This product has been designed and tested to meet specific standards outlined in the European Electromagnetic Compatibility Directive (EMC) 2014/30/EU which repealed Directive 2004/108/EC. For Restriction of Hazardous Substances, complies to (RoHS) Directive 2011/65/EU. For instructions on installation requirements to achieve effective protection levels, see the Installation Wiring Practices for Eaton’s Electronic Products. Wiring practices relevant to this Directive are indicated by Δ Electromagnetic Compatibility (EMC).
General description

An electro-hydraulic proportional relief valve designed to regulate pressure in a hydraulic system in proportion to an applied electrical input.

These open-loop, single-stage valves can be used for direct control of pressure in low flow systems, or for pilot control of larger pressure controls, and for such applications as pressure controlled pumps.

The integral amplifier allows the pressure to be controlled from a low power command signal: either a voltage or current command. The amplifier is mounted in a robust metal housing and electrical connections are via an industry standard 7-pin plug. Factory-set adjustments ensure high reproducibility valve-to-valve.

Other models

For proportional pressure relief valves with flow ratings up to 400 L/min (106 USgpm), see catalog V-VLPO-MC003-E (model types KBCG, sizes 6 and 8).

Features and benefits

- Valve design ensures low hysteresis and good repeatability.
- Self-bleeding design simplifies installation and ensures consistent performance.
- When used for piloting a large pressure relief or reducing valve, a low minimum pressure is obtainable, combined with fast and stable response to step input signals.
- On-board ramp adjustment.

Functional symbol

Typical section
Model codes

<table>
<thead>
<tr>
<th>K</th>
<th>B</th>
<th>G</th>
<th>***</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

Valve type
- **KB**: Proportional valve with integral amplifier, B series

Type
- **C**: Pressure relief

Mounting
- **G**: Subplate mounted

Interface
- **3**: ISO 4401, size 3 (NFPA D03)

Build orientation
- **Blank**: Right hand (standard)
- **L**: Left hand

Controlled pressure range
- At rated flow of 1 L/min (0.26 USgpm)
 - 2-40 bar (29-580 psi)
 - 3-100 bar (44-1450 psi)
 - 4-160 bar (58-2300 psi)
 - 4-172 bar (58-2500 psi)
 - 5-250 bar (73-3625 psi)
 - 6-350 bar (87-5000 psi)

Damper
- **D**: Standard damper

Manual overrides
- **Z**: No overrides

Electrical command options
- **M1**: +/- 10 volts control signal
- **M2**: 4-20 mA control signal

Ramp options
- 1: No ramp
- 2: Standard ramp (typically 65 ms)
- 3: Long ramp (typically 80 ms)

Command/pressure characteristic
- **A**: Standard

Electrical connection
- **PC7**: 7 pin connector, without plug supplied
- **PE7**: 7 pin connector, with plug supplied
- **PH7**: As PE7 but with pin ‘C’ used for enable signal
- **PR7**: as PC7 but with pin ‘C’ used for enable signal

Coil rating
- **H1**: 24V DC amplifier supply

Design number, 1* series
- **11**: Subject to change. Installation dimensions unaltered for design numbers 10 to 19 respectively

WARNING

To conform to the EC Electromagnetic Compatibility directive (EMC) this KBCG valve must be fitted with a metal 7-pin plug. The screen of the cable must be securely connected to the shell of the metal connector. A suitable IP67 rated connector is available from Eaton, part no. 934939. Alternatively a non IP67 rated connector is available from ITT-Cannon, part no.CA 02 COM-E 14S A7 P.
Operating data

Standard test conditions

- Antiwear hydraulic oil at 36 cSt (168 SUS) and 40°C (104°F)

Maximum pressures:

<table>
<thead>
<tr>
<th>Port</th>
<th>Operating</th>
<th>Static</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>2 bar (29 psi). See “Back pressure at port T” under “Installation and start-up” below.</td>
<td>210 bar (3000 psi)</td>
</tr>
</tbody>
</table>

Flow limits:

| Rated flow | 1 L/min (0.26 USgpm) |
| Maximum flow | 5 L/min (1.3 USgpm) |

Coil or amplifier rating

24V x 40W max. [22 to 36V including 10% pk-to-pk. max. ripple]

Command signal:

Volts (see model code [3] - 1)	0 to +10V or 0 to -10V
Input impedance	47 kΩ
Common mode voltage to pin B	4V
Current (see model code [3] - 2)	4 to 20 mA
Input impedance	100Ω

Valve enable signal:

Enable	>9.0V (36V max)
Disable	<2.0V
Input impedance	36 kΩ

7-pin plug connector

- **A** Power supply positive (+)
- **B** Power supply 0V and current command return
- **C** Valve enable (PH7 & PR7)
- **D** Command signal (+V or current in)
- **E** Command signal (-V or current GND)
- **F** Output monitor
- **G** Protective ground

Electromagnetic compatibility (EMC)

- Conducted Emissions CISPR11 - 2015-06 Ed 6.0/EN55011 - Class A, 150kHz to 30MHz
- Radiated Emissions CISPR11 - 2015-06 Ed 6.0 /EN55011 - Class A, 30MHz – 1GHz
- RF Continuous Conducted disturbances IEC 61000-4-6, 3Vrms Class A 150 KHz to 80 MHz
- RF Electromagnetic Field, 80MHz to 1GHz, 10V/m; 1.4GHz to 2.7GHz, 3V/m; Meets Criterion A
- Surge: IEC 61000-4-5
 - DC Power Port : ±1kV
 - Signal/Control Port : ±1kV
- Electrical Fast Transients IEC 61000-4-4, Class B
 - DC Power Port : ±1kV
 - Signal/Control Port : ±0.5kV
- Electrostatic discharges (ESD) IEC 61000-4-2, Class B
 - Air ±8kV
 - Contact ±4kV

ROHS Compliance:

Complies with: Restriction of Hazardous Substances (RoHS) Directive 2011/65/EU

Monitor signal (pin F)

1.7 V/amp solenoid current

Pressure gain

See graph

Pressure override

See graph
Operating data

Pressure step response
(20 cm³ volume, 1 L/min (0.26 USgpm)):

<table>
<thead>
<tr>
<th>Model code</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>KBCG-3-250 model:</td>
<td>60 ms</td>
<td>65 ms</td>
<td>87 ms</td>
</tr>
</tbody>
</table>

Typical times to reach 90% of commanded step:

<table>
<thead>
<tr>
<th>Model code</th>
<th>48 ms</th>
<th>55 ms</th>
<th>73 ms</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 to 100% step</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100 to 0% step</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Linearity, between 10% and 100% of controlled pressure range**: <4%
- **Hysteresis**: <5% (with factory-set dither)
- **Repeatability**: <=1.0% of rated pressure

Reproducibility, valve-to-valve (at factory settings):

- **Pressure at 100% command signal**: <5%

Protection:

- **Electrical**: Reverse polarity protected
- **Environmental**: IEC 529, Class IP67
- **Mass**: 2.2 kg (4.85 lb)

Supporting products:

- **Auxiliary electronic modules (DIN-rail mounting):**
 - EHA-CON-201-A-2* Signal converter: See catalog 2410B
 - EHD-DG-201-A-1* Command signal generator: See catalog 2470
 - EHA-RMP-201-A-2* Ramp generator: See catalog 2410B
 - EHA-PID-201-A-2* PID controller: See catalog 2427
 - EHA-PSU-201-A-10 Power supply: See catalog 2410B

Installation and start-up:

- **Back pressure at port T**: Port T should be piped directly to reservoir with minimum restriction. Any back pressure at this port is additive to the controlled pressure at port P. The recommended max. pressure at port T when the valve is controlling pressure is 2 bar (29 psi); the max. pressure at T under static conditions is 210 bar (3000 psi).
Performance data

Pressure gain, Typical
Typical pressure v. command signal response of KBCG-3-250 models
Test conditions:
Fluid = Antiwear hydraulic oil at 36 cSt (168 SUS)

Pressure override, Typical
Test conditions:
Fluid = Antiwear hydraulic oil at 36 cSt (168 SUS)
Installation dimensions

To bleed air, loosen plug in end of core tube; re-tighten to 2.4 +/- 0.2 Nm (1.85 +/- 0.15 lbf ft) after bleeding is complete.
Electrical information

Block diagram

Wiring
Connections must be made via the 7-pin plug mounted on the amplifier. Recommended cable sizes are:

Power cables
For 24V supply:
- 0,75 mm² (18 AWG) up to 20m (65 ft)
- 1,00 mm² (16 AWG) up to 40m (130 ft)

Signal cables
- 0,50 mm² (20 AWG)

Screen (Shield)
A suitable cable should have at least 6 cores with pairs of conductors individually screened and an overall screen. Cable outside diameter 8,0-10,5 mm (0.31- 0.41 inches).
See connection diagrams on next page.

⚠️ WARNING
All power must be switched off before connecting or disconnecting any plugs.
Typical wiring connections

Voltage input (M1)

Spool position monitor voltage (pin F) will be referenced to the KB valve local ground.

Wiring connections for M1 valves with enable feature

Note: In applications where the valve must conform to European RFI/EMC regulations, the outer screen (shield) must be connected to the outer shell of the 7 pin connector, and the valve body must be fastened to the earth ground. Proper earth grounding practices must be observed in this case, as any differences in command source and valve ground potentials will result in a screen (shield) ground loop.
Electrical information

Current input (M2)

- Spool position monitor voltage (pin F) will be referenced to the KB valve local ground.

WARNING

Electromagnetic Compatibility (EMC)
It is necessary to ensure that the valve is wired up as above. For effective protection the user electrical cabinet, the valve subplate or manifold and the cable screens should be connected to efficient ground points. The metal 7 pin connector part no. 934939 should be used for the integral amplifier. In all cases both valve and cable should be kept as far away as possible from any sources of electromagnetic radiation such as cables carrying heavy current, relays and certain kinds of portable radio transmitters, etc. Difficult environments could mean that extra screening may be necessary to avoid the interference. It is important to connect the 0V lines as shown above. The multi-core cable should have at least two screens to separate the demand signal and monitor output from the power lines. The enable line to pin C should be outside the screen which contains the demand signal cables.

Wiring connections for M2 valves with enable feature

Note: In applications where the valve must conform to European RFI/EMC regulations, the outer screen (shield) must be connected to the outer shell of the 7 pin connector, and the valve body must be fastened to the earth ground. Proper earth grounding practices must be observed in this case, as any differences in command source and valve ground potentials will result in a screen (shield) ground loop.

![Wiring diagram](image-url)
Further information

Hydraulic fluids and Contamination control requirements

Contamination control requirements
Hydraulic Fluids & Recommendations on contamination control methods and the selection of products to control fluid condition are included in Eaton Hydraulic Fluid Recommendation 03-401-2010 rev 1.

For products in this catalog the recommended levels are:
- Up to 210 bar (3000 psi) – 18/16/13
- Above 210 bar (3000 psi) – 17/15/12

Installation and start-up guidelines
The proportional valves in this catalog can be mounted in any attitude but it may be necessary, in certain demanding applications, to ensure that the solenoids are kept full of hydraulic fluid.

If this proves to be the case any accumulated air can be bled from the solenoid bleed screw. This task is easier if the valve has been mounted base downwards. Good installation practice dictates that the tank port, and any drain port, are piped so as to keep the valve full of fluid once the system start-up has been completed.

Temperatures
For petroleum oil:
- Min – -20°C (-4°F)
- Max – +70°C (158°F)

For fluids where limits are outside those of petroleum oil, consult fluid manufacturer or Eaton representative. Whatever the actual temperature range, ensure that viscosities stay within those specified under “Hydraulic Fluids.”

Ambient for:
- Valves at full performance specification: -20 to +70°C (-4 to +158°F).
- Valves, as above, will operate at temperatures of 0 to -20°C (32 to -4°F) but with a reduced dynamic response.

Storage:
- -25 to +85°C (-13 to +185°F)

Seal Kit
02-352521
This page is intentionally left blank
This page is intentionally left blank