15VHK-VR Model 20
Replacement Circuit Breaker

15VHK-VR Model 20 1200A Shown
DISCLAIMER OF WARRANTIES AND LIMITATION OF LIABILITY

The information, recommendations, descriptions and safety notations in this document are based on Eaton’s experience and judgment and may not cover all contingencies. If further information is required, an Eaton sales office should be consulted. Sale of the product shown in this literature is subject to the terms and conditions outlined in appropriate Eaton selling policies or other contractual agreement between Eaton and the purchaser.

THERE ARE NO UNDERSTANDINGS, AGREEMENTS, WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE OR MERCHANTABILITY, OTHER THAN THOSE SPECIFICALLY SET OUT IN ANY EXISTING CONTRACT BETWEEN THE PARTIES. ANY SUCH CONTRACT STATES THE ENTIRE OBLIGATION OF EATON. THE CONTENTS OF THIS DOCUMENT SHALL NOT BECOME PART OF OR MODIFY ANY CONTRACT BETWEEN THE PARTIES.

In no event will Eaton be responsible to the purchaser or user in contract, in tort (including negligence), strict liability or otherwise for any special, indirect, incidental or consequential damage or loss whatsoever, including but not limited to damage or loss of use of equipment, plant or power system, cost of capital, loss of power, additional expenses in the use of existing power facilities, or claims against the purchaser or user by its customers resulting from the use of the information, recommendations and descriptions contained herein. The information contained in this manual is subject to change without notice.

⚠️ WARNING

IMPROPERLY INSTALLING OR MAINTAINING THESE PRODUCTS CAN RESULT IN DEATH, SERIOUS PERSONAL INJURY OR PROPERTY DAMAGE.

READ AND UNDERSTAND THESE INSTRUCTIONS BEFORE ATTEMPTING ANY UNPACKING, ASSEMBLY, OPERATION OR MAINTENANCE OF THE CIRCUIT BREAKERS.

INSTALLATION OR MAINTENANCE SHOULD BE ATTEMPTED ONLY BY QUALIFIED PERSONNEL. THIS INSTRUCTION BOOK SHOULD NOT BE CONSIDERED ALL INCLUSIVE REGARDING INSTALLATION OR MAINTENANCE PROCEDURES. IF FURTHER INFORMATION IS REQUIRED, YOU SHOULD CONSULT EATON’S ELECTRICAL SERVICES & SYSTEMS.

THE CIRCUIT BREAKERS DESCRIBED IN THIS BOOK ARE DESIGNED AND TESTED TO OPERATE WITHIN THEIR NAMEPLATE RATINGS. OPERATION OUTSIDE OF THESE RATINGS MAY CAUSE THE EQUIPMENT TO FAIL, RESULTING IN DEATH, BODILY INJURY AND PROPERTY DAMAGE.

ALL SAFETY CODES, SAFETY STANDARDS AND/OR REGULATIONS AS THEY MAY BE APPLIED TO THIS TYPE OF EQUIPMENT MUST BE STRICTLY ADHERED TO.

THESE VACUUM REPLACEMENT CIRCUIT BREAKERS ARE DESIGNED TO BE INSTALLED PURSUANT TO THE AMERICAN NATIONAL STANDARDS INSTITUTE (ANSI). SERIOUS INJURY, INCLUDING DEATH, CAN RESULT FROM FAILURE TO FOLLOW THE PROCEDURES OUTLINED IN THIS MANUAL.
Table of Contents

SECTION 1: INTRODUCTION 4
 1.1 AVAILABLE 15VHK-VR CIRCUIT BREAKERS 4

SECTION 2: SAFE PRACTICES 6

SECTION 3: RECEIVING, HANDLING, AND STORAGE 7
 3.1 RECEIVING 7
 3.2 HANDLING 7
 3.3 STORAGE 8
 3.4 15VHK-VR APPROXIMATE WEIGHTS 8

SECTION 4: DESCRIPTION AND OPERATION 11
 4.1 VACUUM INTERRUPTER 11
 4.1.1 THE INTERRUPTER ASSEMBLY 11
 4.1.2 CONTACT EROSION INDICATOR 11
 4.1.3 CONTACT WIPE AND STROKE 12
 4.2 PHASE BARRIERS 12
 4.3 BUSHINGS AND DISCONNECTING CONTACT ASSEMBLIES 12
 4.4 STORED ENERGY MECHANISM 12
 4.4.1 CLOSING SPRING CHARGING 12
 4.4.2 CLOSING OPERATION 12
 4.4.3 TRIPPING OPERATION 13
 4.4.4 TRIP-FREE OPERATION 13
 4.5 CONTROL SCHEMES 13
 4.5.1 TIMING 13
 4.6 SECONDARY CONNECTION BLOCK 13
 4.7 INTERLOCKS 13
 4.7.1 ANTI-CLOSE INTERLOCK 13
 4.7.2 RACKING SYSTEM TRIP AND SPRING RELEASE INTERLOCKS 13

SECTION 5: INSPECTION & INSTALLATION 18
 5.1 EXAMINATION FOR DAMAGE 18
 5.1.1 NAMEPLATE VERIFICATION 18
 5.2 SURE CLOSE MECHANISM ADJUSTMENT 18
 5.3 MANUAL OPERATION CHECK 19
 5.4 VACUUM INTERRUPTER INTEGRITY 19
 5.5 LOW FREQUENCY WITHSTAND TEST (INSULATION CHECK) 19
 5.6 CONTACT EROSION AND WIPE 19
 5.7 PRIMARY CIRCUIT RESISTANCE 19
 5.8 ELECTRICAL OPERATIONS CHECK 19
 5.9 LOCK-OUT PROVISION 19
 5.10 DESCRIPTION OF POSITIONS 20
 5.11 INSERTION PROCEDURE 21
 5.12 REMOVAL PROCEDURE 22

SECTION 6: INSPECTION & MAINTENANCE 23
 6.1 INSPECTION FREQUENCY 23
 6.2 INSPECTION AND MAINTENANCE PROCEDURES 23
 6.3 VACUUM INTERRUPTER INTEGRITY TEST 24
 6.4 CONTACT EROSION AND WIPE 24
 6.5 INSULATION 25
 6.6 INSULATION INTEGRITY CHECK 25
 6.7 PRIMARY CIRCUIT RESISTANCE CHECK 26
 6.8 MECHANISM CHECK 26
 6.8.1 CLOSURE™ TEST 26
 6.9 LUBRICATION 29

SECTION 7: REPLACEMENT PARTS 31
 7.1 GENERAL 31
 7.2 ORDERING INSTRUCTIONS 31
SECTION 1: INTRODUCTION

The purpose of this book is to provide instructions for receiving and handling, storage, installation, operation and maintenance of the ITE type 15VHK Model 20 VR-Series circuit breaker. The Vacuum Replacement Circuit Breakers (also referred to as VR-Series) are designed to be used in existing 15VHK Model 20 metal-clad switchgear and provide equal or superior electrical and mechanical performance as compared to the design ratings of the original circuit breaker. VR-Series Circuit Breakers provide reliable control, protection and performance, with ease of handling and maintenance. Like ratings are interchangeable with each other.

This book is intended to be used in conjunction with the technical information provided with the original equipment order which includes, but is not limited to electrical control schematics and wiring diagrams, outline diagrams, installation plans, and procedures for installation and maintenance of accessory items.

Satisfactory performance is dependant upon proper application, correct installation, and adequate maintenance. It is strongly recommended that this instruction book be carefully read and followed in order to realize optimum performance and long useful life of the circuit breaker.

Note: * ITE may also be designated as ABB, Brown-Bovari, or Gould.

| 1.1 AVAILABLE 15VHK-VR CIRCUIT BREAKERS |

Refer to Table 1.

<table>
<thead>
<tr>
<th>Breaker Type</th>
<th>Nominal Voltage Class (kV)</th>
<th>Existing Breaker MVA Rating</th>
<th>Existing Breaker Rated Continuous Current at 60 Hz (Amps)</th>
<th>MVA Designation of VR-Series Breaker</th>
<th>Rated Voltage Factor K</th>
<th>Rated Withstand ANSI Test Voltage</th>
<th>Rated Short-Circuit kA RMS at Rated Max kV</th>
<th>Closing and Latching / Momentary Capabilities kA RMS/Peak</th>
</tr>
</thead>
<tbody>
<tr>
<td>15VHK-VR</td>
<td>13.8</td>
<td>500</td>
<td>1200</td>
<td>500</td>
<td>1.3</td>
<td>36</td>
<td>95</td>
<td>18</td>
</tr>
<tr>
<td>15VHK-VR</td>
<td>13.8</td>
<td>750</td>
<td>1200</td>
<td>750</td>
<td>1.3</td>
<td>36</td>
<td>95</td>
<td>28</td>
</tr>
</tbody>
</table>
Table 2. 15VHK-VR Dimensions

<table>
<thead>
<tr>
<th>Breaker Type</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>15VHK-VR Model 20</td>
<td>1200</td>
<td>37.14</td>
<td>29.25</td>
<td>10.00</td>
<td>10.00</td>
<td>22.25</td>
</tr>
</tbody>
</table>
SECTION 2: SAFE PRACTICES

VR-Series breakers are equipped with high speed, high energy operating mechanisms. They are designed with several built-in interlocks and safety features to provide safe and proper operating sequences.

⚠️ WARNING

TO PROTECT THE PERSONNEL ASSOCIATED WITH INSTALLATION, OPERATION, AND MAINTENANCE OF THESE BREAKERS, THE FOLLOWING PRACTICES MUST BE FOLLOWED:

- Only qualified persons, as defined in the National Electrical Safety Code, who are familiar with the installation and maintenance of medium voltage circuits and equipment, should be permitted to work on these breakers.
- Read these instructions carefully before attempting any installation, operation or maintenance of these breakers.
- Always remove the breaker from the enclosure before performing any maintenance. Failure to do so could result in electrical shock leading to death, severe personnel injury or property damage.
- Do not work on a breaker with the secondary test coupler engaged. Failure to disconnect the test coupler could result in an electrical shock leading to death, personnel injury or property damage.
- Do not work on a closed breaker or a breaker with closing springs charged. The closing spring should be discharged and the main contacts open before working on the breaker. Failure to do so could result in cutting or crushing injuries.
- Do not use a circuit breaker by itself as the sole means of isolating a high voltage circuit. Remove the breaker to the Disconnect position and follow all lockout and tagging rules of the National Electrical Code and any and all applicable codes, regulations and work rules.
- Do not leave the breaker in an intermediate position in the cell. Always have the breaker either in the Test or Connected position. Failure to do so could result in a flash over and possible death, personnel injury or property damage.
- Always remove the maintenance tool from the breaker after charging the closing springs.
- Breakers are equipped with safety interlocks. Do not defeat them. This may result in death, bodily injury or equipment damage.
SECTION 3: RECEIVING, HANDLING, AND STORAGE

Type 15VHK Model 20 VR-series circuit breakers are subjected to complete factory production tests and inspection before being packed. They are shipped in packages designed to provide maximum protection to the equipment during shipment and storage and at the same time to provide convenient handling. Accessories such as the maintenance tool, cell code plate, (if applicable) etc. are shipped with the breaker (Figure 3.1).

3.1 RECEIVING

Until the breaker is ready to be delivered to the switchgear site for installation, DO NOT remove it from the shipping crate. If the breaker is to be placed in storage, maximum protection can be obtained by keeping it in its crate.

Upon receipt of the equipment, inspect the crates for any signs of damage or rough handling. Open the crates carefully to avoid any damage to the contents. Use a nail puller rather than a crow bar when required.

When opening the crates, be careful that any loose items or hardware are not discarded with the packing material. Check the contents of each package against the packing list.

Examine the breaker for any signs of shipping damage such as broken, missing or loose hardware, damaged or deformed insulation and other components. File claims immediately with the carrier if damaged or loss is detected and notify the nearest Eaton’s Electrical Services & Systems office.

Tools and Accessories

Maintenance Tool: This tool is used to manually charge the closing spring. One maintenance tool is provided with each vacuum unit replacement breaker. (Style# 8064A02G01)

Racking Handle: The racking handle is used to drive the racking mechanism which moves the circuit breaker into and out of the cell. The original OEM racking handle will interface with the VR-Series replacement breaker racking mechanism and is therefore not provided as part of the vacuum replacement breaker.

Secondary Connection Block Extension Cable: An extension cable can be used to connect the circuit breaker to a “test cabinet” or to the switchgear cell’s secondary receptacle block so that the breaker can be electrically operated while not installed in the switchgear cell. The original OEM extension cable will interface with the VR-Series replacement breaker therefore an additional extension cable is not included as part of the vacuum replacement breaker.

3.2 HANDLING

WARNING

DO NOT USE ANY LIFTING DEVICE AS A PLATFORM FOR PERFORMING MAINTENANCE, REPAIR OR ADJUSTMENT OF THE BREAKER OR FOR OPENING, CLOSING THE CONTACTS OR CHARGING THE SPRINGS. THE BREAKER MAY SLIP OR FALL CAUSING SEVERE PERSONAL INJURY. ALWAYS PERFORM MAINTENANCE, REPAIR AND ADJUSTMENTS ON A WORKBENCH CAPABLE OF SUPPORTING THE BREAKER TYPE.

VR-Series breaker shipping containers are designed to be handled either by use of a rope sling and overhead lifting device or by a fork lift truck. If containers must be skidded for any distance, it is preferable to use roller conveyors or individual pipe rollers.

Once a breaker has been inspected for shipping damage, it is best to return it to its original shipping crate until it is ready to be installed in the Metal-Clad Switchgear.

When a breaker is ready for installation, a lifting harness in conjunction with an overhead lift or portable floor lift can be used to move a breaker, if this is preferable to rolling the breaker on the floor using self contained wheels. If the breaker is to be lifted, position the lifting device (lifting straps should have at least a 1600 pound capacity) over the breaker and insert the lifting harness hooks into the breaker side openings and secure. Be sure the hooks are firmly attached before lifting the breaker. Stand a safe distance away from the breaker while lifting and moving.

Figure 3.1. Typical Manual Charge Handle

Figure 3.2. Lifting 15VHK-VR Model 20
3.3 STORAGE

If the circuit breaker is to be placed in storage, maximum protection can be obtained by keeping it in the original shipping crate. Before placing it in storage, checks should be made to make sure that the breaker is free from shipping damage and is in satisfactory operating condition.

The breaker is shipped with its contacts open and closing springs discharged. The indicators on the front panel should confirm this. Insert the maintenance tool in the manual charge socket opening (Figure 3.3, 3.5, & 3.7). Charge the closing springs by pumping the handle up and down about 36 times until a crisp metallic “click” is heard. This indicates that the closing springs are charged and is shown by the closing spring “charged” (yellow) indicator. Remove the maintenance tool. Push the “manual close” button. The breaker will close as shown by the breaker contacts “closed” (red) indicator. Push the “manual trip” button. The breaker will trip as shown by the breaker contacts “open” (green) indicator. After completing this initial check, leave the closing springs “discharged” and breaker contacts “open”.

Outdoor storage is NOT recommended. If unavoidable, the outdoor location must be well drained and a temporary shelter from sun, rain, snow, corrosive fumes, dust, dirt, falling objects, excessive moisture, etc. must be provided. Containers should be arranged to permit free circulation of air on all sides and temporary heaters should be used to minimize condensation. Moisture can cause rusting of metal parts and deterioration of high voltage insulation. A heat level of approximately 400 watts for each 100 cubic feet of volume is recommended with the heaters distributed uniformly throughout the structure near the floor.

Indoor storage should be in a building with sufficient heat and circulation to prevent condensation. If the building is not heated, the same general rule for heat as for outdoor storage should be applied.

3.4 15VHK-VR APPROXIMATE WEIGHTS

Refer to Table 3.

<table>
<thead>
<tr>
<th>Type</th>
<th>Amperes</th>
<th>LBs</th>
</tr>
</thead>
<tbody>
<tr>
<td>15VHK-VR Model 20</td>
<td>1200</td>
<td>580</td>
</tr>
</tbody>
</table>
Figure 3.3. Front External View of 15VHK-VR Model 20 (1200A Shown)

Front External View

1. Manual Charging Socket
2. Push To Close Button
3. Lock-out Stationary Tab
4. Breaker Status Indicator
5. Spring Charged / Discharged Indicator
6. Operations Counter
7. Push To Open Button
8. Racking Handle Access
9. Racking Status Indicator Label
Figure 3.4. Rear External View of 15VHK-VR Model 20 (1200A Shown)

Rear External View

1 Primary Disconnect
2 Shutter Roller
3 Secondary Disconnect
4 Ground Contact
SECTION 4: DESCRIPTION AND OPERATION

VR-Series vacuum replacement breakers are designed to be used with existing installations of equivalent air-magnetic metal-clad switchgear breaker. The front mounted spring type stored energy mechanism facilitates inspection and provides improved access to components for servicing. The long life characteristics of the vacuum interrupters and proven high reliability of spring-type stored energy mechanisms assure long, trouble-free service with minimum maintenance.

4.1 VACUUM INTERRUPTER

Vacuum interrupters offer the advantages of enclosed arc interruption, small size and weight, longer life, reduced maintenance, minimal mechanical shock, and elimination of contact degradation caused by environmental contamination.

In the closed position, current flows through the interrupter moving and fixed stems and the faces of the main contacts. As the contacts part, an arc is drawn between the contact surfaces. The arc is rapidly moved away from the main contacts to the slotted contact surfaces by self-induced magnetic effects. This minimizes contact erosion and hot spots on the contact surfaces. The arc flows in an ionized metal vapor and as the vapor leaves the contact area, it condenses into the metal shield which surrounds the contacts.

At current zero, the arc extinguishes and vapor production ceases. Very rapid dispersion, cooling, recombination, and deionization of the metal vapor plasma and fast condensation of metal vapor causes the vacuum to be quickly restored and prevents the transient recovery voltage from causing a restrike across the gap of the open contacts.

4.1.1 THE INTERRUPTER ASSEMBLY

Each interrupter is assembled at the factory as a unit to assure correct dimensional relationships between working components. The interrupter assembly consists of a vacuum interrupter, a molded glass polyester stand-off insulator, upper and lower clamps, flexible shunts, bell crank, operating rod, and contact load spring. The vacuum interrupter is mounted vertically with the fixed stem upward and the moving stem downward. The upper and lower glass polyester stand-off insulator and clamps support the interrupter and are fastened to the breaker's stored energy mechanism frame. Upper and lower flexible shunts provide electrical connections from each interrupter to the breaker's primary bushings while providing isolation from mechanical shock and movement of the interrupter's moving stem. The operating rod, loading spring, and bell crank transfer mechanical motion from the breaker's operating mechanism to the moving stem of the interrupter. A vacuum interrupter contact erosion indicator is located on the moving stem of the interrupter. It is visible when the breaker is withdrawn and is viewed from the rear of the breaker. (See Figure 6.1 and Figure 6.2)

4.1.2 CONTACT EROSION INDICATOR

The purpose of the contact erosion indicator is to monitor the erosion of the vacuum interrupter contacts, which is very minimal over time with Eaton vacuum interrupters utilizing copperchrome contact material. A contact erosion indicator mark is located on the moving stem of the interrupter (Figure 6.1 and 6.2).

In order to determine if the contacts have eroded to the extent that the interrupter must be replaced, close the breaker and observe the erosion mark placed on each moving stem from the rear of the breaker. If the mark on the interrupter stem is visible, the interrupter is satisfactory. If the mark is no longer visible, the interrupter assembly must be replaced.

The erosion indicator is easily viewed from the rear on the 7.5 or 15kV designs. Because of the nature of the 5kV 20-WR element inverted design, the erosion indicator is not easily viewed, although it is possible with the use of a light and an inspection type mirror.
4.1 CONTACT WIPE AND STROKE

Contact wipe is the indication of (1) the force holding the vacuum interrupter contacts closed and (2) the energy available to hammer the contacts open with sufficient speed for interruption.

The circuit breaker mechanism provides a fixed amount of motion to the operating rods. The first portion of the motion is used to close the contacts (i.e. stroke) and the remainder is used to further compress the preloaded wipe spring. This additional compression is called wipe. Wipe and stroke are thus related to each other.

As the stroke increases due to the erosion of contacts, the wipe decreases. A great deal of effort and ingenuity has been spent in the design of VR-Series breakers, in order to eliminate any need for field adjustment of wipe or stroke.

4.2 PHASE BARRIERS

Phase barriers are sheets of insulation located between the interrupter pole assemblies and on the sides of the breaker frame. The phase barriers are designed to isolate energized conductor components in each phase from the adjacent phase and ground.

4.3 BUSHINGS AND DISCONNECTING CONTACT ASSEMBLIES

The line and load bushing assemblies, which are the primary circuit terminals of the circuit breaker, consist of six silver plated conductors. Multiple finger type primary disconnecting contacts at the ends of the conductors provide means for connecting and disconnecting the breaker to the bus terminals in the switchgear compartment.

4.4 STORED ENERGY MECHANISM

The spring-type stored energy operating mechanism is mounted on the breaker frame and in the front of the breaker. Manual closing and opening controls are at the front panel (Figure 3.3). They are accessible while the breaker is in any of its four basic positions. (See Section 5 in this manual)

The mechanism stores the closing energy by charging the closing springs. When released, the stored energy closes the breaker, charges the wipe and resets the opening springs. The mechanism may rest in any one of the four positions shown in Figure 4.6 as follows:

a. Breaker open, closing springs discharged.
b. Breaker open, closing springs charged.
c. Breaker closed, closing springs discharged.
d. Breaker closed, closing springs charged.

The mechanism is a mechanically “trip-free” design. Trip-free is defined later in this section.

In normal operation the closing spring is charged by the spring charging motor, and the breaker is closed electrically by the switchgear control circuit signal to energize the spring release coil. Tripping is caused by energizing the trip coil through the control circuit.

For maintenance inspection purposes the closing springs can be charged manually by using the maintenance tool and the breaker can be closed and tripped by pushing the “Push to Close” and “Push to Open” buttons on the front panel.

4.4.1 CLOSING SPRING CHARGING

Figure 4.5 shows schematic section views of the spring charging parts of the stored energy mechanism.

The major component of the mechanism is a cam shaft assembly which consists of a shaft to which are attached two closing spring cranks (one on each end), the closing cam, drive plate, and a free-wheeling ratchet wheel.

The ratchet wheel (6) is actuated by an oscillating ratchet lever (12) and drive pawl (10) driven by the motor eccentric cam. As the ratchet wheel rotates, it pushes the drive plates which in turn rotate the closing spring cranks and the closing cam on the cam shaft. The motor will continue to run until the limit switch “LS” contact disconnects the motor.

The closing spring cranks have spring ends connected to them, which are in turn coupled to the closing springs. As the cranks rotate, the closing springs get charged.

The closing springs are completely charged, when the spring cranks go over dead center and the closing stop roller (9) comes against the spring release latch (1). The closing springs are now held in the fully charged position.

The closing springs may also be charged manually as follows: Insert the maintenance tool in the manual charging socket. Move it up and down several times (about 36) until a clicking sound is heard and closing spring status indicator shows “charged” (Figure 3.3). Any further motion of the maintenance tool will result in free wheeling of the ratchet wheel and will not result into advance of charging.

4.4.2 CLOSING OPERATION

Figure 4.6 shows the positions of the closing cam and tripping linkage for four different operational states. In Figure 4.6.a the breaker is open and the closing springs are discharged. In this state, the trip latch is disengaged from the trip “D” shaft (unlatched). After the closing springs become charged, the trip latch snaps into the fully reset or latched position (Figure 4.6.b)
When the spring release clapper (Figure 4.5, Item 13) moves into the face of the spring release coil (electrically or manually), the upper portion of the clapper pushes the spring release latch (1) upward. When the spring release latch moves, the cam shaft assembly is free to rotate. The force of the closing cam (Figure 4.6.b, Item 5), moving the main link (2), rotating the pole shaft (4) (which charges the opening spring). This moves the three operating rods (3), closes the main contacts and charges the contact loading springs (not shown). The operational state immediately after the main contacts close but before the spring charging motor recharges the closing springs is illustrated in Figure 4.6.c. Interference of the trip “D” shaft with the trip latch prevents the linkage from collapsing, and holds the breaker closed.

Figure 4.6.d shows the breaker in the closed state after the closing springs have been recharged. The recharging of the spring rotates the closing cam one half turn. In this position the main link roller rides on the cylindrical portion of the cam, and the main link does not move out of position.

4.4.3 TRIPPING OPERATION

When the trip bar “D” shaft (Figure 4.6.b, Item 9) is turned by movement of the shunt trip clapper (11), the trip latch will slip past the straight cut portion of the trip bar shaft and will allow the banana link and main link roller to rise. The energy of the opening spring and contact loading springs is released to open the main contacts. The mechanism is in the state illustrated (Figure 4.6.b) after the breaker is tripped open.

4.4.4 TRIP-FREE OPERATION

When the manual trip button is held depressed, any attempt to close the breaker results in the closing springs discharging without any movement of the pole shaft or vacuum interrupter stem.

4.5 CONTROL SCHEMES

There are two basic control schemes for each series of Type VCP-WR breakers, one for DC control and one for AC control voltages (Figure 4.3). Specific wiring schematics and diagrams are included with each breaker.

There may be different control voltages or more than one tripping element, but the principal mode of operation is as follows:

As soon as the control power is applied, the spring charging motor automatically starts charging the closing spring. When the springs are charged, the motor cut off LS1/bb switch turns the motor off. The breaker may be closed by making the control switch close (CS/C) contact. Automatically starts charging the closing spring. When the springs are charged, the motor cut off LS1/bb switch turns the motor off. The breaker may be closed by making the control switch close (CS/C) contact. Automatically upon closing of the breaker, the motor starts charging the closing springs. The breaker may be tripped any time by making the control switch (CS/T) contacts.

Note the position switch (PS1) contact in the spring release circuit in the scheme. This contact remains made while the breaker is being racked between the TEST and CONNECTED positions for appropriately retrofitted breakers. Consequently, it prevents the breaker from closing automatically, even though the control close contact may have been made while the breaker is racked to the CONNECTED position.

When the CS/C contact is made, the SR closes the breaker. If the CS/C contact is maintained after the breaker closes, the Y relay is picked up. The Y/a contact seals in Y until CS/C is opened. The Y/b contact opens the SR circuit, so that even though the breaker would subsequently open, it could not be reclosed before CS/C was released and remade. This is the anti-pump function.

4.5.1 TIMING

The opening and closing times for the circuit breakers vary depending upon the control voltage, power rating, environment and test equipment. Differences in timing are expected between initial factory measurements and field inspections. Circuit breaker timing can be measured by service personnel using available equipment before installation and in conjunction with regular maintenance periods to assist in tracking the general health of the breaker. Typical ranges as observed using nominal control voltages are listed in Table 4.

<table>
<thead>
<tr>
<th>Event</th>
<th>Milliseconds / Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Closing Time</td>
<td>75</td>
</tr>
<tr>
<td>(From Initiation of Close Signal to Contact Make)</td>
<td></td>
</tr>
<tr>
<td>Opening Time</td>
<td>45</td>
</tr>
<tr>
<td>(Initiation of Trip Signal to Contact Break)</td>
<td></td>
</tr>
<tr>
<td>Reclosing Time</td>
<td>190</td>
</tr>
<tr>
<td>(Initiation of Trip Signal to Contact Make)</td>
<td></td>
</tr>
</tbody>
</table>

4.6 SECONDARY CONNECTION BLOCK

The breaker control circuit is connected to the switchgear control through secondary connection block, located at the lower left rear of the breaker. The contacts engage automatically when the breaker is racked into the “test” and “connect” positions. The socket half of the connection is located in the cubicle and a jumper of multiconductor cable can complete the control connections (for testing) when the breaker is withdrawn from the cell.

4.7 INTERLOCKS

WARNING

INTERLOCKS ARE PROTECTIVE DEVICES FOR PERSONNEL AND EQUIPMENT. DO NOT BYPASS, MODIFY, OR MAKE INOPERATIVE ANY INTERLOCKS. DOING SO COULD CAUSE DEATH, SERIOUS PERSONAL INJURY, AND/OR PROPERTY DAMAGE.

There are several interlocks built into the VR-Series vacuum replacement breakers. Each of these interlocks, though different in form, duplicate or exceed in function that of the original breaker. These interlocks exist to safeguard personnel and equipment. The basic premise behind the interlocking arrangement on the vacuum replacement breaker is that the breaker must not be inserted into or removed from a live circuit while the main contacts are closed. Also considered in the interlocking is that the breaker should pose no greater risk than necessary to the operator in or out of the cell. In addition to the original interlocks, VR-Series breakers provide an anti-close interlock.

4.7.1 ANTI-CLOSE INTERLOCK

The anti-close interlock prevents discharging of the closing springs if the breaker is already closed (Figure 4.5, Item 11). When the breaker is closed, the interlock component moves away from the spring release clapper so that it cannot lift the spring release latch (9).

4.7.2 RACKING SYSTEM TRIP AND SPRING RELEASE INTERLOCKS

The racking interlock prevents engaging or disconnecting a shut breaker with live cell buss work or removing a mechanically hazardous breaker from the cell. The basic premise of this interlock is that no breaker should be connected to or removed from cell primary circuitry when shut and no breaker should be removed from the cell with charged open or closing springs. The racking interlock accomplishes this by providing a trip signal to the breaker automatically. The racking mechanism interlock cam when the breaker is in an intermediate position in the cell and adding a close signal between the DISCONNECT and WITHDRAWN positions to render the breaker trip-free prior to leaving the cell (close and open springs discharged).
VR-Series Circuit Breaker dc Control Schematic

- Breaker Control Switch - close
- Breaker Control Switch - trip
- Anti Pump Relay
- Spring Release Coil (Close Coil)
- Spring Charging Motor
- Shunt Trip Coil
- Protective Relay
- Terminal Block or Accessible Terminal
- Position Switch 1
- Position Switch 2

OPERATION

- LS1 bb: Closed until springs are fully charged
- LS2 aa: Open until springs are fully charged
- LS2 bb: Closed until springs are fully charged
- LC: Open until mechanism is reset
- PS1: Open in all except between ‘Test’ and ‘Connect’ positions
- PS2: Closed in all except between ‘Test’ and ‘Connect’ positions

SWITCH TERMINAL

- ‘C’ and ‘NO’ Brown Switch
- ‘C’ and ‘NC’ Black Switch
- ‘C’ and ‘NO’ Black Switch
- ‘C’ and ‘NC’ Brown Switch
Figure 4.4. 18WR Vacuum Element - Front Faceplate Removed

18WR Vacuum Element

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>LH Closing Spring</td>
</tr>
<tr>
<td>2</td>
<td>Motor Cutoff Switch</td>
</tr>
<tr>
<td>3</td>
<td>Latch Check Switch (Rear)</td>
</tr>
<tr>
<td>4</td>
<td>Closing Cam</td>
</tr>
<tr>
<td>5</td>
<td>Spring Release Assembly</td>
</tr>
<tr>
<td>6</td>
<td>Shunt Trip Assembly</td>
</tr>
<tr>
<td>7</td>
<td>RH Closing Spring</td>
</tr>
<tr>
<td>8</td>
<td>Reset Opening Spring</td>
</tr>
<tr>
<td>9</td>
<td>Manual Charge Socket</td>
</tr>
<tr>
<td>10</td>
<td>Ratchet wheel</td>
</tr>
<tr>
<td>11</td>
<td>Operations Counter</td>
</tr>
<tr>
<td>12</td>
<td>Charging Motor</td>
</tr>
</tbody>
</table>
15VHK-VR Model 20
Replacement Circuit Breaker

Figure 4.5. Closing Cam and Trip Linkage

Closing Cam and Trip Linkage

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
<th></th>
<th>Description</th>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Spring Release (Close) Latch</td>
<td>6</td>
<td>Ratchet Wheel</td>
<td>11</td>
<td>Anti-Close Interlock</td>
</tr>
<tr>
<td>2</td>
<td>Pole Shaft</td>
<td>7</td>
<td>Spring Crank</td>
<td>12</td>
<td>Motor Ratchet Lever</td>
</tr>
<tr>
<td>3</td>
<td>Closing Spring Fixed End</td>
<td>8</td>
<td>Cam Shaft</td>
<td>13</td>
<td>Spring Release (Close) Clapper</td>
</tr>
<tr>
<td>4</td>
<td>Closing Spring</td>
<td>9</td>
<td>Spring Release Latch (Close Roller)</td>
<td>14</td>
<td>Spring Release (Close) Coil</td>
</tr>
<tr>
<td>5</td>
<td>Holding Pawl</td>
<td>10</td>
<td>Drive Pawl</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figure 4.6. Charging Schematic

4.6.a. Breaker Open and Closing Spring Not Charged

4.6.b. Breaker Open and Closing Spring Charged

4.6.c. Breaker Closed and Closing Spring Not Charged

4.6.d. Breaker Closed and Closing Spring Charged

Charging Schematic

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
<th></th>
<th>Description</th>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Main Link Roller</td>
<td>5</td>
<td>Closing Cam</td>
<td>9</td>
<td>Trip Bar “D” Shaft</td>
</tr>
<tr>
<td>2</td>
<td>Main Link</td>
<td>6</td>
<td>Cam Shaft</td>
<td>10</td>
<td>Trip Latch Reset Spring</td>
</tr>
<tr>
<td>3</td>
<td>Operating Rod</td>
<td>7</td>
<td>Banana Link</td>
<td>11</td>
<td>Shunt Trip Lever</td>
</tr>
<tr>
<td>4</td>
<td>Pole Shaft</td>
<td>8</td>
<td>Trip latch</td>
<td>12</td>
<td>Shunt Trip Coil</td>
</tr>
</tbody>
</table>
SECTION 5: INSPECTION & INSTALLATION

⚠️ WARNING
BEFORE PLACING THE BREAKER IN SERVICE, CAREFULLY FOLLOW THE INSTALLATION PROCEDURE BELOW AND THE SAFE PRACTICES SET FORTH IN SECTION 2. NOT FOLLOWING THE PROCEDURE MAY RESULT ININCORRECT BREAKER OPERATION LEADING TO DEATH, BODILY INJURY, AND PROPERTY DAMAGE.

When the breaker is first commissioned into service and each time the breaker is returned to service, it should be carefully examined and checked to make sure it is operating correctly.

5.1 EXAMINATION FOR DAMAGE
Examine the breaker for loose or obviously damaged parts. Never attempt to install nor operate a damaged breaker.

5.1.1 NAMEPLATE VERIFICATION
Verify the information on the new VR-Series nameplate matches the information on the purchase order. If any discrepancies exist, notify Eaton’s Electrical Services & Systems for resolution prior to proceeding.

⚠️ WARNING
ALWAYS DE-ENERGIZE/ISOLATE THE POWER SOURCE FEEDING THE POWER CIRCUIT BREAKERS/SWITCHGEAR AND LOCK-OUT/TAG-OUT THE POWER SOURCE PRIOR TO INSERTION OR REMOVAL OF ANY POWER CIRCUIT BREAKER. NEVER ATTEMPT TO MAINTAIN OR MODIFY A CIRCUIT BREAKER WHILE INSERTED IN A SWITCHGEAR CELL STRUCTURE. ALWAYS REMOVE THE POWER CIRCUIT BREAKER AND MOVE IT TO A SUITABLE AREA FOR MAINTENANCE OR REPAIR.

FOLLOW ALL LOCKOUT AND TAG-OUT REQUIREMENTS OF THE NATIONAL ELECTRIC CODE, OSHA AND ANY OTHER APPLICABLE LOCAL CODES, REGULATIONS AND PROCEDURES.

5.2 SURE CLOSE MECHANISM ADJUSTMENT

⚠️ WARNING
FOR ALL TYPE BREAKER HOUSINGS EQUIPPED WITH MECHANISM OPERATED CELL (MOC) SWITCHES, THE STEPS OUTLINED IN THIS SECTION MUST BE PERFORMED BEFORE INSTALLING A REPLACEMENT VR-SERIES CIRCUIT BREAKER. FAILURE TO COMPLY COULD CAUSE SEVERE PERSONAL INJURY, DEATH, EQUIPMENT DAMAGE AND/OR IMPROPER OPERATION.

All type 15VHK-VR breakers utilize the 15VHK-VR SURE CLOSE mechanism to control kinetic energy transfer and closely mimic the dynamics and velocities of older breakers. It is imperative that this mechanism be adjusted to compensate for the force of the MOC switch mounted in the cell.

The breaker has been factory adjusted to operate one mechanism operated cell (MOC) switch in the cell. This means that for applications with either no MOC switch or one MOC switch, no field adjustments are required.

Finally, the SURE CLOSE mechanism provides an effective way to evaluate the condition of the MOC in the cell. If the SURE CLOSE drive spring is properly adjusted, but the MOC does not fully open or close, it is time to maintain the MOC in the cell. The application usually means cleaning and lubricating the MOC mechanism. If the MOC has seen a large number of cycles, however, worn components may have to be replaced.

To insures the proper operation of the SURE CLOSE mechanism, the MOC assembly should be cleaned and inspected for worn parts and then lubricated. A spring force gauge should be used to measure the forces needed to move the switch to the fully closed position prior to inserting the breaker. The differential force of the assembly and the breaker should be a minimum of 10 lbs. with the breaker having the higher recorded force. Should the forces be less than that, proceed with the following steps to increase the breaker force:

⚠️ WARNING
MEASUREMENTS AND ADJUSTMENTS SHOULD NEVER BE ATTEMPTED IN AN ENERGIZED STRUCTURE. IF THE STRUCTURE CANNOT BE DE-ENERGIZED, THEN PROPER PERSONAL PROTECTIVE EQUIPMENT PER NFPA 70E MUST BE WORN AT ALL TIMES WHILE GATHERING MOC SWITCH DATA, ADJUSTING OR SERVICING THE MOC SWITCH. FAILURE TO COMPLY WITH THIS WARNING COULD CAUSE SEVERE PERSONAL INJURY, DEATH, EQUIPMENT DAMAGE AND/OR IMPROPER OPERATION.

To adjust the SURE CLOSE drive spring for a specific number of MOC switches, proceed with the following steps:

Step 1: Locate the MOC drive spring (Figure 3.3). It is located in the left lower portion of the breaker as viewed from the rear of the breaker.

Step 2: From the factory, the drive spring comes set with adequate force to operate one MOC switch, however, more force can be generated. Refer to Figure 5.1 to see how that adjustment would look. Notice that there is a nut and a jam nut on the threaded rod to make the adjustment easy.

Step 3: Using a spring gauge, measure the force required to operate the MOC to the fully closed position in the cell at the interface with the breaker.

Step 4: With the breaker out of the cell, close the breaker and measure the output of the MOC drive with a spring gauge. Open the breaker. The MOC drive force should exceed the MOC cell force required by 10 - 15lbs. If not, an adjustment is required.

Step 5: Loosen the jam nut on the SURE CLOSE spring and compress the spring an additional .25 inches. Close the breaker.

⚠️ WARNING
WITH THE BREAKER IN THE OPEN POSITION, THE SPRING COMPRESSION SHOULD NEVER BE SET TO A DIMENSION LESS THAN 3 INCHES AS MEASURED IN FIGURE 5.1.

Step 6: Remeasure the MOC output spring force in the closed position. Repeat until the MOC forces are adequate.

Step 7: Insert into the cell.

Step 8: Operate the breaker to verify the new setting.

Step 9: Repeat steps 3 - 7 until acceptable operation is achieved.

Step 10: Anytime an adjustment is made, make sure the new compressed spring length (measured in the open position) is recorded if different than the dimension in this instruction book.

Step 11: After an adjustment is made, make sure that all nuts are secured in place, prior to returning to service.
5.8 ELECTRICAL OPERATIONS CHECK

After going through the above steps, the breaker is now ready to be operated electrically. It is preferred that this check be made with the breaker in the Test position in the breaker compartment.

Since the Type 15VHK-VR Circuit Breaker is for use in existing AMH Metal-Clad Switchgear, installation procedures are similar. If it is necessary to reference anything in the breaker compartment, refer to the original instruction books supplied with the assembly.

⚠️ WARNING

EXAMINE THE INSIDE OF THE CELL BEFORE INSERTING THE BREAKER FOR EXCESSIVE DIRT OR ANYTHING THAT MIGHT INTERFERE WITH THE BREAKER TRAVEL.

⚠️ WARNING

KEEP HANDS OFF THE TOP EDGE OF THE FRONT BARRIER WHEN PUSHING A BREAKER INTO A CELL. FAILURE TO DO SO COULD RESULT IN BODILY INJURY, IF FINGERS BECOME WEDGED BETWEEN THE BREAKER AND THE CELL. USE THE HANDLES PROVIDED ON THE FRONT OF THE BREAKER FACEPLATE, OR USE BOTH FULLY OPENED HANDS FLAT ON THE FRONT OF THE FACEPLATE.

These checks can be performed with the breaker in its withdrawn or disconnect position and connecting the breaker to a test cabinet or to the switchgear cell’s secondary receptacle using the special extension cable designed for this purpose and described in Section 3.

Perform electrical operations checks. Close and trip the circuit breaker electrically several times to verify that the operation is reliable and consistent. Check that the operation of the spring charging motor is reasonably prompt and that the motor makes no unusual noise.

⚠️ WARNING

DO NOT PERFORM ELECTRICAL OPERATION CHECKS WITH THE BREAKER IN THE “CONNECT” POSITION BECAUSE OF THE POSSIBILITY OF CONNECTING DE-ENERGIZED LOAD CIRCUITS TO THE ELECTRICAL POWER SOURCE, RESULTING IN DEATH, PERSONNEL INJURY OR EQUIPMENT DAMAGE

5.9 LOCK-OUT PROVISION

Each 15VHK-VR Model 20 vacuum replacement breaker is provided with a lock-out provision to prevent insertion or removal of the circuit breaker with the levering device. The lock-out provision is located on the lower right front of the circuit breaker. To lock-out the circuit breaker, follow the levering instructions and remove the breaker to

NOTICE

IF THE SPRINGS ARE TO BE CHARGED ON A CLOSED BREAKER, NO CLICK IS HEARD AT THE END OF CHARGING OPERATION. DISCONTINUE CHARGING AND REMOVE THE MAINTENANCE TOOL AS SOON AS “CHARGED” FLAG IS FULLY VISIBLE. CONTINUE ATTEMPTS TO FURTHER CHARGE MAY RESULT IN DAMAGE TO THE MECHANISM.

⚠️ WARNING

ALWAYS REMOVE THE MAINTENANCE TOOL AFTER CHARGING THE SPRING. FAILURE TO REMOVE THE MAINTENANCE TOOL FROM THE BREAKER COULD CAUSE INJURY TO PERSONNEL AND/OR EQUIPMENT DAMAGE IF THE BREAKER WAS TO CLOSE.

Close and trip the breaker by pushing the close lever then the trip lever (Figure 3.3).

5.4 VACUUM INTERRUPTER INTEGRITY

Using a dry lint-free cloth or a paper towel, clean all the insulating surfaces of the pole units. Conduct a vacuum interrupter integrity check as described in Section 6.

5.5 LOW FREQUENCY WITHSTAND TEST (INSULATION CHECK)

Check breaker primary and secondary insulation per Section 6.

5.6 CONTACT EROSION AND WIPE

Manually charge the closing springs and close the breaker. Check contact erosion and wipe as described in Section 6.

5.7 PRIMARY CIRCUIT RESISTANCE

Check the primary circuit resistance as described in Section 6. The resistance should not exceed the values specified. Record the values obtained for future reference.
the “Disconnect” position. Remove the levering tool. There are two major components that comprise the lock-out provision. (Figure 3.3)

1. The Lock-out Interlock Lever
2. The Lock-out Interlock Plate

After the breaker is moved to the “Disconnect” position, slide the Lock-out Interlock Lever up and align the holes in the Lock-out Interlock Plate. This exposes the lock-out slot in the Lock-out Interlock Plate. Insert the padlock or locking hasp and secure with lock(s).

5.10 DESCRIPTION OF POSITIONS

These operational instructions apply to the 15 VHK line of Eaton vacuum replacement circuit breakers. Each breaker has four basic operational positions:

1. Breaker in the ‘withdrawn’ position. (Figure 5.4) In the ‘withdrawn’ or ‘out’ position, the circuit breaker racking parts are disengaged from the circuit breaker compartment racking parts. It may be rolled into or out of the circuit breaker compartment in this position. The ‘withdrawn’ position is indicated in the green section of the racking position indicator on the right hand side of the circuit breaker.

In the withdrawn position, the closing springs cannot be charged; the racking system must be manually racked to the ‘disconnect’ position if circuit breaker testing will be performed outside the circuit breaker compartment. If tests outside the breaker compartment are performed, stand clear of the circuit breaker as various parts move at high speed which can cause personal injury or equipment damage.

2. Breaker in the ‘disconnect’ position. (Figure 5.5) In the ‘disconnect’ position, the circuit breaker racking arms are engaged in the breaker compartment racking parts, holding it securely in the cell.

WARNING

VHK CIRCUIT BREAKERS INSTALLED IN UPPER COMPARTMENT OF THEIR SWITCHGEAR MUST BE RACKED TO THE ‘DISCONNECT’ POSITION AT A MINIMUM TO PREVENT THEM FROM ROLLING OUT OF THE CIRCUIT BREAKER COMPARTMENT AND FALLING FROM THE SWITCHGEAR.

3. Breaker in the ‘test’ position. In the ‘test’ position, the circuit breaker secondary disconnects are engaged with the breaker compartment secondary disconnects and the grounding system. The primary disconnects, however, are not connected, and the stationary primary disconnect shutters are not open. In this position the circuit breaker can be charged electrically after switching on the breaker-mounted motor disconnect switch. Manual and electrical close and trip operation tests can be performed to confirm the operation of the circuit breaker. Mechanism operated cell switch operation can also be confirmed if the circuit breaker compartment is equipped with an MOC operator that operates in both the ‘test’ and ‘connect’ positions. Consult the your original switchgear manufacturer paperwork to confirm which type you have.

4. Breaker in the ‘connect’ position. (Figure 5.4) In the ‘connect’ position, the primary disconnects are fully engaged on the circuit breaker compartment primary connections.
5.11 INSERTION PROCEDURE

WARNING

ARC FLASH INCIDENCES WITH MV SWITCHGEAR CAN OCCUR DURING THE PROCESS OF INSERTING AND REMOVING POWER CIRCUIT BREAKERS IN SWITCHGEAR CUBICLES. IT IS STRONGLY RECOMMENDED THAT PROPER PPE (PERSONAL PROTECTIVE EQUIPMENT) BE WORN BY PERSONNEL WHO RACK BREAKERS USING THE MANUAL LEVERING HANDLE OR THE ROTARY RACKING HANDLE. EATON CORPORATION PROVIDES A UNIVERSAL REMOTE POWER RACKING SYSTEM (RPR-2) WHICH IS COMPATIBLE WITH THE INTERNAL ROTARY RACKING BREAKERS. THIS SYSTEM MAY ALLOW PERSONNEL TO WEAR A LOWER LEVEL OF PPE DURING THE INSERTION OR REMOVAL PROCESS AS LONG AS RACKING CAN BE PERFORMED FROM OUTSIDE THE FLASH PROTECTION BOUNDARY.

During the installation process, great care should be exercised. Follow the guidelines of your local authority having jurisdiction on safe racking practices. Eaton 15 VHK VR circuit breakers are designed to allow closed door racking. Throughout the racking process, the circuit breaker is prevented from closing both mechanically and electrically. Only after racking crank removal, the circuit breaker can be closed in the ‘test’ or ‘connect’ positions.

1. Inspect the circuit breaker compartment to confirm that shutters are closed and that there is no foreign material in the circuit breaker compartment. Key interlocking in the circuit breaker compartment, if any, must also be cleared.

2. Confirm that the circuit breaker motor disconnect switch is in the ‘off’ and there are no padlocks on the racking padlock provisions. The circuit breaker must be open with the closing springs discharged. The breaker must be fully racked to the ‘withdrawn’ position as indicated by the ‘Withdrawn’ indication on the green background of the racking position window.

3. Align and push the circuit breaker so that it engages the rails in the floor of the circuit breaker compartment. Confirm that the shutter actuator on the left side of the circuit breaker does not interfere with circuit breaker compartment mounted components. The circuit breaker must be pushed forward until it stops, blocked by the breaker compartment racking parts. This is the withdrawn position for the circuit breaker.

4. To reach the ‘disconnect’ position (which also has a green background), rotate the racking handle clockwise until ‘Disconnect’ is displayed in the racking position window to the right of the racking handle access. (Figure 5.5) Close the circuit breaker compartment door. Note that the breaker racking position window can be seen through the switchgear front door’s racking access door.

WARNING

VHK CIRCUIT BREAKERS INSTALLED IN AN UPPER SWITCHGEAR COMPARTMENT MUST BE RACKED TO THE ‘DISCONNECT’ POSITION AT A MINIMUM TO PREVENT THEM FROM ROLLING OUT OF THE CIRCUIT BREAKER COMPARTMENT AND FALLING FROM THE SWITCHGEAR.

5. From the ‘disconnect’ position, rotate the racking handle clockwise until the yellow ‘Test’ position is indicated in the racking position indicator. In the ‘test’ position, the circuit breaker secondary disconnects are engaged with the breaker compartment secondary disconnects. The circuit breaker ground connections are also connected to the circuit breaker compartment grounding parts. Both the secondary disconnects and the ground parts remain connected between ‘test’ and ‘connect’ racking positions.

Special configurations of ‘test only’ and ‘connect only’ secondary disconnects were available from the original manufacturer; if they were present for the original breakers, the same will be true for the Eaton replacement breakers.
Various circuit breaker tests can be performed in the ‘test’ position.

- The motor disconnect switch may be switched on in the ‘test’ position. It is located close to the racking shaft access point so that it can be reached and operated by the racking crank or other implement.

- Remote electrical close and trip functions may be performed in the ‘test’ position. Remember that closing and opening operations on the circuit breaker may operate the mechanism operated cell switch; care should be taken to determine what equipment might be signaled by the MOC switch.

6. When all “in-cell” tests are complete, confirm that the circuit breaker contacts are open. The racking shaft access will be blocked if the circuit breaker contacts are closed. Opening the breaker will allow racking access. Insert the racking crank and rotate the crank clockwise to move the circuit breaker to the ‘connect’ position. It may be possible to hear the circuit breaker compartment shutters open at this point. Immediately following shutter opening, racking forces on the crank will increase where the point is reached that the breaker primary disconnects engage the stationary disconnect stabs in the cell. Continue to rack the breaker until ‘Connect’ is shown in the racking window on a red background. In this position, the circuit breaker can be closed, providing power to its downstream load. It is also serves its protective functions when connected to a circuit protective relay.

7. If it is desired to move the circuit breaker from the ‘withdrawn’ to the ‘connect’ position, it is possible to do so without stopping at the ‘disconnect’ or ‘test’ positions. Unlike the original circuit breakers which had racking detents that locked in each position, the Eaton replacement breaker allows continuous racking capability without stopping. This feature compliments the operation of Eaton’s Remote Power Racking (RPR-2) device. Complete racking instructions for the RPR-2 are provided with the RPR-2 device.

5.12 REMOVAL PROCEDURE

1. Confirm that the circuit breaker is open. It will be necessary to open the breaker to allow access to the circuit breaker racking shaft. After opening the switchgear racking access door, insert the racking handle and rotate the racking shaft counter-clockwise. It is possible to rack the circuit breaker from the ‘connect’ position to the fully ‘withdrawn’ position if necessary.

2. If circuit breaker testing is needed, the breaker can be stopped in the ‘test’ position.

3. When the VHK VR breaker is located in an upper compartment, we strongly recommend that racking be stopped at the disconnect position so that the circuit breaker is mechanically retained in the circuit breaker compartment until one desires to remove it by racking it to the out position.

4. Between the ‘disconnect’ and ‘out’ position, the closing springs of the circuit breaker will automatically discharge. This is indicated on the racking indicator in the green background adjacent to the ‘Withdrawn’ indication.

Stationary primary disconnect shutters open between ‘test’ and ‘connect’. The ‘connect’ position is the operating position of the circuit breaker where it is connected to primary current and the load the circuit breaker is feeding.
SECTION 6: INSPECTION & MAINTENANCE

⚠️ WARNING

DO NOT WORK ON A BREAKER IN THE "CONNECTED" POSITION.

DO NOT WORK ON A BREAKER WITH SECONDARY DISCONNECTS ENGAGED.

DO NOT WORK ON A BREAKER WITH SPRINGS CHARGED OR CONTACTS CLOSED.

DO NOT DEFEAT ANY SAFETY INTERLOCKS.

DO NOT LEAVE MAINTENANCE TOOL IN THE SOCKET AFTER CHARGING THE CLOSING SPRINGS.

6.1 INSPECTION FREQUENCY

Inspect the breaker once a year when operating in a clean, non-corrosive environment. For a dusty and corrosive environment, inspection should be performed twice a year. Additionally, it is recommended to inspect the breaker every time it interrupts fault current.

Note: Refer to the table below for maintenance and inspection check points.

6.2 INSPECTION AND MAINTENANCE PROCEDURES

<table>
<thead>
<tr>
<th>NO. / SECTION</th>
<th>INSPECTION ITEM</th>
<th>CRITERIA</th>
<th>INSPECTION METHOD</th>
<th>CORRECTIVE ACTION IF NECESSARY</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Insulation</td>
<td>Stand Off Insulators, Operating Rods, Tie-Bars and Barriers</td>
<td>No Dirt</td>
<td>Visual Check</td>
<td>Clean With Lint-Free Cloth</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No Cracking</td>
<td>Visual Check</td>
<td>Replace Cracked Unit</td>
</tr>
<tr>
<td></td>
<td>Vacuum Integrity Between Main Circuit With Terminals Ungrounded</td>
<td>Withstand 27kV 60Hz For 1 Minute</td>
<td>Hipot Tester</td>
<td>Clean And Retest Or Replace</td>
</tr>
<tr>
<td></td>
<td>Insulation Integrity Main Circuit To Ground</td>
<td>Withstand 15kV, 60Hz For 1 Minute (15kV Rating) 27kV, 60Hz For 1 Minute</td>
<td>Hipot Tester</td>
<td>Clean And Retest Or Replace</td>
</tr>
<tr>
<td></td>
<td>Control Circuit To Ground (Charging Motor Disconnected)</td>
<td>Withstand 1125V, 60Hz For 1 Minute</td>
<td>Hipot Tester</td>
<td>Clean And Retest Or Replace</td>
</tr>
<tr>
<td>2. Power Element</td>
<td>Vacuum Interrupters</td>
<td>Contact Erosion Visibility Of Mark</td>
<td>Visual - Close The Breaker And Look For Green Mark On Moving Stem From The Rear Of The Breaker (See Figure 6.1 and 6.2)</td>
<td>If Mark Is Not Visible, Replace Interrupter Assembly</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Contact Wipe Visible</td>
<td>Visual (Figure 6.3 and 6.4)</td>
<td>Replace VI Assembly</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Adequate Vacuum</td>
<td>See Section 6.3</td>
<td>Replace Interrupter Assembly If Vacuum Is Not Adequate</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dirt On Ceramic Body</td>
<td>Visual Check</td>
<td>Clean With Dry Lint-Free Cloth</td>
</tr>
<tr>
<td>3. Control Circuit Parts</td>
<td>Primary Disconnects</td>
<td>No Burning Or Damage</td>
<td>Visual Check</td>
<td>Replace If Burned, Damaged Or Eroded</td>
</tr>
<tr>
<td>4. Operating Mechanism</td>
<td>Dust Or Foreign Matter</td>
<td>No Dust Or Foreign Matter</td>
<td>Visual Check</td>
<td>Clean As Necessary</td>
</tr>
<tr>
<td></td>
<td>Lubrication</td>
<td>Smooth Operation And No Excessive Wear</td>
<td>Sight And Feel</td>
<td>Lubricate Very Sparingly With Light Machine Oil</td>
</tr>
<tr>
<td></td>
<td>Deformation Or Excessive Wear</td>
<td>No Excessive Deformation Or Wear</td>
<td>Visual And Operational</td>
<td>Remove Cause And Replace Parts</td>
</tr>
<tr>
<td></td>
<td>Manual Operation</td>
<td>Smooth Operation</td>
<td>Manual Charging Closing And Tripping</td>
<td>Correct Per Trouble-Shooting Chart If Necessary</td>
</tr>
<tr>
<td></td>
<td>CloSure™ Test</td>
<td>≥ 0.6 Inch Over Travel</td>
<td>CloSure™ Test 6.8.1</td>
<td>If < 0.6 Contact PB.C. At 1-877-276-9379</td>
</tr>
</tbody>
</table>

BOLT SIZE

<table>
<thead>
<tr>
<th>8 - 32</th>
<th>10 - 32</th>
<th>25 - 20</th>
<th>31 - 18</th>
<th>38 - 16</th>
<th>50 - 13</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>36</td>
<td>72</td>
<td>144</td>
<td>300</td>
<td>540</td>
</tr>
</tbody>
</table>

TORQUE Lb. In.

| 24 | 36 | 72 | 144 | 300 | 540 |

⚠️ WARNING

STAND AT LEAST ONE METER AWAY FROM THE BREAKER WHEN TESTING FOR VACUUM INTEGRITY.

FAILURE TO FOLLOW ANY OF THESE INSTRUCTIONS MAY CAUSE DEATH, SERIOUS BODILY INJURY, OR PROPERTY DAMAGE. SEE SECTION 2 - SAFE PRACTICES FOR MORE INFORMATION.

Instruction Book IB182053EN June 2016 www.eaton.com
6.3 VACUUM INTERRUPTER INTEGRITY TEST

Vacuum interrupters used in Type VR-Series circuit breakers are highly reliable interrupting elements. Satisfactory performance of these devices is dependent upon the integrity of the vacuum in the interrupter and the internal dielectric strength. Both of these parameters can be readily checked by a one minute AC high potential test. (See Table 6.1 for appropriate test voltage.) During this test, the following warning must be observed:

WARNING

APPLYING ABNORMALLY HIGH VOLTAGE ACROSS A PAIR OF CONTACTS IN VACUUM MAY PRODUCE X-RADIATION. THE RADIATION MAY INCREASE WITH THE INCREASE IN VOLTAGE AND/OR DECREASE IN CONTACT SPACING. X-RADIATION PRODUCED DURING THIS TEST WITH RECOMMENDED VOLTAGE AND NORMAL CONTACT SPACING IS EXTREMELY LOW AND WELL BELOW MAXIMUM PERMITTED BY STANDARDS. HOWEVER, AS A PRECAUTIONARY MEASURE AGAINST POSSIBILITY OF APPLICATION OF HIGHER THAN RECOMMENDED VOLTAGE AND/OR BELOW NORMAL CONTACT SPACING, IT IS RECOMMENDED THAT ALL OPERATING PERSONNEL STAND AT LEAST ONE METER AWAY IN FRONT OF THE BREAKER.

With the breaker open and securely sitting on the floor, connect all top/front primary studs (bars) together and the high potential machine lead. Connect all bottom/rear studs together and the high potential return lead. Do not ground them to the breaker frame. Start the machine at zero potential, increase to appropriate test voltage and maintain for one minute.

Successful withstand indicates that all interrupters have satisfactory vacuum level. If there is a breakdown, the defective interrupter or interrupters should be identified by an individual test and replaced before placing the breaker in service.

After the high potential is removed, discharge any electrical charge that may be retained, particularly from the center shield of vacuum interrupters. To avoid any ambiguity in the AC high potential test due to leakage or displacement (capacitive) current, the test unit should have sufficient volt-ampere capacity. It is recommended that the equipment be capable of delivering 25 milliamperes for one minute.

Although an AC high potential test is recommended, a DC test may be performed if only a DC test unit is available, but is not recommended.

In this case the equipment must be capable of delivering 5 milliamperes for one minute to avoid ambiguity due to field emission or leakage currents and the test voltage shall be as shown in Table 6.1.

The current delivery capability of 25 mA AC and 5 mA DC apply when all three VI’s are tested in parallel. If individual VI’s are tested, current capability may be one third of these values.

WARNING

SOME DC HIGH POTENTIAL UNITS, OPERATING AS UNFILTERED HALF-WAVE RECTIFIERS, ARE NOT SUITABLE FOR USE TO TEST VACUUM INTERRUPTERS BECAUSE THE PEAK VOLTAGE APPEARING ACROSS THE INTERRUPTERS CAN BE SUBSTANTIALLY GREATER THAN THE VALUE READ ON THE METER.

<table>
<thead>
<tr>
<th>Breaker Rated Maximum Voltage</th>
<th>AC 60Hz</th>
<th>DC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Up to and including 15.0 kV</td>
<td>27 kV</td>
<td>40 kV</td>
</tr>
</tbody>
</table>

6.4 CONTACT EROSION AND WIPE

Since the contacts are contained inside the interrupter, they remain clean and require no maintenance. However, during high current interruptions there may be a minimal amount of erosion from the contact surfaces. To determine contact erosion, close the breaker and observe the vacuum interrupter moving stem from the rear of the breaker. If the mark on each stem is visible, erosion has not reached maximum value thus indicating satisfactory contact surface of the interrupter. If the mark is not visible, the vacuum interrupter assembly must be replaced (Figure 6.1 and 6.2).

The adequacy of contact wipe can be determined by simply observing the vacuum interrupter side of the operating rod assembly on a closed breaker. Figures 6.3 and 6.4 show the procedure for determining the contact wipe. It maybe necessary to use a small mirror and flashlight to clearly see the “T” shape indicator. If the wipe is not adequate, the vacuum interrupter assembly (Pole Unit) must be replaced. Field adjustment is not possible.

WARNING

FAILURE TO REPLACE A VACUUM INTERRUPTER ASSEMBLY WHEN CONTACT EROSION MARK IS NOT VISIBLE OR WIPE IS UNSATISFACTORY, WILL CAUSE THE BREAKER TO FAIL TO INTERRUPT AND THEREBY CAUSE PROPERTY DAMAGE OR PERSONNEL INJURY.
6.5 INSULATION

In VR-Series breakers, insulation maintenance primarily consists of keeping all insulating surfaces clean. This can be done by wiping off all insulating surfaces with a dry lint free cloth or dry paper towel. In case there is any tightly adhering dirt that will not come off by wiping, it can be removed with a mild solvent or distilled water. But be sure that the surfaces are dry before placing the breaker in service. If a solvent is required to cut dirt, use Isopropyl Alcohol or commercial equivalent. Secondary control wiring requires inspection for tightness of all connections and damage to insulation.

6.6 INSULATION INTEGRITY CHECK

PRIMARY CIRCUIT:

The integrity of primary insulation may be checked by the AC high potential test. The test voltage depends upon the maximum rated voltage of the breaker. For the breakers rated 4.76 kV, 8.25 kV and 15 kV the test voltages are 15 kV, 27 kV and 27 kV RMS, 60 Hz respectively. Conduct the test as follows:

Close the breaker. Connect the high potential lead of the test machine to one of the poles of the breaker. Connect the remaining poles and breaker frame to ground. Start the machine with output potential at zero and increase to the test voltage. Maintain the test voltage for one minute. Repeat for the remaining poles. Successful withstand indicates satisfactory insulation strength of the primary circuit.

Open the breaker. Connect the high potential lead of the test machine to one of the poles of the breaker. Connect the remaining poles and breaker frame to ground. Start the machine with output potential at zero and increase to the test voltage. Maintain the test voltage for one minute. Repeat for the remaining poles. Successful withstand indicates satisfactory insulation strength of the primary circuit.

If a DC high potential machine is used, make certain that the peak voltage does not exceed the peak of the corresponding AC RMS test voltage.

SECONDARY CIRCUIT:

Isolate the motor by disconnecting the two motor leads from the terminal block. Connect all points of the secondary disconnect pins with a shooting wire. Connect this wire to the high potential lead of the test machine. Ground the breaker frame. Starting with zero, increase the voltage to 1125 RMS, 60 Hz. Maintain the voltage for one minute. Successful withstand indicates satisfactory insulation strength of the secondary control circuit. Remove the shooting wire and reconnect the motor leads.
6.7 PRIMARY CIRCUIT RESISTANCE CHECK

The main contacts of the VR-Series circuit breaker are inside the vacuum chamber where they remain clean and require no maintenance at any time. Unlike most typical circuit breaker designs, the VR-Series design uses a highly reliable and unique flexible clamp design that eliminates the need for lubrication and inspection for wear.

The DC electrical resistance of the primary circuit may be calculated by measuring the voltage drop across the circuit. This test should be performed with a low voltage, direct current (DC) power supply capable of delivering no less 100A DC.

- To check the primary circuit resistance:
 - Remove the circuit breaker from the switchgear
 - Close the breaker
 - Pass at least 100A DC from terminal to terminal of each pole unit in the closed position
 - Measure the voltage drop across the terminals.

The resistance can be calculated from Ohm's Law and is expressed in micro-ohms. Repeat for the remaining two poles.

The resistance should not exceed the factory test levels more than 200%. Factory test levels are recorded on the circuit breaker test form, which is included with the breaker. If measurements exceed 200%, contact the manufacturer.

Resistance conversion for Temperature

\[R_{\text{conversion}} = R_{\text{Factory}}(1 + (T_{\text{Field}} - T_{\text{Factory}})\rho) \]

- \(R_{\text{conversion}} \): Resistance correction for temperature based from the factory resistance measurement.
- \(R_{\text{Factory}} \): Resistance measurement from the factory.
- \(T_{\text{Field}} \): Temperature measurement in the field.
- \(T_{\text{Factory}} \): Temperature measurement from the factory.
- \(\rho \): Copper resistivity temperature coefficient.

- \(\rho = 0.0039 \) Copper Resistivity Temperature Coefficient / Deg C
- \(\rho = 0.002167 \) Copper Resistivity Temperature Coefficient / Deg F

6.8 MECHANISM CHECK

Make a careful visual inspection of the mechanism for any loose parts such as bolts, nuts, pins, rings, etc. Check for excessive wear or damage to the breaker components. Operate the breaker several times manually and electrically. Check the closing and opening times to verify that they are in accordance with the limits in Table 4.1.

6.8.1 CLOSURE™ TEST

Introduction: The CloSure™ Test is a simple yet extremely effective means to determine and monitor the ability of the mechanism to close the breaker contacts fully. It provides a quantitative measure of the extra energy available in terms of over travel in inches to close the breaker contacts to their full extent. It may be used periodically to monitor the health of the mechanism.

General Information: The CloSure™ Test can be performed on all VR-Series circuit breakers. (Refer to Table 6.1.) If the CloSure™ travel obtained is as specified, the mechanism performance is satisfactory. If the CloSure™ travel does not conform as shown in Figure 6.15, contact Eaton’s Electrical Services & Systems for further information. (See Step 13.)

WARNING

DO NOT ATTEMPT TO INSTALL OR PERFORM MAINTENANCE OR TESTS ON THE EQUIPMENT WHILE IT IS ENERGIZED. NEVER PUT YOUR HANDS NEAR THE MECHANISM WHEN THE CIRCUIT BREAKER IS IN THE CHARGED OR CLOSED POSITION. DEATH OR SEVERE PERSONAL INJURY CAN RESULT FROM CONTACT WITH ENERGIZED EQUIPMENT. ALWAYS VERIFY THAT NO VOLTAGE IS PRESENT BEFORE PROCEEDING WITH THE TASK, AND ALWAYS FOLLOW GENERALLY ACCEPTED SAFETY PROCEDURES.
Step 5 - Clean the far left cam with a mild solvent such as alcohol. Place the tape around the cam starting from the bottom up. Make certain that the tape adheres well to the cam surface. (Figure 6.6).

Step 6 - Mount the transparent CloSure™ Test Tool (Figure 6.7b) with two bolts and washers. Refer to Figure 6.7a and Table 6.1 for approximate mounting holes. Hand tighten the bolts.

Step 7 - Using a red Sanford® Sharpie® fine point permanent marker (or equivalent), place the marker tip in the proper hole (“C”) located over the cam and make a heavy mark on the tape by moving the marker as described in Figures 6.9, 6.11, and 6.12. Remove the marker from the hole.

Step 8 - Charge the closing springs with the maintenance tool (Charging handle). Continue charging the closing springs until a “click” is heard and the status indicator shows “CHARGED” (Figure 6.8).

Step 9 - Place the marker back in the hole. While holding the marker tip against the tape, close the breaker (Figure 6.10). Remove the marker from the hole.

Step 10 - While closely observing the pole shaft at the right side of the circuit breaker (Figure 6.11), recharge the closing springs with the maintenance tool. As the circuit breaker is recharged, there should be no movement of the pole shaft. If there is movement of the pole shaft while recharging, this indicates a problem with the circuit breaker - stop the test and consult the factory.

Step 11 - Open the circuit breaker, then close it, then reopen it. Verify that the mark made in Step 7 is aligned with the pen opening. If it is not aligned, this indicates a problem with the circuit breaker - stop the test and consult the factory.

Step 12 - Inspect the circuit breaker to assure it is in the open position and the closing springs are discharged. Alternately depress the Open and Close clappers a few times to ensure the circuit breaker is completely discharged. Remove the transparent CloSure™ Tool.

Step 13 - Remove the tape from the cam and place it on a sheet of paper that can be kept as a record of the test. Record the date of the test, person conducting the test, circuit breaker serial number, and the operations counter on the tape or paper (Figures 6.14 and 6.15).

Step 14 - Evaluate the CloSure™ performance by comparing the test tape with the illustration in Figure 6.16. Measure the over travel “X”. If “X” is not greater than or equal to 0.6”, this indicates a problem with the circuit breaker - consult the factory.

Step 15 - Reassemble the front cover onto the circuit breaker. Return the circuit breaker to its original configuration and setup.

Figure 6.7a. Front View of CloSure™ Tool Showing Mounting / Testing Hole Locations (6352C49H01)

Table 6.1. CloSure™ Tool Mounting/Testing Locations by Circuit Breaker Type

<table>
<thead>
<tr>
<th>BREAKER LINE</th>
<th>APPROXIMATE MECHANISM CABINET WIDTH (INCH)</th>
<th>UPPER MOUNTING HOLE</th>
<th>LOWER MOUNTING HOLE</th>
<th>MARKER PLACEMENT HOLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>18WR</td>
<td>18</td>
<td>A1</td>
<td>B2</td>
<td>C1</td>
</tr>
<tr>
<td>20WR</td>
<td>20</td>
<td>A1</td>
<td>B2</td>
<td>C2</td>
</tr>
<tr>
<td>29WR</td>
<td>27</td>
<td>A1</td>
<td>B2</td>
<td>C5</td>
</tr>
</tbody>
</table>

Figure 6.7b. Front View of CloSure™ Tool Attached (Approximate Mechanism Chassis Width)

Figure 6.7c. Typical Circuit Breaker Front View with CloSure™ Tool Attached (Approximate Mechanism Chassis Width)
Figure 6.8. Manually Charging Closing Springs

Figure 6.9. Make a Clear and Heavy Mark

Figure 6.10. With Marker in Hole “C”, While Closing Breaker

Figure 6.11. Pole Shaft Located On Right Side Of Circuit Breaker

Figure 6.12. Move the Sharpie® 15° Left and Right

Figure 6.13. Top view of Cam and Marker Interface

Cam

CloSure™ Tool

Marker

15°
6.9 LUBRICATION

All parts that require lubrication have been lubricated during the assembly with molybdenum disulphide grease. Eaton No. 53701 QB. Over a period of time, this lubricant may be pushed out of the way or degrade. Proper lubrication at regular intervals is essential for maintaining the reliable performance of the mechanism. The breaker should be relubricated once a year or per the operations table (Table 6.2), which ever comes first. The locations shown in Figure 6.17 should be lubricated with a drop of light machine oil.

After lubrication, operate the breaker several times manually and electrically.

Roller bearings are used on the pole shaft, the cam shaft, the main link and the motor eccentric. These bearings are packed at the factory with a top grade slow oxidizing grease which normally should be effective for many years. They should not be disturbed unless there is definite evidence of sluggishness, dirt or parts are dismantled for some reason.

If it becomes necessary to disassemble the mechanism, the bearings and related parts should be thoroughly cleaned, remove old grease in a good grease solvent. Do not use carbon tetrachloride. They should then be washed in light machine oil until the cleaner is removed. After the oil has been drawn off, the bearings should be packed with Eaton Grease 53701 QB or equivalent.

<table>
<thead>
<tr>
<th>RATINGS OPERATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>29kA and below</td>
</tr>
<tr>
<td>Above 29kA</td>
</tr>
<tr>
<td>3000 Amp</td>
</tr>
</tbody>
</table>

Table 6.2. Lubrication Per Number of Operations

Figure 6.17. General Lubrication Areas

- Apply one drop of non-synthetic light machine oil at locations shown.
Table 6.3. Troubleshooting Chart

<table>
<thead>
<tr>
<th>SYMPTOM</th>
<th>INSPECTION AREA</th>
<th>PROBABLE DEFECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>FAILS TO CLOSE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Closing Springs Not Charged</td>
<td>Control Circuit</td>
<td>• Control Power (Fuse Blown Or Switch Off)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Secondary Disconnects</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Motor Cut-off Switch (Poor Or Burned Contacts: Lever Not Operational.)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Terminals And Connectors (Poor Or Burned Contacts)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Motor (Brushes Worn Or Commutator Segment Open)</td>
</tr>
<tr>
<td></td>
<td>Mechanism</td>
<td>• Pawls (Slipping Or Broken)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Ratchet Wheel (Teeth Worn Or Broken)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Cam Shaft Assembly (Sluggish Or Jammed)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Oscillator (Reset Spring Off Or Broken)</td>
</tr>
<tr>
<td>Closing Springs Not Charged</td>
<td>Control Circuit (Close Coil Does Not Pick Up)</td>
<td>• Control Power (Fuse blown or switch off)</td>
</tr>
<tr>
<td>Breaker Does Not Close</td>
<td></td>
<td>• Secondary Disconnects</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Anti Pump Relay (Y Relay N.C. Contact Open Or Burned Or Relay Picks Up)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Close Coil (Open Or Burned)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Close Circuit (Contact Open - Bad Switch Or Trip Bar Not Reset)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Auxiliary Switch (B Contact Open Or Burned)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Motor Cut-Off (Contacts Open Or Burned)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Trip Coil Assembly (Clapper Fails To Reset)</td>
</tr>
<tr>
<td>Closing Sound But No Close</td>
<td></td>
<td>• Pole Shaft (Not Open Fully)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Trip Latch Reset Spring (Damaged Or Missing)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Trip Bar-D Shaft (Fail To Remain Reset)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Trip Latch-Hatchet (Fails To Remain Reset)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Trip Floor Tripper (Fails To Remain Reset)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Close Latch (Binding)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Close Latch Roller (Binding)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Trip Circuit Energized</td>
</tr>
<tr>
<td>UNDESIRABLY CLOSES</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Control Circuit</td>
<td>• Close Circuit (CS/C Getting shorted)</td>
</tr>
<tr>
<td></td>
<td>Mechanism</td>
<td>• Close Release Latch (Fails To Reset)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Close Floor Tripper (Fails To Reset)</td>
</tr>
<tr>
<td>FAILS TO CLOSE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No Trip Sound</td>
<td>Control Circuit</td>
<td>• Control Power (Fuse Blown Or Switch Off)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Secondary Disconnects</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Auxiliary Switch (A Contact Not Making Poor Or Burned)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Trip Coil (Burned Or Open)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Terminals And Connections (Poor Or Burned Or Open)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Trip Clapper (Jammed)</td>
</tr>
<tr>
<td>Trip Mechanism</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trip Sound But No Trip</td>
<td>Trip Mechanism</td>
<td>• Trip Bar, Trip Latch (Jammed)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Pole Shaft (Jammed)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Operating Rod Assembly (Broken Or Pins Out)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Vacuum Interrupter (One Or More Welded)</td>
</tr>
<tr>
<td>UNDESIRABLY TRIPS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Control Circuit</td>
<td>• Control Power (CS/T Switch, remains made)</td>
</tr>
<tr>
<td></td>
<td>Mechanism</td>
<td>• Trip Coil Clapper (Not Resetting)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Trip Bar or Trip Latch (Poor Engagement Of Mating Or Worm Surfaces)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Trip Bar Reset Sprint (Loss Of Torque)</td>
</tr>
</tbody>
</table>
SECTION 7: REPLACEMENT PARTS

7.1 GENERAL

In order to minimize production downtime, it is recommended that an adequate quantity of spare parts be carried in stock. The quantity will vary from customer to customer, depending upon the service severity and continuity requirements. Each customer should develop his own level based on operating experience. However, when establishing a new operating record, it is a good practice to stock one set of control components for every six circuit breakers of the same control voltage. This quantity should be adjusted with time and frequency of operation of the circuit breakers.

Table 7.1 Common Replacement Parts - Descriptions and Style Numbers

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
<th>Style Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ANTI-PUMP (Y) RELAY (48vDC)</td>
<td>94C9525H01</td>
</tr>
<tr>
<td></td>
<td>(125vDC)</td>
<td>94C9525H02</td>
</tr>
<tr>
<td></td>
<td>(250vDC)</td>
<td>94C9525H03</td>
</tr>
<tr>
<td></td>
<td>(120vAC)</td>
<td>94C9525H04</td>
</tr>
<tr>
<td></td>
<td>(240vAC)</td>
<td>94C9525H05</td>
</tr>
<tr>
<td>2</td>
<td>RECTIFIER</td>
<td>94C9525G09</td>
</tr>
<tr>
<td>3</td>
<td>SPRING CHARGING MOTOR (48vDC)</td>
<td>94C9525G10</td>
</tr>
<tr>
<td></td>
<td>(125vDC)</td>
<td>94C9525G11</td>
</tr>
<tr>
<td></td>
<td>(250vDC / 240vAC)</td>
<td>94C9525G12</td>
</tr>
<tr>
<td>4</td>
<td>BREAKER AUXILIARY SWITCH</td>
<td>94C9525G13</td>
</tr>
<tr>
<td>5</td>
<td>BREAKER POSITION SWITCH</td>
<td>94C9525H06</td>
</tr>
<tr>
<td>6</td>
<td>BREAKER POSITION SWITCH (Breaker Position Switch)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PS1</td>
<td>94C9525H07</td>
</tr>
<tr>
<td>7</td>
<td>LATCH CHECK SWITCH (Latch Check Switch (LC))</td>
<td>94C9525H08</td>
</tr>
<tr>
<td>8</td>
<td>MOTOR CUTOFF SWITCHS (LS) (20WR/29WR)</td>
<td>94C9525G14</td>
</tr>
<tr>
<td></td>
<td>(LS) (18WR)</td>
<td>94C9525G15</td>
</tr>
<tr>
<td>9</td>
<td>SPRING RELEASE COILS / SHUNT TRIPS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>24vDC</td>
<td>94C9525G16</td>
</tr>
<tr>
<td></td>
<td>48vDC</td>
<td>94C9525G17</td>
</tr>
<tr>
<td></td>
<td>125vDC / 120vAC</td>
<td>94C9525G18</td>
</tr>
<tr>
<td></td>
<td>250vDC / 240vAC</td>
<td>94C9525G19</td>
</tr>
<tr>
<td>10</td>
<td>CONTROL COMPONENTS KIT</td>
<td>94C9525G01</td>
</tr>
<tr>
<td></td>
<td>48vDC</td>
<td>94C9525G02</td>
</tr>
<tr>
<td></td>
<td>125vDC</td>
<td>94C9525G03</td>
</tr>
<tr>
<td></td>
<td>250vDC</td>
<td>94C9525G04</td>
</tr>
<tr>
<td></td>
<td>120vAC-C/M 48vDC-T</td>
<td>94C9525G05</td>
</tr>
<tr>
<td></td>
<td>240vAC-C/M 48vDC-T</td>
<td>94C9525G06</td>
</tr>
<tr>
<td></td>
<td>120vAC-C/M 240vAC-CT</td>
<td>94C9525G07</td>
</tr>
</tbody>
</table>

7.2 ORDERING INSTRUCTIONS

a. The style numbers in Table 7.1 should be sufficient to purchase control components for most applications. Some breakers have special control schemes. Supply complete nameplate information for verification or if additional components are needed.

b. Specify the method of shipping desired.

c. Send all orders or correspondence to the nearest Eaton sales office or contact the PBC direct at 1-877-276-9379.

d. Include negotiation number with order when applicable.