General

Power presses are used for punching or stamping, forming or drawing and embossing operations. Press brakes are used for bending operations. Shears are used to cut material to size. In most cases, the material being worked is steel.

These machines usually utilize a slider-crank linkage to transfer kinetic energy from a rotating flywheel to a reciprocating ram. They are rated by the force \(F_r \), the ram can exert at a given distance \(d \) above the bottom of the stroke. This distance is called the drive capacity. The product of the drive capacity and rated force determines the maximum energy which should be removed from the flywheel to perform the necessary work.

As energy is removed from the flywheel, and work is performed, the flywheel slows down. The machine’s motor replaces the expended flywheel energy before the next work stroke by bringing the flywheel back up to its operating speed.

A clutch and brake is usually required for one or all of the following reasons:

- For die or blade setup.
- For feeding and removing work pieces from the machine.
- For emergency stopping.

Because these machines are inherently dangerous, the brakes are spring-set, pressure released types.
Drive Capacities

Power presses

Mechanically, the drive capacity is dependent upon the drive train between the crank and flywheel shafts. Commonly used drive trains are illustrated on the preceding pages. The distance is a minimum for crankshaft mounted flywheels and a maximum for twin geared drives. If not specifically stated, the values given in the following table may be used.

Drive Capacities d

<table>
<thead>
<tr>
<th>Rated Tonnage</th>
<th>c/s Flywheel Drive</th>
<th>Geared Drive</th>
</tr>
</thead>
<tbody>
<tr>
<td>32 and less</td>
<td>0.03 in (0.8 mm)</td>
<td>0.13 in (3.3 mm)</td>
</tr>
<tr>
<td>over 32 to 110</td>
<td>0.06 in (1.5 mm)</td>
<td>0.25 in (6.4 mm)</td>
</tr>
<tr>
<td>over 110</td>
<td>0.25 in (6.4 mm)</td>
<td></td>
</tr>
</tbody>
</table>

For Single-Action, Single and Multiple Point Geared Presses

<table>
<thead>
<tr>
<th>Drive</th>
<th>Geared Drive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single drive</td>
<td>0.25 in (6.4 mm)</td>
</tr>
<tr>
<td>Eccentric drive</td>
<td>0.50 in (13 mm)</td>
</tr>
<tr>
<td>Twin drive</td>
<td>0.50 in (13 mm)</td>
</tr>
</tbody>
</table>

Press brakes

The drive capacity for short stroke machines, if not specified, can be approximated from the width V of the vee die opening. Use the following approximations:

For stroke less than 3 in (76 mm) $d = 0.28V$

For larger strokes $d = 1$ in (25 mm)

Shears

The tonnage and drive capacity needed to cut a given material depends upon the type of blade used. The diagrams illustrate the differences between straight, raked and bow tie blades and gives the drive capacities. Usually, the shear blade is allowed to overtravel the work piece thickness t_m by a small distance e to provide a clean cut.
Crankshaft Torque

The slider-crank linkage is shown below.

The crank link length is equal to the crankshaft throw (one-half of the stroke distance) or in the case of an eccentric drive, the eccentric offset. The link connecting the crankshaft throw to the ram is called the pitman.

Knowing the lengths of the throw and pitman, the pitman angle θ can be calculated at any point in the stroke from:

$$\cos \phi = \frac{p^2 + c^2 - t^2}{2 \cdot p \cdot c}$$

$$c = p + t - d$$

The torque lever arm L varies throughout the stroke of the machine. At any point in the stroke, the lever arm can be calculated from:

$$L = c \cdot \sin \theta$$

The force F_p which the pitman must transmit can be calculated from:

$$F_p = \frac{F_r}{\cos \theta}$$

$$F_r = 2000 \cdot \text{Rated Tonnage of Press}$$

The crankshaft torque M is:

$$M = F_p \cdot L = F_r \cdot c \cdot \tan \theta$$

The torque required at the machine’s drive capacity is used in the clutch selection procedure.

Clutch Torque

Clutch torque M_c calculations can be simplified by the use of the effective lever arm L_e graphs and the following formula. The graphs assume the pitman length is twice the stroke. Longer pitmans will slightly reduce the effective lever arm.

$$M_c = \frac{F_r \cdot L_e}{R} \cdot SF$$

R: reduction between clutch shaft and crankshaft.

SF: service factor from following table.

Brake Capacity

<table>
<thead>
<tr>
<th>Type of Drive</th>
<th>SF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crankshaft mounted flywheel</td>
<td>0.8</td>
</tr>
<tr>
<td>Single drive, single reduction</td>
<td>1.0</td>
</tr>
<tr>
<td>Single drive, double reduction, single throw</td>
<td>1.1</td>
</tr>
<tr>
<td>Single drive, double reduction, double throw</td>
<td>1.2</td>
</tr>
<tr>
<td>Twin drive, single reduction</td>
<td>1.3</td>
</tr>
<tr>
<td>Twin drive, double reduction</td>
<td>1.5</td>
</tr>
</tbody>
</table>
The selected brake must satisfy the following conditions:

- It must have sufficient torque to stop the ram within a given crankshaft angle.
- It must have sufficient torque to hold the ram and die on the back stroke.
- It must have sufficient thermal capacity to handle the single stroke rate of the machine.

Formulas are given in Section Y which allow calculation of brake torque M_b knowing the stopping angle, inertia to be stopped and the brake shaft speed n. A brake selection is made using M_b.

Holding torque M_h is calculated from:

$$M_h = F \cdot t / R$$

F: total weight or mass of ram including attached tooling.

The reverse torque of the brake selected is compared to M_h to determine if it has sufficient capacity.

Cyclic thermal power P_c is calculated from formula 23, Section Y. The allowable thermal loading on the friction area of Airflex types CS, CTE and DB brakes is 0.012 HP/in^2 (0.0014 kW/cm²).

Calculations

- **Press rating** - 60 tons
- **Type of drive** - crankshaft mounting
- **Drive capacity d** - 0.06 in
- **Stroke** - 3 in
- **Pitman length p** - 8 in
- **Crankshaft speed** - 100 rpm
- **Single stroke rate** - 30 cpm
- **Ram and die weight F** - 200 pounds
- **Wk^2 less clutch and brake** - 10 lb-ft²
- **Stopping angle ϕ_d** - 15°
- **Flywheel Wk^2** - 900 lb-ft²

The example press data shows:

Example

- Press rating - 60 tons
- Type of drive - crankshaft mounting
- Drive capacity d - 0.06 in
- Stroke - 3 in
- Pitman length p - 8 in
- Crankshaft speed - 100 rpm
- Single stroke rate - 30 cpm
- Ram and die weight F - 200 pounds
- Wk^2 less clutch and brake - 10 lb-ft²
- Stopping angle ϕ_d - 15°
- Flywheel Wk^2 - 900 lb-ft²

Both thermal capacity and holding torque requirements are within the 15CS300 parameters.
Typical FSPA application on multi-slide machine.

21DC8 clutch/brake on can making machine.

Dual 33VC650 clutch and 24CTE500 brake on a 150 ton, 12 inch stroke under-drive press.
Split FSPA application with flywheel/clutch at right side of press and CTE brake at the left side.

46VC1200 clutch in an air bridge mounting on crankshaft bullgear - 600 ton press, 6 inch stroke.

CB air bridge clutch application on a scrap shear.