High Resistance Grounding System

Type C-HRG Products

16 High Resistance Grounding System

<table>
<thead>
<tr>
<th>Type C-HRG (Low Voltage)</th>
<th>V12-T16-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product Description</td>
<td>V12-T16-2</td>
</tr>
<tr>
<td>Product History</td>
<td>V12-T16-2</td>
</tr>
<tr>
<td>Product History Time Line</td>
<td>V12-T16-2</td>
</tr>
<tr>
<td>General Information</td>
<td>V12-T16-2</td>
</tr>
<tr>
<td>Sequence of Operations</td>
<td>V12-T16-3</td>
</tr>
<tr>
<td>Catalog Numbering System</td>
<td>V12-T16-4</td>
</tr>
<tr>
<td>Further Information</td>
<td>V12-T16-4</td>
</tr>
</tbody>
</table>

Type C-HRG (Medium Voltage) | V12-T16-5 |

Product Description | V12-T16-5 |
Product History | V12-T16-5 |
Product History Time Line | V12-T16-5 |
General Information | V12-T16-5 |
Sequence of Operations | V12-T16-6 |
Catalog Numbering System | V12-T16-7 |
High Resistance Grounding System

Product Description
Cutler-Hammer® Type C-HRG from Eaton’s electrical business is designed to improve the continuity of electrical service to critical processes. Systems designers sometimes use ungrounded distribution systems to avoid interrupting service during a ground fault. However, ungrounded systems have a significant disadvantage—the distribution system is subject to the harmful effects of ground faults, like high transient overvoltages. The Type C-HRG helps customers add the benefits of a grounded system to their ungrounded system.

Product History
High resistance grounding technology has been offered as an integral system within Eaton low voltage switchgear and switchboard products since the early 1970s. In 1994, Eaton adopted the technology into the C-HRG, which is a standalone or wall-mounted product ideal for adapting to the existing electrical system.

Product History Time Line

<table>
<thead>
<tr>
<th>Product</th>
<th>1994</th>
<th>2000</th>
<th>Present</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-HRG Low Voltage</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

General Information

Overview
Where continuity of service is a high priority, high resistance grounding can add the safety of a grounded system while minimizing the risk of service interruptions due to grounds. The concept is a simple one: provide a path for ground current via a resistance that limits the current magnitude, and monitor to determine when an abnormal condition exists.

The ground current path is provided at the point where the service begins by placing resistance in the connection from system neutral-to-ground. Control equipment continuously measures ground current; a relay detects when the current exceeds a predetermined level. An alarm alerts building personnel that a ground exists. The system has built-in fault tracing means to assist in finding the source of the ground. An integral transformer provides control power from the primary source.

Minimum Criteria for Use
High resistance grounding systems can be applied to either grounded or ungrounded three-wire distribution systems. Per NEC® 1996, 250.5(b) exception No. 5, the following criteria must be met before using the C-HRG:

- The conditions of maintenance and supervision ensure that only qualified persons will service the installation
- Continuity of power is required
- Ground detectors are installed on the system
- Line-to-neutral loads are not served

Wye or Delta System
Adding the Type C-HRG to a wye connected system requires only that the resistors supplied be connected in series with the neutral-to-ground connection of the power source. Adding the Type C-HRG to an ungrounded delta system requires the creation of a neutral point. Transformers are supplied for that purpose in the enclosure. The resistors supplied are then connected at that point. In both cases, the components supplied are chosen to limit the ground current to a maximum value of 5A.
Typical C-HRG Application

Ground Fault Detection
When one phase of a system becomes grounded, additional current will flow. As all ground current must flow through the grounding resistor assembly, a current sensing relay is placed in this circuit, allowing detection when a ground fault occurs. If chosen, a voltage-sensing relay can be provided to accomplish the same function.

Pulser Circuit
The pulser circuit offers a convenient means to locate the faulted feeder and to trace the fault to its origin. The pulser is available any time a fault has been detected. The “pulse” light flashes on and off, corresponding to the ON-OFF cycles of the pulsing contactor. The pulser contactor switches a bank of resistors on and off, allowing a momentary increase in the ground current.

Sequence of Operations

Normal
- Green “normal” light on
- Red “ground fault” light off
- White “pulse” light off
- System control switch in “normal” position
- Reset control switch in either “auto” or “manual”

Test
- Turn and hold the system control switch in the “test” position. Phase B will be grounded via the test resistor
- The ground current will activate the sensing circuit, causing the green “normal” light to turn off and the red “ground fault” light to turn on. The pulser will be activated as well
- The white “pulse” light will turn on and off as the pulser contactor closes and opens
- The ground current ammeter will display the total ground current, including the incremental pulse current
- When ready, return the system control switch to “normal.” The pulser will stop. If the reset control is in the “manual” position, turn it to “reset” to reset the fault sensing circuit
- The red “ground fault” light will turn off, and the green “normal” light will turn on

Ground Fault
- When the sensing circuit detects a fault, the green “normal” light will turn off and the red “ground fault” light will turn on
- The ground current ammeter will indicate the total ground current
- To use the pulser, turn the system control switch to “pulse.” The pulser contactor will cycle on and off as controlled by the recycle timer relay
- Use the clamp-on ammeter to locate the faulted feeder. Open the feeder and clear the fault
- If the reset control switch is in the “manual” position, turn it to “reset” to reset the sensing circuit

Note: If reset control is in “auto,” it will reset itself.

- When ready to restore service to the load, close the feeder
- Return the system control to “normal”

Note
Phase-to-neutral loads cannot be fed from the same system transformer to which the C-HRG is connected. These loads must be fed from a downstream, delta-wye transformer with a solidly grounded neutral on the secondary.

Note: If reset control is in “auto,” it will reset itself.

- When ready to restore service to the load, close the feeder
- Return the system control to “normal”

Note
Phase-to-neutral loads cannot be fed from the same system transformer to which the C-HRG is connected. These loads must be fed from a downstream, delta-wye transformer with a solidly grounded neutral on the secondary.
High Resistance Grounding System

Catalog Numbering System

Decoding the Catalog Numbering System

Enclosure Type

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>Free-standing, Type 1</td>
</tr>
<tr>
<td>S</td>
<td>Free-standing, Type 1 with screened vents</td>
</tr>
<tr>
<td>R</td>
<td>Free-standing, Type 3R</td>
</tr>
<tr>
<td>W</td>
<td>Wall-mounted, Type 1</td>
</tr>
<tr>
<td>N</td>
<td>No enclosure (panel-mounted)</td>
</tr>
<tr>
<td>V</td>
<td>Wall-mounted, Type 1 with 3R resistor enclosure</td>
</tr>
</tbody>
</table>

System Neutral Point

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>W</td>
<td>Wye (and accessible at system)</td>
</tr>
<tr>
<td>Z</td>
<td>Delta (zig-zag grounding transformers)</td>
</tr>
<tr>
<td>D</td>
<td>Delta (wye-broken delta grounding transformers)</td>
</tr>
</tbody>
</table>

Distribution System Voltage

- 6 = 600V
- 4 = 480V
- 3 = 380V
- 2 = 208–240V

Distribution System Fault Current

- 6 = 25 kA at 600V, 85 kA at 480 and 380V, 100 kA at 240V
- 4 = 150 kA at 480 and 380V, 200 kA at 240V
- 3 = 200 kA at 600V, 480V or 380/240V
- N = Not applicable (when using "W" above)

System Frequency

- 5 = 50 Hz
- 6 = 60 Hz

Wire Harness Length for "N" (No Enclosure)

- 4 = 4-foot harness
- 6 = 6-foot harness
- 8 = 8-foot harness
- 0 = 10-foot harness
- 2 = 12-foot harness

Wire Marker

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>Machine printed</td>
</tr>
<tr>
<td>F</td>
<td>Sleeve type</td>
</tr>
<tr>
<td>H</td>
<td>Heat shrink, sleeve type</td>
</tr>
</tbody>
</table>

Indicating Lights

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>Standard incandescent</td>
</tr>
<tr>
<td>L</td>
<td>Standard LED</td>
</tr>
<tr>
<td>P</td>
<td>Push-to-test incandescent</td>
</tr>
<tr>
<td>D</td>
<td>Push-to-test LED</td>
</tr>
<tr>
<td>T</td>
<td>Transformer-type incandescent</td>
</tr>
<tr>
<td>X</td>
<td>Push-to-test transformer-type</td>
</tr>
</tbody>
</table>

Ground Fault Sensing

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>Current-sensing relay, with noise filter</td>
</tr>
<tr>
<td>D</td>
<td>Voltage sensing relay, double set point</td>
</tr>
</tbody>
</table>

Loss of Control Power Relay (Alarm)

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>No relay</td>
</tr>
<tr>
<td>L</td>
<td>Alarm relay with 1NO/1NC contact</td>
</tr>
</tbody>
</table>

Audible Alarm

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>No audible alarm</td>
</tr>
<tr>
<td>R</td>
<td>Alarm horn with re-alarm timer</td>
</tr>
</tbody>
</table>

Further Information

<table>
<thead>
<tr>
<th>Publication Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SN.44C.01.S.E</td>
<td>Sales Notes for C-HRG</td>
</tr>
<tr>
<td>TD.44C.01.T.E</td>
<td>Technical Data for C-HRG</td>
</tr>
<tr>
<td>SA-32-602B</td>
<td>Sales Aid for high resistance grounding systems</td>
</tr>
<tr>
<td>IB 32-698C</td>
<td>Instruction Booklet for high resistance grounding system</td>
</tr>
<tr>
<td>CA08104001E</td>
<td>Eaton’s Consulting Application Guide</td>
</tr>
</tbody>
</table>
Type C-HRG
(Medium Voltage)

Product Description
The Type C-HRG is designed to improve the continuity of electrical service to critical processes. Systems designers sometimes use ungrounded distribution systems to avoid interrupting service during a ground fault. However, ungrounded systems have a significant disadvantage—the distribution system is subject to the harmful effects of ground faults, like high transient overvoltages. The Type C-HRG helps customers add the benefits of a grounded system to their ungrounded system.

Product History
High resistance grounding technology has been offered as an integral system within medium voltage switchgear for many years. In 1996, Eaton adopted the technology into the C-HRG, which is a standalone product ideal for adapting to the existing electrical system.

Product History Time Line

<table>
<thead>
<tr>
<th>Product</th>
<th>1995</th>
<th>2000</th>
<th>Present</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-HRG</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low Voltage</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

General Information
High Resistance Grounding System

Overview
Where continuity of service is a high priority, high resistance grounding can add the safety of a grounded system while minimizing the risk of service interruptions due to grounds. The concept is a simple one: provide a path for ground current via a grounding transformer (with adjustable resistance across its secondary) that limits the current magnitude and a monitor to determine when an abnormal condition exists.

Minimum Criteria for Use
The C-HRG MV is offered at the 5 kV class rating. It can be applied to delta or wye ungrounded three-wire distribution systems. Standard dimensions are 36.00 W x 40.00 D x 92.00 H inches (914.4 W x 1016.0 D x 2336.8 H mm).
Wye or Delta System

To add high resistance grounding to a wye-connected system, resistors are placed across the secondary of a grounding transformer whose primary is placed in series with the neutral-to-ground connection of the power source. To add high resistance grounding to an ungrounded delta-connected system, a neutral point must be created. Three single-phase transformers can be interconnected in a wye-broken delta configuration to provide such a neutral point.

Ground Fault Detection

When one phase becomes grounded, additional current above the charging level will flow. As all ground current must flow through the grounding resistor/grounding transformer assembly, an ammeter in this circuit will read the total amount of ground current. By placing a current-sensing relay in series with the ammeter, the current relay can be adjusted to pick up at a level in excess of the capacitive charging current, thus indicating the abnormal condition. Alternatively, an optional voltmeter relay can be connected across the grounding resistors, to accomplish the same function.

Pulser Circuit

The pulser circuit offers a convenient means to locate the faulted feeder and to trace the fault to its origin. The pulser is available any time a fault has been detected. The pulse intervals are controlled by an adjustable recycle timer. The “pulse” light flashes on and off, corresponding to the ON-OFF cycles of the pulser contactor. The pulser contactor switches a bank of resistors on and off, thus allowing a momentary increase in the ground current.

Ground Fault Location

The current pulses can be noted with a clamp-on ammeter when the ammeter is placed around the cables or the conduit feeding the fault. The operator tests each conduit or set of cables until the pulsing current is noted. By moving the ammeter along the conduit, or checking the conduit periodically along its length, the fault can be traced to its origin. The fault may be located at the point where the pulsing current drops off or stops. If little or no change in the pulsing current is noted along the entire length of a conduit, then the fault may be in the connected load.

Standard Features

- Current sensing ground fault detection (2–10A pickup/0.5–20 second delay)
- Ground current transformer (10/10 ratio)
- Control circuit pull fuseblock
- Ground current ammeter (0–10A, 1½ accuracy)
- Indicating lights Red (ground fault), Green (normal), White (pulse)
- Adjustable pulsing timer (0–10 seconds)
- Tapped resistors (limits primary current to 3–6A)
- Three-position selector switch (normal, pulse, test)
- Control switch for manual or automatic reset
- Ground fault contacts (1NO/1NC)
- Shorting terminal block for ground current CT
- UL® label
- Wiremarkers

Sequence of Operations

Normal

- Green “normal” light on
- Red “ground fault” light off
- White “pulse” light off
- System control switch in “normal” position
- Reset control switch in either “auto” or “manual”

Test

- Turn and hold the system control switch in the “test” position
- This mode will test the control circuitry only. It will bypass the sensing circuit and cause the green “normal” light to turn off and the red “ground fault” light to turn on. The pulser will be activated as well
- The white “pulse” light will turn on and off as the pulser contactor closes and opens. However, the ground current ammeter will not display the total ground current, including the incremental pulse current
- When ready, return the system control switch to “normal. “ The pulser will be activated as well
- If the reset control switch is in the “manual” position, turn it to “reset” to reset the sensing circuit

Note: If reset control is in “auto,” it will reset itself.

Ground Fault

- When the sensing circuit detects a fault, the green “normal” light will turn off and the red “ground fault” light will turn on
- The ground current ammeter will indicate the total ground current
- To use the pulser, turn the system control switch to “pulse.” The pulser contactor will cycle on and off as controlled by the recycle timer relay
- Use the clamp-on ammeter to locate the faulted feeder. Open the feeder and clear the fault
- If the reset control switch is in the “manual” position, turn it to “reset” to reset the sensing circuit

- When ready to restore service to the load, close the feeder
- Return the system control to “normal”
Catalog Numbering System

Customer Required Information

A C-HRG High Resistance Grounding Assembly can be completely described by an 8-digit catalog number: MVRG-______

Enclosure Type
F = Free-standing NEMA® 1
R = Free-standing NEMA 3R non-walk in outdoor
Free-standing enclosure for mounting ground transformers and resistors internally

System Neutral Point
W = Wye
D = Delta (Wye broken delta grounding transformers)
Choose wye when the neutral point of the power source is accessible for direct connection to grounding transformer. Choose Delta when there is no neutral or when neutral is not accessible.

Distribution System Voltage
W = 4200V 60 Hz
X = 2400V 60 Hz
Y = 3300V 60 Hz
Voltage of distribution system

Fault Sensing
C = Overcurrent relay (current sensing)
V = Single set point voltmeter relay (voltage sensing)
D = Indicating voltmeter only (voltage sensing)

Wire Markers
S = Standard wrap-on
T = Tube/heat shrink type
Marks all internal wiring for ease of maintenance.

Indicating Lamps
L = LED lamps
T = Transformer-type incandescent lamps
X = Push-to-test transformer-type
Standard lights are industrial, oil-tight, transformer type. Optional are the same type lights except with a push-to-test feature.

Loss of Control Power Alarm
N = No relay
L = Alarm relay with 1NO/1NC
A relay is connected across the customer’s 120 Vac supply.

Audible Alarm
N = No audible alarm
L = Alarm horn with re-alarm timer
Alarm contacts are standard on all assemblies.

Example: MVRG-FWWCLLTS defines a free-standing Type 1 enclosure, 4200 V/60 Hz, Wye-connected system, current-sensing control scheme, alarm horn with re-alarm timer, alarm relay with 1NO and 1NC, transformer type incandescent lights, wrap-on wiremarkers.