Series EDU 251-401
464 PSI

Position I: Left filter-side in operation
Position II: Right filter-side in operation

1) Connection for the potential equalization, only for application in the explosive area.

Weight EDU251: approx. 90 lbs.
Weight EDU401: approx. 112 lbs.

Dimensions: inches
Designs and performance values are subject to change.
Pressure Filter, change over Series EDU 251-401
464 PSI

Description:
Stainless steel-pressure filter changeover series EDU 251-401 have a working pressure up to 464 PSI. Pressure peaks can be absorbed with a sufficient safety margin.

A rotary slide valve which is integrated in the middle of the housing makes it possible to switch from the dirty side to the clean filter-side without interrupting operation. These filters can be installed as suction filters.

The filter element consists of star-shaped, pleated filter material, which is supported on the inside by a perforated core tube and is bonded to the end caps with a high-quality adhesive. The flow direction is from outside to inside.

For cleaning the stainless steel mesh element or changing the filterer element, remove the cover and take out the element. The mesh elements are not guaranteed to maintain 100% performance after cleaning.

For filtration finer than 40 μm, use the disposable elements made of microglass. Filter elements as fine as 5 μm(c) are available; finer filter elements are available upon request.

Eaton filter elements are known for a high intrinsic stability and an excellent filtration capability, a high dirt-retaining capacity and a long service life.

Eaton filter can be used for petroleum-based fluids, HW emulsions, water glycols, most synthetic fluids and lubrication fluids. Consult factory for specific fluid applications.

Ship classifications available upon request.

Type index:

Complete filter: (ordering example)
EDU, 251, 10VG. 30. E. P. VA. FS. 8. VA. - - AE

1 series:
2 nominal size: 251, 401
3 filter-material:
80G, 40G, 25G stainless steel wire mesh
25VG, 16VG, 10VG, 6VG, 3VG microglass
25API, 10API microglass according to API
10P paper

4 filter element collapse rating:
30 = Δp 435 PSI

5 filter element design:
E = single end open
S = with bypass valve Δp 29 PSI
S1 = with bypass valve Δp 51 PSI

6 sealing material:
P = Nitrile (NBR)
V = Viton (FPM)

7 filter element specification:
- = standard
VA = stainless steel
IS06 = for HFC application, see sheet-no. 31601

8 process connection:
FS = SAE-flange connection 3000 PSI

9 process connection size:
8 = 2"

10 filter housing specification:
VA = stainless steel

11 pressure vessel specification:
- = standard (DGR 2014/68/EU)
IS20 = ASME VIII Div.1 with ASME equivalent material, see sheet-no. 55217 (max. operating pressure 232 PSI)

12 internal valve:
- = without

13 clogging indicator or clogging sensor:
- = without
AOR = visual, see sheet-no. 1606
AOC = visual, see sheet-no. 1606
AE = visual-electric, see sheet-no. 1609
OP = visual, see sheet-no. 1628
OE = visual-electric, see sheet-no. 1628
VS5 = electronic, see sheet-no. 1641

To add an indicator/sensor to your filter, use the corresponding indicator data sheet to find the indicator details and add them to the filter assembly model code.

Filter element: (ordering example)
01NL. 250. 10VG. 30. E. P. VA

1 series:
2 nominal size: 250, 400
3 - - 7 see type index complete filter

Accessories:
- gauge port and bleeder connection, see sheet-no. 1650
- drain- and bleeder connection, see sheet-no. 1651
- SAE-counter flanges, see sheet-no. 1652
- shut-off valve, see sheet-no. 1655
Technical data:

- **operating temperature:** -14 °F to +212 °F
- **operating medium:** mineral oil, other media on request
- **max. operating pressure:** 464 PSI
- **test pressure:** 900 PSI
- **max. operating pressure with IS20:** 232 PSI
- **test pressure with IS20:** 464 PSI
- **process connection:** SAE-flange connection 3000 PSI
- **housing material:** EN10213-1.4581, EN10028-1.4301 (tube extension EDU401)
- **sealing material:** Nitrile (NBR) or Viton (FPM), other materials on request
- **installation position:** vertical
- **measuring connections:** BSPP ¼
- **drain- and bleeder connections:** BSPP ½
- **volume tank EDU251:** 2x .66 Gal.
- **EDU401:** 2x .97 Gal.

Classified under the Pressure Equipment Directive 2014/68/EU for mineral oil (fluid group 2), Article 4, Para. 3.
Classified under ATEX Directive 2014/34/EU according to specific application (see questionnaire sheet-no. 34279-4).

Pressure drop flow curves:

Filter calculation/sizing

The pressure drop of the assembly at a given flow rate Q is the sum of the housing Δp and the element Δp and is calculated as follows:

$$\Delta p_{\text{assembly}} = \Delta p_{\text{housing}} + \Delta p_{\text{element}}$$

$$\Delta p_{\text{housing}} = \left(\text{see } \Delta p = f(Q) - \text{characteristics}\right)$$

$$\Delta p_{\text{element}} (\text{PSI}) = Q (\text{GPM}) \times \left(\frac{\text{PSI}}{1000}\right) \times V(SUS) \times \frac{\rho}{0.876} \left(\frac{\text{kg}}{\text{dm}^3}\right)$$

For ease of calculation our Filter Selection tool is available online at www.eatonpowersource.com/calculators/filtration/

Material gradient coefficients (MSK) for filter elements

The material gradient coefficients in psi/gpm apply to mineral oil (HLP) with a density of 0.876 kg/dm³ and a kinematic viscosity of 139 SUS (30 mm²/s). The pressure drop changes proportionally to the change in kinematic viscosity and density.

<table>
<thead>
<tr>
<th>EDU</th>
<th>VG</th>
<th>G</th>
<th>P</th>
<th>API</th>
</tr>
</thead>
<tbody>
<tr>
<td>251</td>
<td>1.140</td>
<td>0.792</td>
<td>0.507</td>
<td>0.441</td>
</tr>
<tr>
<td>401</td>
<td>0.700</td>
<td>0.486</td>
<td>0.311</td>
<td>0.271</td>
</tr>
</tbody>
</table>

$\Delta p = f(Q) - \text{characteristics according to ISO 3968}$

The pressure drop characteristics apply to mineral oil (HLP) with a density of 0.876 kg/dm³. The pressure drop changes proportionally to the density.
Test methods:

Filter elements are tested according to the following ISO standards:

- **ISO 2941**: Verification of collapse/burst resistance
- **ISO 2942**: Verification of material compatibility with fluids
- **ISO 2943**: Verification of fabrication integrity
- **ISO 2946**: Method for end load test
- **ISO 3721**: Verification of flow fatigue characteristics
- **ISO 3968**: Evaluation of pressure drop versus flow characteristics
- **ISO 16889**: Multi-pass method for evaluating filtration performance

Spare parts:

Item	Qty.	Designation	Dimension	Article-No.
1	2	Filter element	01NL250	30439
			01NL400	
2	2	O-ring	40 x 3	304398
3	2	O-ring (EDU251)	115 x 3	303963
4	1	O-ring (EDU401)	115 x 3	303963
	1	O-ring	24 x 3	303038
5	2	O-ring	95 x 3	305808
6	1	O-ring	76 x 4	305599
7	1	O-ring	32 x 2.5	306843
8	8	Screw plug	BSPP 1/2	306966
9	2	Screw plug	BSPP ¾	306968
10	1	Clogging indicator, visual	AOR or AOC	see sheet-no. 1606
11	1	Clogging indicator, visual	OP	see sheet-no. 1628
12	1	Clogging indicator, visual-electric	OE	see sheet-no. 1628
13	1	Clogging indicator, visual-electric	AE	see sheet-no. 1609
14	1	Clogging sensor, electronic	VSS	see sheet-no. 1641
15	2	Screw plug	BSPP 1/2	306966
16	1	Pressure balance valve	3/8"	310316

Item 15 execution only without clogging indicator or clogging sensor.