How to order

Accurate processing and prompt delivery of your order depends on easy identification of your requirements. Please order brand parts using correct part numbers as described in this catalog. Inquiries and orders should be directed to your distributor or:

Eaton
14615 Lone Oak Road Eden Prairie, MN 55344
952-937-9800; 888-258-0222; Fax: 952-974-7722
www.eaton.com/hydraulics

Eaton’s Hose and Fitting Assembly Product Warning

Flexible hose lines offer many advantages over rigid tubing including routing ease, vibration absorption, sound deafering and the ability to accommodate movement of connected components. However, hose lines require caution in use not only to provide long service, but also to guard against potentially dangerous failure.

IMPORTANT

The user should carefully observe the precautions listed in this catalog, including the recommendations on the selection of hose and fittings on the relevant pages, and the pages on fluid compatibility. In addition, care should be taken not to exceed the minimum bend radius listed for each hose size and type in the hose section. Maximum operating pressure should not exceed pressures listed in the hose data. Instructions for assembling fittings to different hose tolerances should be followed carefully to ensure the performance of the completed assembly.

DISCLAIMER Eaton Fitting Tolerances are Engineered to Match Eaton’s Hose Tolerances. The Use of Eaton Fittings on Hose Supplied by Other Manufacturers and/or the Use of Eaton’s Hose with Fittings Supplied by Other Manufacturers May Result in the Production of Unreliable and Unsafe Hose Assemblies and is Neither Recommended Nor Authorized by Eaton or Any of Its Affiliates or Subsidiaries.

WARNING Application considerations must be observed in selecting appropriate components for the application of these products contained herein. The failure to follow the recommendations set forth in this catalog may result in an unstable application which may result in, death, bodily injury, or property damage.

DISCLAIMER Eaton or Any of Its Affiliates or Subsidiaries Shall Not Be Subject to and Disclaims Any Obligations or Liabilities (Including But Not Limited to All Consequential, Incidental and Contingent Damages) Arising from Tort Claims (Including Without Limitation Negligence and Strict Liability) or Other Theories of Law with Respect to Any Hose Assemblies Not Produced from Genuine Hose Fittings, Hose and Approved Equipment, and in Conformance with Eaton’s Process and Product Instructions for Each Specific Hose Assembly.

WARNING Failure to follow these processes and product instructions and limitations could lead to premature hose assembly failures resulting in death, bodily injury, or property damage.

Routing

If the user follows the recommendations on hose line routing and installation as provided herein, improved safety and longer service life of any hose installation will result.

Hose Installation

Proper installation of the hose is essential to the proper operation and safe use of the hose and related equipment.

WARNING Improper installation of the hose can result in death, bodily injury, or property damage caused by spraying fluids or flying projectiles. In order to avoid serious bodily injury or property damage resulting from improper installation of the hose, you should carefully review the information in this catalog regarding hose installation.

Some of the factors you must consider in installing the hose properly are:
- Changes in length
- Proper bend radius
- Protection from high-temperature sources
- Elbows and adapters to relieve strain
- Rubbing or abrasion
- Twisting
- Improper hose movement

Hose Maintenance

Proper maintenance of the hose is essential to the safe use of the hose and related equipment. Hose should be stored in a dry place.

Hose should also be visually inspected. Any hose that has a cut or gouge in the cover that exposes the reinforcement should be retired from service. Hoses should also be inspected for kinking or broken reinforcement. If the outside diameter of the hose is reduced by 20% at the spot where it is bent then the hose should be retired from service.

WARNING Inadequate attention to maintenance of the hose can result in hose leakage, bursting, or other failure which can cause death, bodily injury, or property damage from spraying fluids, flying projectiles, or other substances.

Part numbers and dash sizes

Dash size designates the nominal size in 16th of an inch. This number immediately follows the part number and is separated from it with a dash.

Dimensions

Dimensions given in this catalog for products are approximate and should be used for reference only. Exact dimensional information for a given product is subject to change and varying tolerances; contact Eaton directly for full current information.

NOTE

Hose assemblies

Eaton manufactures the terminal ends of our hose fittings to the appropriate requirements established by the SAE. Therefore, the performance ratings of these hose fittings meet the SAE requirements. It is possible to order a hose assembly with a fitting terminal end that has a performance rating lower than the hose rating.

When ordering hose assemblies, please keep the connecting end performance rating in mind since this may affect overall hose assembly performance.

Hose assembly components (hose and fittings) are easily assembled in the field. However, factory assembled reusable and crimped hose assemblies are available.

For complete information, contact Eaton.
Selection, installation and maintenance of hose and assemblies

The following recommendations on selection, installation and maintenance of hose assemblies are excerpts from SAE J1273, updated 09/2020. Please read these general instructions carefully.

1. Scope
Hose (also includes hose assemblies) has a finite life and there are a number of factors which will reduce its life. This recommended practice is intended as a guide to assist system designers and/or users in the selection, installation, and maintenance of hose.

The designers and users must make a systematic review of each application and then select, install, and maintain the hose to fulfill the requirements of the application. The following are general guidelines and are not necessarily a complete list.

WARNING: Improper selection, installation, or maintenance of hose and assemblies may result in death, bodily injury, property damage, or premature failures.

2. References
2.1 Applicable documents
The following publications form a part of this specification to the extent specified herein. The latest issue of SAE publications shall apply.

2.1.1 SAE publications
Available from SAE, 400 Commonwealth Drive, Warrendale, PA 15096-0001
J516—Hydraulic hose fittings
J517—Hydraulic hose

3. Selection
The following is a list of factors which must be considered before final hose selection can be made.

3.1 Pressure
After determining the system pressure, hose selection must be made so that the recommended maximum operating pressure is equal to or greater than the system pressure. Surge pressures higher than the maximum operating pressure will shorten hose life and must be taken into account by the hydraulic designer.

3.2 Suction
Hoses used for suction applications must be selected to ensure the hose will withstand the negative pressure of the system.

3.3 Temperature
Care must be taken to insure that fluid and ambient temperatures, both static and transient, do not exceed the limitations of the hose. Special care must be taken when routing near hot manifolds.

3.4 Fluid compatibility
Hose selection must assure compatibility of the hose tube, cover and fittings with the fluid used. Additional caution must be observed in hose selection for gaseous applications.

3.5 Size
Transmission of power by means of pressurized fluid varies with pressure and rate of flow. The size of the components must be adequate to keep pressure losses to a minimum and avoid damage to the hose due to heat generation or excessive turbulence.

3.6 Routing
Attention must be given to optimum routing to minimize inherent problems.

3.7 Environment
Care must be taken to insure that the hose and fittings are either compatible with or protected from the environment to which they are exposed. Environmental conditions such as ultraviolet light, ozone, salt water, chemicals, and air pollutants can cause degradation and premature failure and, therefore, must be considered.

3.8 Mechanical loads
External forces can significantly reduce hose life. Mechanical loads which must be considered include excessive flexing, twist, kinking, tensile or side loads, bend radius, and vibration. Use of swivel-type fittings or adapters may be required to insure no twist is put into the hose. Unusual applications may require special testing prior to hose selection.

3.9 Abrasion
While hose is designed with a reasonable level of abrasion resistance, care must be taken to protect the hose from excessive abrasion which can result in erosion, snagging and cutting of the hose cover. Exposure of the reinforcement will significantly accelerate hose failure.

3.10 Proper end fitting
Care must be taken to insure proper compatibility exists between the hose and coupling selected based on the manufacturer’s recommendations substantiated by testing to industry standards such as SAE J517. End fitting components from one manufacturer are usually not compatible with end fitting components supplied by another manufacturer (i.e., using a hose fitting nipple from one manufacturer with a hose socket from another manufacturer). It is the responsibility of the fabricator to consult the manufacturer’s written instructions or the manufacturer directly for proper end fitting componentry.

3.11 Length
When establishing proper hose length, motion absorption, hose length changes due to pressure, as well as hose and machine tolerances must be considered.

3.12 Specifications and standards
When selecting hose, government, industry and manufacturers’ specifications and recommendations must be reviewed as applicable.

3.13 Hose cleanliness
Hose components vary in cleanliness levels. Care must be taken to insure that the assemblies selected have an adequate level of cleanliness for the application.

3.14 Electrical conductivity
Certain applications require that hose be nonconductive to prevent electrical current flow. Other applications require the hose to be sufficiently conductive to drain off static electricity. Hose and fittings must be chosen with these needs in mind.

4. Installation
After selection of proper hose, the following factors must be considered by the installer.

4.1 Pre-installation inspection
Prior to installation, a careful examination of the hose must be performed. All components must be checked for correct style, size and length. In addition, the hose must be examined for cleanliness, I.D. obstructions, blisters, loose cover, or any other visible defects.
Hose selection
General hose selection information

Selection, installation and maintenance of hose and assemblies

The following recommendations on selection, installation and maintenance of hose assemblies are excerpts from SAE J1273, updated 09/2020. Please read these general instructions carefully.

4.2 Follow manufacturers’ assembly instructions
Hose assemblies may be fabricated by the manufacturer, an agent for or customer of the manufacturer, or by the user. Fabrication of permanently attached fittings to hydraulic hose requires specialized assembly equipment. Field attachable fittings (screw style and segment clamp style) can usually be assembled without specialized equipment although many manufacturers provide equipment to assist in the operation.

SAE J517 hose from one manufacturer is usually not compatible with SAE J516 fittings supplied by another manufacturer. It is the responsibility of the fabricator to consult the manufacturer’s written assembly instructions or the manufacturer directly before intermixing hose and fittings from two manufacturers. Similarly, assembly equipment from one manufacturer is usually not interchangeable with that of another manufacturer. It is the responsibility of the fabricator to consult the manufacturer’s written instructions or the manufacturer directly for proper assembly equipment. Always follow the manufacturer’s instructions for proper preparation and fabrication of hose assemblies.

4.3 Minimum bend radius
Installation at less than minimum bend radius may significantly reduce hose life. Particular attention must be given to preclude sharp bending at the hose/fitting juncture.

4.4 Twist angle and orientation
Hose installations must be such that relative motion of machine components produces bending of the hose rather than twisting.

4.5 Securement
In many applications, it may be necessary to restrain, protect, or guide the hose to protect it from damage by unnecessary flexing, pressure surges, and contact with other mechanical components. Care must be taken to ensure such restraints do not introduce additional stress or wear points.

4.6 Proper connection of ports
Proper physical installation of the hose requires a correctly installed port connection while insuring that no twist or torque is put into the hose.

4.7 Avoid external damage
Proper installation is not complete without insuring that tensile loads, side loads, kinking, flattening, potential abrasion, thread damage, or damage to sealing surfaces are corrected or eliminated.

4.8 System check out
After completing the installation, all air entrapment must be eliminated and the system pressurized to the maximum system pressure and checked for proper function and freedom from leaks.

Caution: Avoid potential hazardous areas while testing.

5. Maintenance
Even with proper selection and installation, hose life may be significantly reduced without a continuing maintenance program.

Frequency should be determined by the severity of the application and risk potential. A maintenance program should include the following as a minimum.

5.1 Hose storage
Hose products in storage can be affected adversely by temperature, humidity, ozone, sunlight, oils, solvents, corrosive liquids and fumes, insects, rodents and radioactive materials. Storage areas should be relatively cool and dark and free of dust, dirt, dampness and mildew.

5.2 Visual inspection
Any of the following conditions requires replacement of the hose:

a. Leaks at fitting or in hose (leaking fluid is a fire hazard)

b. Damaged, cut, or abraded cover (any reinforcement exposed)

c. Kinked, crushed, flattened, or twisted hose

d. Hard, stiff, heat cracked or charred hose

e. Blistered, soft, degraded, or loose cover

f. Cracked, damaged, or badly corroded fittings

g. Fitting slippage on hose

5.3 Visual inspection
The following items must be tightened, repaired, or replaced as required:

a. Leaking port conditions

b. Clamps, guards, shields

c. Remove excessive dirt build up

d. System fluid level, fluid type, and any air entrapment

5.4 Functional test
Operate the system at maximum operating pressure and check for possible malfunctions and freedom from leaks.

Caution: Avoid potential hazardous areas while testing.

5.5 Replacement intervals
Specific replacement intervals must be considered based on previous service life, government or industry recommendations, or when failures could result in unacceptable down time, damage, or injury risk.
Hose routing and installation

1. **Provide for length change.**

 In straight hose installations, allow enough slack in the hose line to provide for changes in length that will occur when pressure is applied. This change in length can be from +2% to -4%.

 ![Wrong](image1.png) ![Right](image2.png)

2. **Avoid twisting and orient properly.**

 Do not twist hose during installation. This can be determined by the printed layline on the hose. Pressure applied to a twisted hose can cause hose failure or loosening of connections.

 ![Wrong](image3.png) ![Right](image4.png)

3. **Protect from hazardous environment.**

 Keep hose away from hot parts. High ambient temperature will shorten hose life. If you can not route it away from the heat source, insulate it.

 ![Wrong](image5.png) ![Right](image6.png)

4. **Avoid mechanical strain.**

 Use elbows and adapters in the installation to relieve strain on the assembly and to provide easier and neater installations that are accessible for inspection and maintenance.

 ![Wrong](image7.png) ![Right](image8.png)

5. **Use proper bend radius.**

 Keep the bend radius of the hose as large as possible to avoid collapsing of the hose and restriction of flow. Follow catalog specs on minimum bend radii.

 ![Wrong](image9.png) ![Right](image10.png)

6. **Use proper bend radius (cont’d).**

 Minimum bend radius is measured on the inside bend of the hose. To determine minimum bend, reference the most recent Eaton Catalog page for that hose and use the bend radius listed there.

 ![Wrong](image11.png) ![Right](image12.png)

7. **Secure for protection.**

 Install hose runs to avoid rubbing or abrasion. Use Areoquip Hose Clamps to support long runs of hose or to keep hose away from moving parts. It is important that the clamps not allow the hose to move. This movement will cause abrasion and premature hose failure.

 ![Wrong](image13.png) ![Right](image14.png)

8. **Avoid improper hose movement.**

 Make sure relative motion of the machine components produces bending rather than twisting of the hose. Hose should be routed so that the flex is in the same plane as the equipment movement.

 ![Wrong](image15.png) ![Right](image16.png)
Analyzing failures

Everyone in maintenance encounters hose failures. Normally, there is no problem. The hose is replaced and the equipment goes back in operation. Occasionally the failures come too frequently – the same equipment with the same problems keep popping up. At this point the task is to determine and correct the cause of these repeated failures.

WARNING: Hose and assembly failures may potentially result in death, bodily injury, or property damage.

Improper application

Beginning with the most obvious, the most common cause of hose failures – improper application – compare the hose specifications with the requirements of the application.

Pay particular attention to the following areas:

- The maximum operating pressure of the hose.
- The recommended temperature range of the hose.
- Whether the hose is rated for vacuum service.
- The fluid compatibility of the hose.

Check all of these areas against the requirements of the application. If they don’t match up, you need to select another hose. It’s a good idea at this point to call on your local hose distributor for assistance in selecting the proper hose.

Eaton’s distributors, for example, are well equipped to perform this service for you.

Distributor personnel attend special training courses in hydraulics and hose application conducted by the company. Or, if your problem is particularly difficult, the distributor can call on the services of Eaton’s field engineering staff. The company will send in a hose and hydraulic specialist to study the problem and come up with a solution.

Improper assembly and installation

The second major cause of premature hose failure is improper assembly and installation procedures. This can involve anything from using the wrong fitting on a hose, to poor routing of the hose.

Eaton provides excellent training material that you can use to combat this problem. A little time spent in training your maintenance people could pay big dividends in reduced downtime.

You can make use of the material available from Eaton to improve your hose assembly and installation techniques.

External damage

External damage can range from abrasion and corrosion, to hose that is crushed by a lift truck. These are problems that can normally be solved simply once the cause is identified. The hose can be re-routed or clamped, or a fire sleeve or abrasion guard can be used.

In the case of corrosion, the answer may be as simple as changing to a hose with a more corrosion resistant cover or re-routing the hose to avoid the corrosive element.

Faulty equipment

Too frequent or premature hose failure can be the symptom of a malfunction in your equipment. This is a factor that should be considered since prompt corrective action can sometimes avoid serious and costly equipment breakdown. Reprints of an article on “Troubleshooting hydraulic systems,” which tells you how to spot problems in a hydraulic system are available from Eaton.

Faulty hose

Occasionally a failure problem will lie in the hose itself.

The most likely cause of a faulty rubber hose is old age. Check the lay line on the hose to determine the date of manufacture. (2Q99 means second quarter 1999.) The hose may have exceeded its recommended shelf life. If you suspect that the problem lies in the manufacture of the hose (and don’t jump to this conclusion until you have exhausted the other possibilities) contact your distributor. Given effective quality control methods, the odds of a faulty batch of hose being released for sale are extremely small.

So make sure that you haven’t overlooked some other problem area.

Analyzing failures

A physical examination of the failed hose can often offer a clue to the cause of the failure. Following are 22 symptoms to look for along with the conditions that could cause them:

1. Symptom: The hose tube is very hard and has cracked.

Causes: Heat has a tendency to leach the plasticizers out of the tube. This is a material that gives the hose its flexibility or plasticity.

Aerated oil causes oxidation to occur in the tube. This reaction of oxygen on a rubber product will cause it to harden. Any combination of oxygen and heat will greatly accelerate the hardening of the hose tube.

Cavitation occurring inside the tube would have the same effect.

2. Symptom: The hose is cracked both externally and internally but the elastomeric materials are soft and flexible at room temperature.

Causes: This would indicate a high frequency pressure impulse condition. SAE impulse test requirements for a double wire braid reinforcement are 200,000 cycles at 133% of recommended working pressure. The SAE impulse test requirements for a four spiral wrapped reinforcement (100R12) are 500,000 cycles at 133% maximum operating and at +250°F (121°C). If the extrapolated impulses in a system amount to over a million in a relatively short time a spiral reinforced hose would be the better choice.
Analyzing failures

4. **Symptom:** The hose has burst, but there is no indication of multiple broken wires the entire length of the hose. The hose may have burst in more than one place.

Cause: This would indicate that the pressure has exceeded the minimum burst strength of the hose. Either a stronger hose is needed or the hydraulic circuit has a malfunction which is causing unusually high pressure conditions.

5. **Symptom:** Hose has burst. An examination indicates the wire braid is rusted and the cover has been cut, abraded or deteriorated badly.

Cause: The primary function of the cover is to protect the reinforcement. Elements that may destroy or remove the hose covers are:
1. Abrasion
2. Cutting
3. Battery acid
4. Steam cleaners
5. Chemical cleaning solutions
6. Muriatic acid (for cement clean-up)
7. Salt water
8. Heat
9. Extreme cold

Once the cover protection is gone the wire reinforcement is susceptible to attack from moisture or other corrosive matter.

6. **Symptom:** Hose has burst on the outside bend and appears to be elliptical in the bent section. In the case of a pump supply line, the pump is noisy and very hot. The exhaust line on the pump is hard and brittle.

Cause: Violation of the minimum bend radius is most likely the problem in both cases. Check the minimum bend radius and make sure that the application is within specifications. In the case of the pump supply line partial collapse of the hose is causing the pump to cavitate creating both noise and heat. This is a most serious situation and will result in catastrophic pump failure if not corrected.

7. **Symptom:** Hose appears to be flattened out in one or two areas and appears to be kinked. It has burst in this area and also appears to be twisted.

Cause: Torquing of a hydraulic control hose will tear loose the reinforcement layers and allow the hose to burst through the enlarged gaps between the braided plait of wire strands. Use swivel fittings or joints to be sure there is no twisting force on a hydraulic hose.

8. **Symptom:** Hose type has broken loose from the reinforcement and piled up the end of the hose. In some cases it may protrude from the end of the hose fitting.

Cause: The probable cause is high vacuum or the wrong hose for vacuum service. No vacuum is recommended for double wire braid, 4 and 6 spiral wire hose unless some sort of internal coil support is used. Even though a hose is rated for vacuum service, if it is kinked, flattened out or bent too sharply this type of failure may occur.

9. **Symptom:** Hose has burst about six to eight inches away from the end fitting. The wire braid is rusted. There are no cuts or abrasions of the outer cover.

Cause: Improper assembly of the hose end fitting allowing moisture to enter around the edge of the fitting socket. The moisture will wick through the reinforcement. The heat generated by the system will drive it out around the fitting area but six to eight inches away it will be entrapped between the inner line and outer cover causing corrosion of the wire reinforcement.

10. **Symptom:** There are blisters in the cover of the hose. If one picks the blisters, oil will be found in them.

Cause: A minute pin hole in the hose tube is allowing the high pressure oil to seep between it and the cover. Eventually it will form a blister wherever the cover adhesion is weakest. In the case of a screw together reusable fitting insufficient lubrication of the hose and fitting can cause this condition because the dry tube will adhere to the rotating nipple and tear enough to allow seepage. Faulty hose can also cause this condition.

11. **Symptom:** Blistering of the hose cover where a gaseous fluid is being used.

Cause: The high pressure gas is effusing through the hose tube, gathering under the cover and eventually forming a blister wherever the adhesion is weakest. Specially constructed hoses are available for high pressure gaseous applications. Your supplier can advise you on the proper hose to use in these cases.

12. **Symptom:** Fitting blew off of the end of the hose.

Cause: It may be that the wrong fitting has been put on the hose. Recheck manufacturer’s specifications and part numbers. In the case of a cramped fitting the wrong machine setting may have been used resulting in over or under crimping. The socket of a screw together fitting for multiple wire braided hose may be worn beyond its tolerance. The swaging dies in a swaged hose assembly may be worn beyond the manufacturer’s tolerances.

The fitting may have been applied improperly to the hose. Check manufacturer’s instructions. The hose may have been installed without leaving enough slack to compensate for the possible 4% shortening that may occur when the hose is pressurized. This will impose a great force on the fitting. The hose itself may be out of tolerance.

13. **Symptom:** The tube of the hose is badly deteriorated with evidences of extreme swelling. In some cases the hose tube may be partially “washed out.”

Cause: Indications are that the hose tube is not compatible with the agent being carried.

Even though the agent is normally compatible, the addition of heat can be the catalyst that can cause inner liner deterioration. Consult your hose supplier for a compatibility list or present him with a sample of the fluid being conducted by the hose for analysis. Make sure that the operating temperatures both internal and external do not exceed recommendations.
Analyzing failures

14. **Symptom:** Hose has burst. The hose cover is badly deteriorated and the surface of the rubber is crazed.

Cause: This could be simply old age. The crazed appearance is the effect of weathering and ozone over a period of time. To try to determine the age of the hose, some manufacturers print or emboss the cure date on the outside of the hose. As an example, Eaton hose would show “4Q01” which would mean that the hose was manufactured during the fourth quarter (October, November or December) of 2001.

15. **Symptom:** Hose is leaking at the fitting because of a crack in the metal tube adjacent to the braze on a split flange head.

Cause: Because the crack is adjacent to the braze and not in the braze this is a stress failure brought on by a hose that is trying to shorten under pressure and has insufficient slack in it to do so. We have cured dozens of these problems by lengthening the hose assembly or changing the routing to relieve the forces on the fitting.

16. **Symptom:** A spiral reinforced hose has burst and literally split open with the wire exploded out and badly entangled.

Cause: The hose is too short to accommodate the change in length occurring while it is pressurized.

17. **Symptom:** Hose is badly flattened out in the burst area. The tube is very hard down stream of the burst but appears normal up stream of the burst.

Cause: The hose has been kinked either by bending it too sharply or by squashing it in some way so that a major restriction was created. As the velocity of the fluid increases through the restriction the pressure decreases to the vaporization point of the fluid being conveyed. This is commonly called cavitation, and causes heat and rapid oxidation to take place which hardens the tube of the hose down stream of the restriction.

18. **Symptom:** Hose has not burst but it is leaking profusely. A bisection of the hose reveals that the tube has been gouged through to the wire braid for a distance of approximately two inches.

Cause: This failure would indicate that erosion of the hose tube has taken place. A high velocity needle like fluid stream being emitted from an orifice and impinging at a single point on the hose tube will hydraulically remove a section of it. Be sure that the hose is not bent close to a port that is orificed. In some cases where high velocities are encountered particles in the fluid can cause considerable erosion in bent sections of the hose assembly.

19. **Symptom:** The hose fitting has been pulled out of the hose. The hose has been considerably stretched out in length. This may not be a high pressure application.

Cause: Insufficient support of the hose. It is very necessary to support very long lengths of hose, especially if they are vertical. The weight of the hose along with the weight of the fluid inside the hose in these cases is being imposed on the hose fitting. This force can be transmitted to a wire rope or chain by clamping the hose to it much like the utilities support bundles of wire from pole to pole. Be sure to leave sufficient slack in the hose between clamps to make up for the possible 4% shortening that could take place when the hose is pressurized.

20. **Symptom:** The hose has not burst but it is leaking profusely. An examination of the bisected hose reveals that the tube has burst inwardly.

Cause: This type of failure is commonly referred to as hose tube blow down. It is usually associated with very low viscosity fluids such as air, nitrogen, Freon and other gases. What happens is that under high pressure conditions the gases will effuse into the pores of the tube instead of the orifice. If the pressure is very suddenly reduced to zero the entrapped gases will explode out of the tube on the pressure sides holes in it. In some hose constructions a second hose tube made from a plastic such as nylon, is inserted into the hose.

A small leak will allow the gaseous fluid to seep between the two inner liners and when pressure is reduced to zero the innermost liner will collapse because the entrapped pressure around its inner diameter.

21. **Symptom:** PTFE hose assembly has collapsed internally in one or more places.

Cause: One of the most common causes for this is improper handling of the PTFE assembly. PTFE is a thermostable material which is not rubber-like. When bent sharply it simply collapses. This type of collapse is localized in an area and is radical. When the PTFE tube is folded longitudinally in one or more places this could be the result of heat (which softens the hose) along with vacuum conditions inside of it. Because of the additional tension of the wire braid, reinforcement inherent with this type of hose, there is always a radial tension on the tube trying to push it in. Rapid cycling from a very hot agent in the hose to a very cold agent in the hose can produce the same type of failure. Eaton offers an internal support coil that will eliminate this problem.

22. **Symptom:** A PTFE hose assembly has developed a pin hole leak or several pin hole leaks.

Cause: This situation occurs when a petroleum-based fluid, with low viscosity, is flowing at high velocity.

WARNING: This condition can generate high voltage use to static electricity. The high voltage is seeking a ground connection and the only ground connection available is the braided stainless steel reinforcement. This causes an electric arc, which penetrates through the PTFE tube as it travels to the reinforcement, which may result in death, bodily injury, or property damage. Specially constructed PTFE tubes are available that have enough carbon black in them so as to be conductive. They will “drain off” the static electricity and preclude this problem.
Proper tube installation

When compared to rigid pipe, hydraulic tubing offers the following advantages:

1. Size for size, tubing is lighter in weight, easier to handle and can be bent more easily than iron pipe.

2. Bent tubing reduces pressure drop and turbulence in the system because it eliminates sudden change in the direction of the fluid flow.

3. Hydraulic tubing reduces the number of connections required, thus reducing material and labor costs.

4. Fewer joints means lower costs and fewer points of potential leakage.

5. The use of tube fittings makes every joint a union which permits easier, faster maintenance and repair work.

6. The ORS-TF Tube Fitting eliminates the need for threading, brazing or welding.

Tube bending

To reduce the number of fittings in a tube assembly, bend the tubing whenever possible.

Steel tubing can be bent in many sizes by using a hand bender designed for steel tubing. For production quantities, or for larger sizes, a power bending tool is generally used.

Tube routing and installation

Tubing manufacturers will advise the correct radii for various types and wall thicknesses of tubing. Kinks, flattened bends, wrinkles and tube breakage can be avoided by the use of proper tube bending equipment.

Avoid straight line connections whenever possible, especially in short runs.

Fluid conveying systems (see figures 2, 3 and 4) should be designed to follow the contour of the equipment. They are easier to install and present a neater appearance. Long runs should be supported by brackets or clamps. All heavy systems components should be bolted or clamped to eliminate tubing fatigue.

Inspect the tubing to see that it conforms to the required specifications before installation.

Tubes should align with the center line of the fittings, without distortion or tension. Tubing should not be sprung into position (see figure 1) to be assembled to the fitting. If this occurs the tubing has not been properly fabricated, and when installed and connected, places the tubing under stress.
Assembly instruction tips

Terms

• **Skive**—Removal of the cover material exposing the reinforcement prior to fitting assembly.
• **Dash size**—The hose or fitting size expressed in 1/16 of an inch. The numerator of a fraction whose denominator is 16. Example: –8 or –08 is 8/16” = 1/2”.
• **Nipple**—The part of a hose fitting that goes into the hose tube.
• **Socket**—The part of a hose fitting that goes over the hose cover or reinforcement.
• **Mandrel**—A round, properly sized, steel bar used for support during assembly of the fitting or skiving the hose cover.
• **Annular rings**—A series of concentric rings inside the socket.

Reusable fitting tips to remember for easy assembly

• Part numbers and dash sizes are indicated on fitting sockets.
• It is essential the fitting be mated with a compatible hose style with the same dash size.
• Reusable fittings that have a notch in the socket serve as a reference for the cover skiving length.
• Familiarize yourself with the assembly instructions before you start to make an assembly.
• For hoses that require skiving, be sure to skive the hose to the proper length and down to the wire reinforcement.
• Use 222070 hose assembly lube liberally on both the inside of the hose and on the fitting nipple. (Check for compatibility.)
• Always cut hose square.
• For volume production of hose assemblies, use Eaton Assembly Equipment.

Cutting the hose

1. To determine the "J" length (cut length of hose) from "OA" (overall length) deduct "D" dimensions of both end fittings. Consult fitting information pages for "D" dimensions. For hose assemblies with SOCKETLESS® fittings, add 1/2” to “J” length.
2. Cut the hose square.
3. Clean the hose bore.

Phase angle (offset)

When making double elbow assemblies, the following steps should be followed to obtain the desired angle between elbows. Tighten both elbows to maximum allowable gap between socket and nipple hex. Start to position for relative angle between elbows. Finish assembly by adjusting both elbows. Backing off to get desired angle should be avoided.
Cleaning, inspection, testing and storage

Maintenance

Hose assemblies in operation should be inspected frequently for leakage, kinking, abrasion, corrosion or any other signs of wear or damage. Worn or damaged hose assemblies should be replaced immediately.

Clean

At minimum a hose assembly should be blown out with clean compressed air. Eaton recommends using the Eaton Projectile Cleaning System (FT1455 Series).

Assemblies may be rinsed out with mineral spirits if the tube stock is compatible with oil, otherwise hot water at +150°F max. may be used.

Inspect

Examine hose assembly internally for cut or bulged tube, obstructions, and cleanliness. Check for proper gap between nut and socket or hex and socket. Nuts should swivel freely. Cap the ends of the hose with plastic covers to keep clean.

Proof test – Hydrostatic

The hose assembly should be hydrostatically tested at twice the recommended working pressure of the hose.

CAUTION: Test pressure should be held for not more than one minute and not less than 30 seconds. When test pressure is reached, visually inspect hose assembly for:

- a) Any leaks or signs of weakness.
- b) Any movement of the hose fitting in relation to the hose. Any of these defects are cause for rejection.

(See Assembly Equipment Section for Eaton Proof Test Stands.)

Proof test – Pneumatic

Hose assemblies intended for gas or air service should be tested with air or nitrogen at 100 psi with the assembly immersed in water. Random bubbles may appear over the hose and fitting area when assembly is first pressurized. This should not be construed as a defect. However, if the bubbles persist in forming at a steady rate at any particular point on the hose, the assembly should be rejected.

CAUTION: Testing should be conducted in approved test stands with adequate guards to protect the operator.

Storage and handling

Hose should be stored in a dark, dry atmosphere away from electrical equipment, and the temperature should not exceed +90°F. Storage in the original shipping container is preferred.