Proportional pressure reducing valves

KBX(C)IG-6-1*
KBX(C)IG-8-1*
Contents

GENERAL DESCRIPTION ... 3
FUNCTIONAL SYMBOLS .. 4
MODEL CODES ... 5
OPERATING DATA ... 6
PERFORMANCE DATA .. 8
 Pressure underride .. 8
 Pressure drop ... 8
 Pressure gain ... 9
 Step response .. 9
INSTALLATION DIMENSIONS 10
 KBX(C)G-6/8 models .. 10
 Mounting surfaces .. 11
 XCGVM-6-10R subplate .. 11
ELECTRICAL INFORMATION 12
 Block diagram .. 12
 Wiring connections .. 13
FURTHER INFORMATION .. 15

This product has been designed and tested to meet specific standards outlined in the European Electromagnetic Compatibility Directive (EMC) 2014/30/EU which repealed Directive 2004/108/EC. For Restriction of Hazardous Substances, complies to (RoHS) Directive 2011/65/EU. For instructions on installation requirements to achieve effective protection levels, see the Installation Wiring Practices for Eaton's Electronic Products. Wiring practices relevant to this Directive are indicated by Δ Electromagnetic Compatibility (EMC).
General description

These two-stage pressure reducing valves incorporate an electro-hydraulic proportional pressure pilot stage by which the reduced pressure setting is adjustable in response to an electrical input. Each model is available in two sizes, with optional free reverse flow check valve.

Basic characteristics
Max. inlet pressure 350 bar (5000 psi)
Max. reduced pressure 330 bar (4750 psi)
Max. flow rate 300 L/min (80 USgpm)
Mounting face to ISO 5781 (B port high pressure inlet):
For KBX(C)G-6 AG-06-2-A
For KBX(C)G-8 AH-08-2-A

Design features
A maximum outlet pressure to suit the application requirements is preset by the manual adjustment. Below this maximum setting, the outlet pressure is controlled by the solenoid operated proportional pilot valve, according to the electrical command signal applied to the amplifier.

The "normally open" condition of the mainstage allows full flow from inlet to outlet port until the required reduced pressure is reached, whereupon the mainstage closes, or reduces the flow sufficient only to maintain the required outlet pressure.

High valve response ensures that the reduced outlet pressure is unaffected by inlet pressure peaks. Excess buildup of outlet pressure (during long holding periods, or flow back from an actuator reacting to an overload) is prevented by the small check valve in the mainstage spool, allowing fluid to bleed-off across the pilot stage.

The integral amplifier allows the pressure to be controlled from a voltage or current signal range. The amplifier is mounted in a robust metal housing and electrical connections are via an industry standard 7-pin plug. Factory-set adjustments ensure high reproducibility valve-to-valve.

Features and benefits
• Remote electrical proportional control of reduced pressure from a choice of five pressure ranges per valve size.
• Excellent repeatability and stable performance results from cartridge design of mainstage parts.
• Low installed cost and space requirement from high power/size ratios.
• On-board ramp.

Typical section
Functional symbols

Manual and electrical pilots drained to Port Y:

Model code 8 = Blank

Symbol for KBXCG.

For KBXG models omit check and internal connection A-B.

Manual pilot drained to Port Y; electrical pilot drained to Port Y1 :

Model code 8 = 3

Symbol for KBXG.

For KBXCG models add check valve symbol and internal connection A-B.
Valve type

- KB: Proportional valve with integral amplifier, B series

Type

- X: Pressure reducer

Reverse flow check option

- Blank: Omit
- C: Reverse flow check

Mounting

- G: Subplate mounted

Interface - ISO 5781

- With B port high pressure inlet, A port reduced pressure outlet
 - 6 AG-06-2-A
 - 8 AH-08-2-A

Manual adjustment

- W: Screw/locknut

Reduced pressure adjustment

Based on inlet pressure of 350 bar (5000 psi).
Note, with 100 bar (1450 psi) inlet the lower limits will be 2-3 bar (30-43 psi) lower

- 40: 10-40 bar (145-580 psi)
- 100: 12-100 bar (175-1450 psi)
- 160: 14-160 bar (200-2300 psi)
- 250: 15-250 bar (220-3625 psi)
- 330: 15-330 bar (220-4750 psi)

Drain

- Blank: Manual and electrical pilots drain to Y port
- 3: Manual pilot drained to Y port, electrical pilot drained to Y1 port

Manual overrides

- Z: No overrides

Electrical command options

- M1: +/- 10 volts control signal
- M2: 4-20 mA control signal

Ramp

- 3: Standard ramp for KBX(C)G 6/8 valve types

Command/pressure characteristic

- A: Standard

Electrical connection

- PC7: 7 pin connector, without plug supplied
- PE7: 7 pin connector, with plug supplied
- PH7: As PE7 but with pin ‘C’ used for enable signal as PC7 but with pin ‘C’ used for enable signal
- PR7: As PC7 but with pin ‘C’ used for enable signal

Coil rating

- H1: 24V DC amplifier supply

Design number, 1* series

- 11: Subject to change. Installation dimensions unaltered for design numbers 10 to 19 respectively

WARNING

To conform to the EC Electromagnetic Compatibility directive (EMC) this KBCG valve must be fitted with a metal 7-pin plug. The screen of the cable must be securely connected to the shell of the metal connector. A suitable IP67 rated connector is available from Eaton, part no. 934939. Alternatively a non IP67 rated connector is available from ITT-Cannon, part no. CA 02 COM-E 14S A7 P.
Operating data

Standard test conditions are with antiwear hydraulic oil at 36 cSt (168 SUS) and 50°C (122°F)

<table>
<thead>
<tr>
<th>Port</th>
<th>Maximum pressure</th>
</tr>
</thead>
<tbody>
<tr>
<td>B (pressure inlet)</td>
<td>350 bar (5000 psi)</td>
</tr>
<tr>
<td>A (reduced pressure outlet)</td>
<td>See "Model Code"</td>
</tr>
<tr>
<td>Y▲ and side drain port Y1▲</td>
<td>2 bar (30 psi)</td>
</tr>
</tbody>
</table>

▲ Back pressure at these ports is additive to the reduced pressure setting of the valve.

Rated flow at Δp = 12 bar (175 psi) and 0 mA to coil:

<table>
<thead>
<tr>
<th>Model Code</th>
<th>Flow (L/min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>KBX(C)G-6</td>
<td>200</td>
</tr>
<tr>
<td>KBX(C)G-8</td>
<td>300</td>
</tr>
</tbody>
</table>

Pressure adjustment ranges

Minimum pressure differential (P_B-P_A) for effective reduced pressure control, all models: 20 bar (300 psi)

Pilot control drain flow, all models: 1.5 L/min (0.4 USgpm) max.

Amplifier rating: 24V x 40W (18V-32V including 10% pk.-to-pk. Max. ripple)

Command signal:

- **Volts (see model code 10 - 1):** 0 to +10V or 0 to -10V
- **Input impedance:** 47 kΩ
- **Common mode voltage to pin B:** 4V
- **Current (see model code 10 - 2):** 4 to 20 mA
- **Input impedance:** 100Ω

7-pin plug connector

- **Pin Description**
 - A: Power supply positive (+)
 - B: Power supply 0V and current command return
 - C: Valve enable (PH7 & PR7)
 - D: Command signal (+V or current in)
 - E: Command signal (-V or current GND)
 - F: Output monitor
 - G: Protective ground

Electromagnetic compatibility (EMC)

- Conducted Emissions CISPR11 -2015-06 Ed 6.0/EN55011 - Class A, 150kHz to 30MHz
- Radiated Emissions CISPR11 -2015-06 Ed 6.0 /EN55011 - Class A, 30MHz – 1GHz
- RF Continuous Conducted disturbances IEC 61000-4-6, 3Vrms Class A 150 Hz to 80 MHz
- RF Electromagnetic Field, 80MHz to 1GHz, 10V/m; 1.4GHz to 2.7GHz, 3V/m; Meets Criterion A
- Surge: IEC 61000-4-5
 - DC Power Port: ±1kV
 - Signal/Control Port: ±1kV
- Electrical Fast Transients IEC 61000-4-4, Class B
 - DC Power Port: ±1kV
 - Signal/Control Port: ±0.5kV
- Electrostatic discharges (ESD) IEC 61000-4-2, Class B
 - Air ±8kV
 - Contact ±4kV

ROHS Compliance

- Complies with Restriction of Hazardous Substances (RoHS) Directive 2011/65/EU

Monitor signal (pin F)

- 1.7 V/amp solenoid current

Output impedance

- 10 kΩ

Pressure gain

- See graph

Factory setting - Maximum with 100% command signal.

Pressure underride

- See graph

Hysteresis, using Vickers™ drive amplifier

- <7%
Operating data

Linearity at conditions:
- <6% of rated pressure
 1. “Dead-head” (no flow from reduced pressure outlet port)
 2. Between 10% and 100% rated pressure

Repeatability:
<±1.3% of rated pressure

Protection:
- Electrical: Reverse polarity protected
- Environmental: IEC 529, Class IP67

Mass (weight):
<table>
<thead>
<tr>
<th>Model</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>KBXG-6</td>
<td>5.36 kg (11.8 lb)</td>
</tr>
<tr>
<td>KBXCG-6</td>
<td>5.36 kg (11.8 lb)</td>
</tr>
<tr>
<td>KBXG-8</td>
<td>6.26 kg (13.8 lb)</td>
</tr>
<tr>
<td>KBXCG-8</td>
<td>6.26 kg (13.8 lb)</td>
</tr>
</tbody>
</table>

Supporting products:
- Auxiliary electronic modules (DIN-rail mounting):
 - EHA-CON-201-A-2* Signal converter: See catalog 2410B
 - EHB-DSS-201-A-1* Command signal generator: See catalog 2470
 - EHA-RMP-201-A-2* Ramp generator: See catalog 2410B
 - EHA-PID-201-A-2* PID controller: See catalog 2427
 - EHA-PSU-201-A-10 Power supply: See catalog 2410B
 - Subplates, size 03: See catalog 2425
 - Mounting bolts: See catalog 2314A

 Note: If not using Vickers™ recommended bolt kits, bolts must be to ISO 898 grade 12.9 or stronger.

Mounting attitude:
No restriction, provided that the valve is kept full of fluid through port T.
Performance data

Data is typical with oil at 36 cSt (168 SUS) and at 50°C (122°F)

Pressure underride

- KBX(C)G-6/*-330- - - models, at inlet pressure 350 bar (5000 psi)
- KBX(C)G-6/*-100- - - models, at inlet pressure 100 bar (1450 psi)

Pressure drop

From port B to A at pressures below reduced pressure setting:

KBX(C)G-6 valves........Curve A
KBX(C)G-8 valves........Curve B

From port A to B through check valve (mainstage assumed closed).

Types KBXCG only:

KBXCG-6 valves........Curve C
KBXCG-8 valves........Curve D
Performance data

Pressure gain

Typical example KBX(C)G-6/8-.*-250, at inlet pressure 350 bar (5000 psi).

![Pressure gain graph]

Step response

Typical data for KBX(C)G-.*-250 model.

<table>
<thead>
<tr>
<th>Valve size</th>
<th>Test conditions: trapped volume</th>
<th>Flow rate</th>
<th>Step size: pressure demand</th>
<th>Response time (ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>1.5 liters (0.4 USg)</td>
<td>75 L/min (20 USgpm)</td>
<td>0 to 100%</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>100% to 0</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>25 to 100%</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>100 to 25%</td>
<td>50</td>
</tr>
<tr>
<td>8</td>
<td>3.0 liters (0.8 USg)</td>
<td>150 L/min (40 USgpm)</td>
<td>0 to 100%</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>100% to 0</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>25 to 100%</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>100 to 25%</td>
<td>70</td>
</tr>
</tbody>
</table>

Test method

1. Inlet pressure set 300 bar (4350 psi)
2. Trapped volume as in table
3. Steady state flow rate adjusted by downstream throttle valve with $\Delta p = 250$ bar (3600 psi)
4. Response = time from step input signal until reduced output pressure reaches 90% of step change, as measured by transducer

Test circuit

![Test circuit diagram]
KBX(C)G-6/8 models
Dimensions are shown in mm (inches)

To bleed air, loosen plug in end of core tube; re-tighten to 2.4 +/- 0.2 Nm (1.85 +/- 0.15 lbf ft) after bleeding is complete.

Model	C	D	E RAD	F	H
KBX(C)G-6	42,0	66,0	10,0	89,0	92,0
(1.7)	(2.6)	(0.4)	(3.5)	(3.65)	
KBX(C)G-8	40,0	77,0	11,0	104,0	107,0
(1.6)	(3.1)	(0.43)	(4.1)	(4.25)	

WARNING

To conform to the EC Electromagnetic Compatibility directive (EMC) this KBCG valve must be fitted with a metal 7-pin plug. The screen of the cable must be securely connected to the shell of the metal connector. A suitable IP67 rated connector is available from Eaton, part no. 934939. Alternatively a non IP67 rated connector is available from ITT-Cannon, part no. CA 02 COM-E 14S A7 P.

View “A-A”
Installation dimensions

Mounting surfaces, ISO 5781
(B port high pressure inlet)

AG-06-2-A
AH-08-2-A

When a subplate is not used, a raised pad must be provided for mounting. The pad must be flat within 0.001 mm/100 mm (0.0001”/10”) and smooth within 0.8 μm (32 μin). Dimensional tolerances are ±0.2 mm (±0.008”) except where indicated.

Port functions
A = Reduced pressure outlet (Also free reverse flow inlet for KBXCG valves)
B = High pressure inlet (Also free reverse flow outlet for KBXCG valves)
X = Not used for KBX(C)G valves; can be omitted or plugged
Y = Drain port

<table>
<thead>
<tr>
<th>Size</th>
<th>ØA (DIA)</th>
<th>ØB (DIA)</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>H</th>
<th>J</th>
<th>K</th>
</tr>
</thead>
<tbody>
<tr>
<td>06</td>
<td>14.7 (0.58)</td>
<td>14.7 (0.58)</td>
<td>61.0 (2.4)</td>
<td>9.0 (0.4)</td>
<td>42.9 (1.69)</td>
<td>9.0 (0.4)</td>
<td>35.7 (1.4)</td>
<td>31.8 (1.1)</td>
<td>21.4 (0.84)</td>
</tr>
<tr>
<td>08</td>
<td>23.4 (0.92)</td>
<td>23.4 (0.92)</td>
<td>78.0 (3.1)</td>
<td>8.8 (0.35)</td>
<td>60.3 (2.37)</td>
<td>8.8 (0.35)</td>
<td>49.2 (1.94)</td>
<td>44.5 (1.75)</td>
<td>39.7 (1.56)</td>
</tr>
</tbody>
</table>

▲ Tolerance on bolt and pin locations ±0.1 mm (±0.004”).

XCGVM-6-10R subplate

4 holes, Ø11.0 (0.43) dia through, Ø17.5 (0.69) dia spotface

4 holes tapped M10 x 16.0 (0.63) min. depth full thread

See “Mounting Surfaces” section above for port usage.
Electrical information

Block diagram

Wiring
Connections must be made via the 7-pin plug mounted on the amplifier. Recommended cable sizes are:

Power cables
For 24V supply:
- 0.75 mm² (18 AWG) up to 20m (65 ft)
- 1.00 mm² (16 AWG) up to 40m (130 ft)

Signal cables
0.50 mm² (20 AWG)

Screen (Shield)
A suitable cable should have at least 6 cores with pairs of conductors individually screened and an overall screen. Cable outside diameter 8.0-10.5 mm (0.31-0.41 inches). See connection diagrams on next page.

7-pin plug connections

- A: +24V
- B: Power 0V
- C: Enable
- D: Non-inverting
- E: Inverting
- F: Current monitor
- G: Protective ground

▲ In valves with PH7 or PR7 type electrical connection.

WARNING
All power must be switched off before connecting or disconnecting any plugs.
Electrical information

Block diagram

Voltage input (M1) wiring
- Spool position monitor voltage (pin F) will be referenced to the KB valve local ground.

Wiring connections for M1 valves with enable feature

▲ Note: In applications where the valve must conform to European RFI/EMC regulations, the outer screen (shield) must be connected to the outer shell of the 7 pin connector, and the valve body must be fastened to the earth ground. Proper earth grounding practices must be observed in this case, as any differences in command source and valve ground potentials will result in a screen (shield) ground loop.
Electrical information

Current input (M2) wiring
- Spool position monitor voltage (pin F) will be referenced to the KB valve local ground.

Wiring connections for M2 valves with enable feature

▲ Note: In applications where the valve must conform to European RFI/EMC regulations, the outer screen (shield) must be connected to the outer shell of the 7 pin connector, and the valve body must be fastened to the earth ground. Proper earth grounding practices must be observed in this case, as any differences in command source and valve ground potentials will result in a screen (shield) ground loop.

WARNING
Electromagnetic Compatibility (EMC)
It is necessary to ensure that the valve is wired up as above. For effective protection the user electrical cabinet, the valve subplate or manifold and the cable screens should be connected to efficient ground points. The metal 7 pin connector part no. 934939 should be used for the integral amplifier. In all cases both valve and cable should be kept as far away as possible from any sources of electromagnetic radiation such as cables carrying heavy current, relays and certain kinds of portable radio transmitters, etc. Difficult environments could mean that extra screening may be necessary to avoid the interference. It is important to connect the 0V lines as shown above. The multi-core cable should have at least two screens to separate the demand signal and monitor output from the power lines. The enable line to pin C should be outside the screen which contains the demand signal cables.
Further information

Hydraulic fluids and fluid cleanliness
Materials and seals used in these valves are compatible with:
- Anti-wear petroleum oils LHM
- Non-alkyl based phosphate esters LHFD
The extreme operating range is 500 to 13 cSt (270 to 70 SUS) but the recommended running range is 54 to 13 cSt (245 to 70 SUS). For further technical information about fluids see 694.

Contamination control requirements
Recommendations on contamination control methods and the selection of products to control fluid condition are included in Eaton Hydraulic Fluid Recommendation 03-401-2010 rev 1.
For products in this catalog the recommended levels are:
- Up to 210 bar (3000 psi) 18/16/13
- Above 210 bar (3000 psi) 17/15/12

Installation and start-up Guidelines
The proportional valves in this catalog can be mounted in any attitude but it may be necessary, in certain demanding applications, to ensure that the solenoids are kept full of hydraulic fluid.
If this proves to be the case any accumulated air can be bled from the solenoid bleed screw. This task is easier if the valve has been mounted base downwards. Good installation practice dictates that the tank port, and any drain port, are piped so as to keep the valve full of fluid once the system start-up has been completed.

Temperatures
For petroleum oil:
Min.................................-20°C (-45°F)
Max..................................+70°C (158°F)
For fluids where limits are outside those of petroleum oil, consult fluid manufacturer or Eaton representative. Whatever the actual temperature range, ensure that viscosities stay within those specified under "Hydraulic Fluids".
Ambient for:
- Valves at full performance specification: -20 to +70°C (-4 to +158°F).
- Valves, as above, will operate at temperatures of 0 to -20°C (32 to -4°F) but with a reduced dynamic response.
Storage:
-25 to +85°C (-13 to +185°F)

Seal kits
Pilot valve:
KBCG-3.................................02-145869
Mainstage valves:
KBX(C)G-6...............................614824
KBX(C)G-8...............................614826