front of the breaker.

Note: For Canadian versions with separate “disconnect” and “test” positions, when stepping on the interlock petal and pulling the breaker out, it will stop at another mechanical stop. The circuit breaker is now in the “disconnect” position. Stepping on the interlock petal again will permit the final release of the circuit breaker so that it can be pulled to the fully withdrawn position and out of the circuit breaker compartment.

c. During this travel from the “Disc/Test” position, the circuit breaker closing springs will discharge automatically with a loud crashing noise. At this point, the breaker will be open with the springs discharged.

Note: If through-the-door racking is desired, the cell door must be modified by cutting a hole in it which aligns with the rotary racking hex head. A sub-cover must also be installed to block access to the racking hex head until required. Even with this modification, it will be necessary to position the circuit breaker in the “Disc/Test” (or “Test” position on some Canadian versions) with the circuit breaker compartment door open. Only after doing that, can closed door racking be performed from the “test” position to the “connect” position. The motor disconnect switch can be accessed while the door is open for installation or removal process, or flipped on or off with the racking handle.
DST-2-VR
Replacement Circuit Breaker

SECTION 6: INSPECTION & MAINTENANCE

⚠️ WARNING

DO NOT WORK ON A BREAKER IN THE “CONNECTED” POSITION.

DO NOT WORK ON A BREAKER WITH SECONDARY DISCONNECTS ENGAGED.

DO NOT WORK ON A BREAKER WITH SPRINGS CHARGED OR CONTACTS CLOSED.

DO NOT DEFEAT ANY SAFETY INTERLOCKS.

DO NOT LEAVE MAINTENANCE TOOL IN THE SOCKET AFTER CHARGING THE CLOSING SPRINGS.

6.1 INSPECTION FREQUENCY

Inspect the breaker once a year when operating in a clean, non corrosive environment. For a dusty and corrosive environment, inspection should be performed twice a year. Additionally, it is recommended to inspect the breaker every time it interrupts fault current.

Note: Refer to the table below for maintenance and inspection check points.

6.2 INSPECTION AND MAINTENANCE PROCEDURES

<table>
<thead>
<tr>
<th>NO. / SECTION</th>
<th>INSPECTION ITEM</th>
<th>CRITERIA</th>
<th>INSPECTION METHOD</th>
<th>CORRECTIVE ACTION IF NECESSARY</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Insulation</td>
<td>Stand Off Insulators, Operating Rods, Tie-Bars and Barriers</td>
<td>No Dirt</td>
<td>Visual Check</td>
<td>Clean With Lint-Free Cloth</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No Cracking</td>
<td>Visual Check</td>
<td>Replace Cracked Unit</td>
</tr>
<tr>
<td></td>
<td>Vacuum Integrity</td>
<td>Between Main Circuit With Terminals Ungrounded</td>
<td>Withstand 27k 60Hz For 1 Minute</td>
<td>Hipot Tester</td>
</tr>
<tr>
<td></td>
<td>Insulation Integrity</td>
<td>Main Circuit To Ground</td>
<td>Withstand 15kV, 60Hz For 1 Minute (15kV Rating) 27kV, 60Hz For 1 Minute (15kV Ratings)</td>
<td>Hipot Tester</td>
</tr>
<tr>
<td></td>
<td>Control Circuit To Ground (Charging Motor Disconnected)</td>
<td>Withstand 1125V, 60Hz For 1 Minute</td>
<td>Hipot Tester</td>
<td>Clean And Retest Or Replace</td>
</tr>
<tr>
<td>2. Power Element</td>
<td>Vacuum Interrupters</td>
<td>Contact Erosion Visibility Of Mark</td>
<td>Visual - Close The Breaker And Look For Green Mark On Moving Stem From The Rear Of The Breaker (See Figure 6.1 and 6.2)</td>
<td>If Mark Is Not Visible, Replace Interrupter Assembly</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Contact Wipe Visible</td>
<td>Visual (Figure 6.3 and 6.4)</td>
<td>Replace VI Assembly</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Adequate Vacuum</td>
<td>See Section 6.3</td>
<td>Replace Interrupter Assembly If Vacuum Is Not Adequate</td>
</tr>
<tr>
<td></td>
<td>Dirt On Ceramic Body</td>
<td>Visual Check</td>
<td>Clean With Dry Lint-Free Cloth</td>
<td></td>
</tr>
<tr>
<td>3. Control Circuit Parts</td>
<td>Primary Disconnects</td>
<td>No Burning Or Damage</td>
<td>Visual Check</td>
<td>Replace If Burned, Damaged Or Eroded</td>
</tr>
<tr>
<td></td>
<td>Closing And Tripping Devices Including Disconnects</td>
<td>Smooth And Correct Operation By Control Power</td>
<td>Test Closing And Tripping Of The Breaker Twice</td>
<td>Replace Any Defective Device-Identify Per Trouble-Shooting Chart</td>
</tr>
<tr>
<td></td>
<td>Wiring</td>
<td>Securely Tied In Proper Place</td>
<td>Visual Check</td>
<td>Repair Or Tie As Necessary</td>
</tr>
<tr>
<td></td>
<td>Terminals</td>
<td>Tight</td>
<td>Visual Check</td>
<td>Tighten Or Replace If Necessary</td>
</tr>
<tr>
<td></td>
<td>Motor</td>
<td>Smooth And Correct Operation By Control Power</td>
<td>Test Closing And Tripping Of The Breaker Twice</td>
<td>Replace Brushes Or Motor</td>
</tr>
<tr>
<td></td>
<td>Tightness Of Hardware</td>
<td>No Loose Or Missing Parts</td>
<td>Visual And Tightening With Appropriate Tools</td>
<td>Tighten Or Reinstate If Necessary</td>
</tr>
<tr>
<td>4. Operating Mechanism</td>
<td>Dust Or Foreign Matter</td>
<td>No Dust Or Foreign Matter</td>
<td>Visual Check</td>
<td>Clean As Necessary</td>
</tr>
<tr>
<td></td>
<td>Lubrication</td>
<td>Smooth Operation And No Excessive Wear</td>
<td>Sight And Feel</td>
<td>Lubricate Very Sparingly With Light Machine Oil</td>
</tr>
<tr>
<td></td>
<td>Deformation Or Excessive Wear</td>
<td>No Excessive Deformation Or Wear</td>
<td>Visual And Operational</td>
<td>Remove Cause And Replace Parts</td>
</tr>
<tr>
<td></td>
<td>Manual Operation</td>
<td>Smooth Operation</td>
<td>Manual Charging Closing And Tripping</td>
<td>Correct Per Trouble-Shooting Chart If Necessary</td>
</tr>
<tr>
<td></td>
<td>CloSure™ Test</td>
<td>≥ 0.6 Inch Over Travel</td>
<td>CloSure™ Test 6.8.1</td>
<td>If < 0.6 Contact F.B.C. At 1-877-276-9379</td>
</tr>
</tbody>
</table>

BOLT SIZE

<table>
<thead>
<tr>
<th>8 - 32</th>
<th>10 - 32</th>
<th>.25 - 20</th>
<th>.31 - 18</th>
<th>.38 - 16</th>
<th>.50 - 13</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>36</td>
<td>72</td>
<td>144</td>
<td>300</td>
<td>540</td>
</tr>
</tbody>
</table>

TORQUE Lb. In.

| 32 |
6.3 VACUUM INTERRUPTER INTEGRITY TEST

Vacuum interrupters used in Type VR-Series circuit breakers are highly reliable interrupting elements. Satisfactory performance of these devices is dependent upon the integrity of the vacuum in the interrupter and the internal dielectric strength. Both of these parameters can be readily checked by a one minute AC high potential test. (See Table 6.1 for appropriate test voltage.) During this test, the following warning must be observed:

⚠️ WARNING

APPLYING ABNORMALLY HIGH VOLTAGE ACROSS A PAIR OF CONTACTS IN VACUUM MAY PRODUCE X-RADIATION. THE RADIATION MAY INCREASE WITH THE INCREASE IN VOLTAGE AND/OR DECREASE IN CONTACT SPACING. X-RADIATION PRODUCED DURING THIS TEST WITH RECOMMENDED VOLTAGE AND NORMAL CONTACT SPACING IS EXTREMELY LOW AND WELL BELOW MAXIMUM PERMITTED BY STANDARDS. HOWEVER, AS A PRECAUTIONARY MEASURE AGAINST POSSIBILITY OF APPLICATION OF HIGHER THAN RECOMMENDED VOLTAGE AND/OR BELOW NORMAL CONTACT SPACING, IT IS RECOMMENDED THAT ALL OPERATING PERSONNEL STAND AT LEAST ONE Meter AWAY IN FRONT OF THE BREAKER.

With the breaker open and securely sitting on the floor, connect all top/front primary studs (bars) together and the high potential machine lead. Connect all bottom/rear studs together and the high potential return lead. Do not ground them to the breaker frame. Start the machine at zero potential, increase to appropriate test voltage and maintain for one minute.

Successful withstand indicates that all interrupters have satisfactory vacuum level. If there is a breakdown, the defective interrupter or interrupters should be identified by an individual test and replaced before placing the breaker in service.

After the high potential is removed, discharge any electrical charge that may be retained, particularly from the center shield of vacuum interrupters. To avoid any ambiguity in the AC high potential test due to leakage or displacement (capacitive) current, the test unit should have sufficient volt-ampere capacity. It is recommended that the equipment be capable of delivering 25 milliamperes for one minute.

Although an AC high potential test is recommended, a DC test may be performed if only a DC test unit is available, but is not recommended.

In this case the equipment must be capable of delivering 5 milliamperes for one minute to avoid ambiguity due to field emission or leakage currents and the test voltage shall be as shown in Table 6.1.

The current delivery capability of 25 mA AC and 5 mA DC apply when all three VI’s are tested in parallel. If individual VI’s are tested, current capability may be one third of these values.

⚠️ WARNING

SOME DC HIGH POTENTIAL UNITS, OPERATING AS UNFILTERED HALF-WAVE RECTIFIERS, ARE NOT SUITABLE FOR USE TO TEST VACUUM INTERRUPTERS BECAUSE THE PEAK VOLTAGE APPEARING ACROSS THE INTERRUPTERS CAN BE SUBSTANTIALLY GREATER THAN THE VALUE READ ON THE METER.

<table>
<thead>
<tr>
<th>Breaker Rated Maximum Voltage</th>
<th>Vacuum Interrupter Integrity Test Voltage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Up to and including 15.0 kV</td>
<td>AC 60Hz: 27 kV DC: 40 kV</td>
</tr>
</tbody>
</table>

6.4 CONTACT EROSION AND WIPE

Since the contacts are contained inside the interrupter, they remain clean and require no maintenance. However, during high current interruptions there may be a minimal amount of erosion from the contact surfaces. To determine contact erosion, close the breaker and observe the vacuum interrupter moving stem from the rear of the breaker. If the mark on each stem is visible, erosion has not reached maximum value thus indicating satisfactory contact surface of the interrupter. If the mark is not visible, the vacuum interrupter assembly must be replaced (Figure 6.1 and 6.2).

The adequacy of contact wipe can be determined by simply observing the vacuum interrupter side of the operating rod assembly on a closed breaker. Figures 6.3 and 6.4 show the procedure for determining the contact wipe. It maybe necessary to use a small mirror and flashlight to clearly see the “T” shape indicator. If the wipe is not adequate, the vacuum interrupter assembly (Pole Unit) must be replaced. Field adjustment is not possible.

⚠️ WARNING

FAILURE TO REPLACE A VACUUM INTERRUPTER ASSEMBLY WHEN CONTACT EROSION MARK IS NOT VISIBLE OR WIPE IS UNSATISFACTORY, WILL CAUSE THE BREAKER TO FAIL TO INTERRUPT AND THEREBY CAUSE PROPERTY DAMAGE OR PERSONNEL INJURY.
6.5 INSULATION

In VR-Series breakers, insulation maintenance primarily consists of keeping all insulating surfaces clean. This can be done by wiping off all insulating surfaces with a dry lint free cloth or dry paper towel. In case there is any tightly adhering dirt that will not come off by wiping, it can be removed with a mild solvent or distilled water. But be sure that the surfaces are dry before placing the breaker in service. If a solvent is required to cut dirt, use Isopropyl Alcohol or commercial equivalent. Secondary control wiring requires inspection for tightness of all connections and damage to insulation.

6.6 INSULATION INTEGRITY CHECK

PRIMARY CIRCUIT:

The integrity of primary insulation may be checked by the AC high potential test. The test voltage depends upon the maximum rated voltage of the breaker. For the breakers rated 4.76 kV, 8.25 kV and 15 kV the test voltages are 15 kV, 27 kV and 27 kV RMS, 60 Hz respectively. Conduct the test as follows:

Close the breaker. Connect the high potential lead of the test machine to one of the poles of the breaker. Connect the remaining poles and breaker frame to ground. Start the machine with output potential at zero and increase to the test voltage. Maintain the test voltage for one minute. Repeat for the remaining poles. Successful withstand indicates satisfactory insulation strength of the primary circuit.

Open the breaker. Connect the high potential lead of the test machine to one of the poles of the breaker. Connect the remaining poles and breaker frame to ground. Start the machine with output potential at zero and increase to the test voltage. Maintain the test voltage for one minute. Repeat for the remaining poles. Successful withstand indicates satisfactory insulation strength of the primary circuit.

If a DC high potential machine is used, make certain that the peak voltage does not exceed the peak of the corresponding AC RMS test voltage.

SECONDARY CIRCUIT:

Isolate the motor by disconnecting the two motor leads from the terminal block. Connect all points of the secondary disconnect pins with a shooting wire. Connect this wire to the high potential lead of the test machine. Ground the breaker frame. Starting with zero, increase the voltage to 1125 RMS, 60 Hz. Maintain the voltage for one minute. Successful withstand indicates satisfactory insulation strength of the secondary control circuit. Remove the shooting wire and reconnect the motor leads.
6.7 PRIMARY CIRCUIT RESISTANCE CHECK

The main contacts of the VR-Series circuit breaker are inside the vacuum chamber where they remain clean and require no maintenance at any time. Unlike most typical circuit breaker designs, the VR-Series design uses a highly reliable and unique flexible clamp design that eliminates the need for lubrication and inspection for wear.

The DC electrical resistance of the primary circuit may be calculated by measuring the voltage drop across the circuit. This test should be performed with a low voltage, direct current (DC) power supply capable of delivering no less 100A DC.

- To check the primary circuit resistance:
 - Remove the circuit breaker from the switchgear
 - Close the breaker
 - Pass at least 100A DC from terminal to terminal of each pole unit in the closed position
 - Measure the voltage drop across the terminals.

The resistance can be calculated from Ohm’s Law and is expressed in micro-ohms. Repeat for the remaining two poles.

The resistance should not exceed the factory test levels more than 200%. Factory test levels are recorded on the circuit breaker test form, which is included with the breaker. If measurements exceed 200%, contact the manufacturer.

Resistance conversion for Temperature

\[R_{\text{conversion}} = R_{\text{Factory}}(1 + (T_{\text{Field}} - T_{\text{Factory}})\rho) \]

- \(R_{\text{conversion}} \): Resistance correction for temperature based from the factory resistance measurement.
- \(R_{\text{Factory}} \): Resistance measurement from the factory.
- \(T_{\text{Field}} \): Temperature measurement in the field.
- \(T_{\text{Factory}} \): Temperature measurement from the factory.
- \(\rho \): Copper resistivity temperature coefficient.

\[\rho = 0.0039 \text{ Copper Resistivity Temperature Coefficient / Deg C} \]
\[\rho = 0.002167 \text{ Copper Resistivity Temperature Coefficient / Deg F} \]

6.8 MECHANISM CHECK

Make a careful visual inspection of the mechanism for any loose parts such as bolts, nuts, pins, rings, etc. Check for excessive wear or damage to the breaker components. Operate the breaker several times manually and electrically. Check the closing and opening times to verify that they are in accordance with the limits in Table 4.1.

6.8.1 CLOSURE™ TEST

Introduction: The CloSure™ Test is a simple yet extremely effective means to determine and monitor the ability of the mechanism to close the breaker contacts fully. It provides a quantitative measure of the extra energy available in terms of over travel in inches to close the breaker contacts to their full extent. It may be used periodically to monitor the health of the mechanism.

General Information: The CloSure™ Test can be performed on all VR-Series circuit breakers. (Refer to Table 6.1.) If the CloSure™ travel obtained is as specified, the mechanism performance is satisfactory. If the CloSure™ travel does not conform as shown in Figure 6.15, the mechanism performance is unsatisfactory. The mechanism performance is considered to be all-inclusive or covering every application or circumstance which may arise. If further information is required, you should consult Eaton’s Electrical Services & Systems.

Testing Procedures: Assuming that the circuit breaker is safely removed from the switchgear enclosure and positioned in an area outside the arc fault boundary, follow this procedure to perform the CloSure™ test. For further instructions on removal of the circuit breaker from the switchgear, refer to the appropriate section of this manual.

Step 1 - On the front cover, identify the status indicators. Make sure the closing spring status indicates “DISCHARGED” and the main contact indicator shows “OPEN” (Figure 6.5).

Step 2 - Remove the circuit breaker front cover. Be sure to save the original fasteners for reassembly.

Step 3 - Charge the circuit breaker, close the circuit breaker, then open the circuit breaker. Alternately depress the Open and Close clappers a few times to ensure the circuit breaker is completely discharged.

Step 4 - Cut a piece of one inch wide drafting / masking tape approximately 8 to 10 inches long.

Safety Precautions: Read and understand these instructions before attempting any maintenance, repair or testing on the breaker. The user is cautioned to observe all recommendations, warnings and cautions relating to the safety of personnel and equipment.

The recommendations and information contained herein are based on Eaton Electrical experience and judgment, but should not be considered to be all-inclusive or covering every application or circumstance which may arise. If further information is required, you should consult Eaton’s Electrical Services & Systems.

WARNING

DO NOT ATTEMPT TO INSTALL OR PERFORM MAINTENANCE OR TESTS ON THE EQUIPMENT WHILE IT IS ENERGIZED. NEVER PUT YOUR HANDS NEAR THE MECHANISM WHEN THE CIRCUIT BREAKER IS IN THE CHARGED OR CLOSED POSITION. DEATH OR SEVERE PERSONAL INJURY CAN RESULT FROM CONTACT WITH ENERGIZED EQUIPMENT. ALWAYS VERIFY THAT NO VOLTAGE IS PRESENT BEFORE PROCEEDING WITH THE TASK, AND ALWAYS FOLLOW GENERALLY ACCEPTED SAFETY PROCEDURES.
DST-2-VR
Replacement Circuit Breaker

Step 5 - Clean the far left cam with a mild solvent such as alcohol. Place the tape around the cam starting from the bottom up. Make certain that the tape adheres well to the cam surface. (Figure 6.6).

Step 6 - Mount the transparent CloSure™ Test Tool (Figure 6.7b) with two bolts and washers. Refer to Figure 6.7a and Table 6.1 for approximate mounting holes. Hand tighten the bolts.

Step 7 - Using a red Sanford® Sharpie® fine point permanent marker (or equivalent), place the marker tip in the proper hole (“C”) located over the cam and make a heavy mark on the tape by moving the marker as described in Figures 6.9, 6.11, and 6.12. Remove the marker from the hole.

Step 8 - Charge the closing springs with the maintenance tool (Charging handle). Continue charging the closing springs until a “click” is heard and the status indicator shows “CHARGED” (Figure 6.8).

Step 9 - Place the marker back in the hole. While holding the marker tip against the tape, close the breaker (Figure 6.10). Remove the marker from the hole.

Step 10 - While closely observing the pole shaft at the right side of the circuit breaker (Figure 6.11), recharge the closing springs with the maintenance tool. As the circuit breaker is recharged, there should be no movement of the pole shaft. If there is movement of the pole shaft while recharging, this indicates a problem with the circuit breaker - stop the test and consult the factory.

Step 11 - Open the circuit breaker, then close it, then reopen it. Verify that the mark made in Step 7 is aligned with the pen opening. If it is not aligned, this indicates a problem with the circuit breaker - stop the test and consult the factory.

Step 12 - Inspect the circuit breaker to assure it is in the open position and the closing springs are discharged. Alternately depress the Open and Close clappers a few times to ensure the circuit breaker is completely discharged. Remove the transparent CloSure™ Tool.

Step 13 - Remove the tape from the cam and place it on a sheet of paper that can be kept as a record of the test. Record the date of the test, person conducting the test, circuit breaker serial number, and the operations counter on the tape or paper (Figures 6.14 and 6.15).

Step 14 - Evaluate the CloSure™ performance by comparing the test tape with the illustration in Figure 6.16. Measure the over travel “X”. If “X” is not greater than or equal to 0.6”, this indicates a problem with the circuit breaker - consult the factory.

Step 15 - Reassemble the front cover onto the circuit breaker. Return the circuit breaker to its original configuration and setup.

Figure 6.7b. Front View of CloSure™ Tool Showing Mounting / Testing Hole Locations (6352C49H01)

Table 6.1. CloSure™ Tool Mounting/Testing Locations by Circuit Breaker Type

<table>
<thead>
<tr>
<th>BREAKER LINE</th>
<th>APPROXIMATE MECHANISM CABINET WIDTH (INCH)</th>
<th>UPPER MOUNTING HOLE</th>
<th>LOWER MOUNTING HOLE</th>
<th>MARKER PLACEMENT HOLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>18WR</td>
<td>18</td>
<td>A1</td>
<td>B2</td>
<td>C1</td>
</tr>
<tr>
<td>20WR</td>
<td>20</td>
<td>A1</td>
<td>B2</td>
<td>C2</td>
</tr>
<tr>
<td>29WR</td>
<td>27</td>
<td>A1</td>
<td>B2</td>
<td>C5</td>
</tr>
</tbody>
</table>

Figure 6.7c. Typical Circuit Breaker Front View with CloSure™ Tool Attached (Approximate Mechanism Chassis Width)
Figure 6.8. Manually Charging Closing Springs

Figure 6.9. Make a Clear and Heavy Mark

Figure 6.10. With Marker in Hole “C”, While Closing Breaker

Figure 6.11. Pole Shaft Located On Right Side Of Circuit Breaker

Figure 6.12. Move the Sharpie® 15° Left and Right

Figure 6.13. Top view of Cam and Marker Interface
6.9 LUBRICATION

All parts that require lubrication have been lubricated during the assembly with molybdenum disulphide grease. Eaton No. 53701QB. Over a period of time, this lubricant may be pushed out of the way or degrade. Proper lubrication at regular intervals is essential for maintaining the reliable performance of the mechanism. The breaker should be relubricated once a year or per the operations table (Table 6.2), whichever comes first. The locations shown in Figure 6.17 should be lubricated with a drop of light machine oil.

After lubrication, operate the breaker several times manually and electrically.

Roller bearings are used on the pole shaft, the cam shaft, the main link and the motor eccentric. These bearings are packed at the factory with a top grade slow oxidizing grease which normally should be effective for many years. They should not be disturbed unless there is definite evidence of sluggishness, dirt or parts are dismantled for some reason.

If it becomes necessary to disassemble the mechanism, the bearings and related parts should be thoroughly cleaned, remove old grease in a good grease solvent. Do not use carbon tetrachloride. They should then be washed in light machine oil until the cleaner is removed. After the oil has been drawn off, the bearings should be packed with Eaton Grease 53701QB or equivalent.

Table 6.2. Lubrication Per Number of Operations

<table>
<thead>
<tr>
<th>RATINGS OPERATIONS</th>
<th>OPERATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>29kA and below</td>
<td>750</td>
</tr>
<tr>
<td>Above 29kA</td>
<td>400</td>
</tr>
<tr>
<td>3000 Amp</td>
<td>400</td>
</tr>
</tbody>
</table>

Figure 6.17. General Lubrication Areas

- Apply one drop of non-synthetic light machine oil at locations shown.

*Note: Use the center of the marker diameter to determine "X" distance"
<table>
<thead>
<tr>
<th>SYMPTOM</th>
<th>INSPECTION AREA</th>
<th>PROBABLE DEFECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>FAILS TO CLOSE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Closing Springs Not Charged</td>
<td>Control Circuit</td>
<td>• Control Power (Fuse Blown Or Switch Off)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Secondary Disconnects</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Motor Cut-off Switch (Poor Or Burned Contacts. Lever Not Operational.)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Terminals And Connectors (Poor Or Burned Contacts)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Motor (Brushes Worn Or Commutator Segment Open)</td>
</tr>
<tr>
<td></td>
<td>Mechanism</td>
<td>• Pawls (Slipping Or Broken)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Ratchet Wheel (Teeth Worn Or Broken)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Cam Shaft Assembly (Sluggish Or Jammed)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Oscillator (Reset Spring Off Or Broken)</td>
</tr>
<tr>
<td>Closing Springs Not Charged Breaker Does Not Close</td>
<td>Control Circuit</td>
<td>• Control Power (Fuse blown or switch off)</td>
</tr>
<tr>
<td></td>
<td>(Close Coil Does Not Pick Up)</td>
<td>• Secondary Disconnects</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Anti Pump Relay (Y Relay N.C. Contact Open Or Burned Or Relay Picks Up)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Close Coil (Open Or Burned)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Latch Check Switch (Contact Open - Bad Switch Or Trip Bar Not Reset)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Auxiliary Switch (B Contact Open Or Burned)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Motor Cut-Off (Contacts Open Or Burned)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Trip Coil Assembly (Clapper Fails To Reset)</td>
</tr>
<tr>
<td></td>
<td>Closing Sound But No Close</td>
<td>• Pole Shaft (Not Open Fully)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Trip Latch Reset Spring (Damaged Or Missing)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Trip Bar-D Shaft (Fail To Remain Reset)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Trip Latch-Hatchet (Fails To Remain Reset)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Trip Floor Tripper (Fails To Remain Reset)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Close Latch (Binding)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Close Latch Roller (Binding)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Trip Circuit Energized</td>
</tr>
<tr>
<td>UNDESIRABLY CLOSES</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Control Circuit</td>
<td>• Close Circuit (CS/C Getting shorted)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mechanism</td>
<td>• Close Release Latch (Fails To Reset)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Close Floor Tripper (Fails To Reset)</td>
</tr>
<tr>
<td>FAILS TO CLOSE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No Trip Sound</td>
<td>Control Circuit</td>
<td>• Control Power (Fuse Blown Or Switch Off)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Secondary Disconnects</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Auxiliary Switch (A Contact Not Making Poor Or Burned)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Trip Coil (Burned Or Open)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Terminals And Connections (Poor Or Burned Or Open)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Trip Clapper (Jammed)</td>
</tr>
<tr>
<td></td>
<td>Trip Mechanism</td>
<td>• Trip Bar, Trip Latch (Jammed)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Pole Shaft (Jammed)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Operating Rod Assembly (Broken Or Pins Out)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Vacuum Interrupter (One Or More Welded)</td>
</tr>
<tr>
<td>Trip Sound But No Trip</td>
<td>Trip Mechanism</td>
<td>• Trip Bar, Trip Latch (Poor Engagement Of Mating Or Worm Surfaces)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Trip Bar Reset Sprint (Loss Of Torque)</td>
</tr>
<tr>
<td>UNDESIRABLY TRIPS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Control Circuit</td>
<td>• Control Power (CS/T Switch, remains made)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mechanism</td>
<td>• Trip Coil Clapper (Not Resetting)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Trip Bar or Trip Latch (Poor Engagement Of Mating Or Worm Surfaces)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Trip Bar Reset Sprint (Loss Of Torque)</td>
</tr>
</tbody>
</table>
SECTION 7: REPLACEMENT PARTS

7.1 GENERAL

In order to minimize production downtime, it is recommended that an adequate quantity of spare parts be carried in stock. The quantity will vary from customer to customer, depending upon the service severity and continuity requirements. Each customer should develop his own level based on operating experience. However, when establishing a new operating record, it is a good practice to stock one set of control components for every six circuit breakers of the same control voltage. This quantity should be adjusted with time and frequency of operation of the circuit breakers.

7.2 ORDERING INSTRUCTIONS

a. The style numbers in Table 7.1 should be sufficient to purchase control components for most applications. Some breakers have special control schemes. Supply complete nameplate information for verification or if additional components are needed.

b. Specify the method of shipping desired.

c. Send all orders or correspondence to the nearest Eaton sales office or contact the PBC direct at 1-877-276-9379.

d. Include negotiation number with order when applicable.

Table 7.1 Common Replacement Parts - Descriptions and Style Numbers

<table>
<thead>
<tr>
<th>No.</th>
<th>Component Description</th>
<th>Style Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>ANTI-PUMP (Y) RELAY (48vDC)</td>
<td>94C9525H01</td>
</tr>
<tr>
<td></td>
<td>(125vDC)</td>
<td>94C9525H02</td>
</tr>
<tr>
<td></td>
<td>(250vDC)</td>
<td>94C9525H03</td>
</tr>
<tr>
<td></td>
<td>(120vAC)</td>
<td>94C9525H04</td>
</tr>
<tr>
<td></td>
<td>(240vAC)</td>
<td>94C9525H05</td>
</tr>
<tr>
<td>2.</td>
<td>RECTIFIER</td>
<td>94C9525G09</td>
</tr>
<tr>
<td>3.</td>
<td>SPRING CHARGING MOTOR (48vDC)</td>
<td>94C9525G10</td>
</tr>
<tr>
<td></td>
<td>(125vDC)</td>
<td>94C9525G11</td>
</tr>
<tr>
<td></td>
<td>(250vDC / 240vAC)</td>
<td>94C9525G12</td>
</tr>
<tr>
<td>4.</td>
<td>BREAKER AUXILIARY SWITCH</td>
<td>94C9525G13</td>
</tr>
<tr>
<td>5.</td>
<td>BREAKER POSITION SWITCH</td>
<td>94C9525H06</td>
</tr>
<tr>
<td>6.</td>
<td>BREAKER POSITION SWITCH</td>
<td>94C9525H07</td>
</tr>
<tr>
<td>7.</td>
<td>LATCH CHECK SWITCH</td>
<td>94C9525H08</td>
</tr>
<tr>
<td>8.</td>
<td>MOTOR CUTOFF SWITCH (LS) (20WR/29WR)</td>
<td>94C9525G14</td>
</tr>
<tr>
<td></td>
<td>(LS) (18WR)</td>
<td>94C9525G15</td>
</tr>
<tr>
<td>9.</td>
<td>SPRING RELEASE COILS / SHUNT TRIPS</td>
<td>94C9525G16</td>
</tr>
<tr>
<td></td>
<td>24vDC</td>
<td>94C9525G17</td>
</tr>
<tr>
<td></td>
<td>48vDC</td>
<td>94C9525G18</td>
</tr>
<tr>
<td></td>
<td>125vDC / 120vAC</td>
<td>94C9525G19</td>
</tr>
<tr>
<td>10.</td>
<td>CONTROL COMPONENTS KIT</td>
<td>94C9525G01</td>
</tr>
<tr>
<td></td>
<td>48vDC</td>
<td>94C9525G02</td>
</tr>
<tr>
<td></td>
<td>125vDC</td>
<td>94C9525G03</td>
</tr>
<tr>
<td></td>
<td>250vDC</td>
<td>94C9525G04</td>
</tr>
<tr>
<td></td>
<td>120vAC-C/M 48vDC-T</td>
<td>94C9525G05</td>
</tr>
<tr>
<td></td>
<td>240vAC-C/M 48vDC-T</td>
<td>94C9525G06</td>
</tr>
<tr>
<td></td>
<td>120vAC-C/M 120vAC-CT</td>
<td>94C9525G07</td>
</tr>
<tr>
<td></td>
<td>240vAC-C/M 240vAC-CT</td>
<td>94C9525G08</td>
</tr>
</tbody>
</table>