Dry Type Distribution Transformers

NON-LINEAR TRANSFORMER PRESENTATION
Dry Type Distribution Transformers

PROBLEM: HARMONICS CAUSE EXCESSIVE TRANSFORMER HEATING

- Increased Losses
- Proximity
- Skin Effect
- Stray Losses
- Circulating Effect
- Triplenn Harmonics Add in Neutral
- Increased Eddy Currents
- Core Saturation
Dry Type Distribution Transformers

NOTHING NEW:

• Rectifier Transformers
• Power Supply Transformers
• Precipitation Transformers
• Filament Transformers
Dry Type Distribution Transformers

WHAT IS NEW:

Many New Sources

- Electronic Ballasts
- Switching Mode Power Supplies
- Solid State Motor Drives
CUTLER-HAMMER TYPE KT
DRY TYPE DISTRIBUTION
TRANSFORMERS
FOR
NONLINEAR LOADS
REMEMBER!

The nonlinear transformer does not generate, nor does it eliminate harmonics. The transformer “tolerates” the nonlinear load condition.
Dry Type Distribution Transformers

LINEAR VS NONLINEAR LOADS

LINEAR LOADS:
A load that does not affect the input waveform, which is a pure sinewave, composed of a 60 hz component with no multiple frequencies.

NONLINEAR LOADS:
A load that distorts the input sinewave such that the resultant waveform is composed of a 60 hz component and multiple frequency components called harmonics.
Dry Type Distribution Transformers

Voltage Wave

Current Is Demanded Only At The Peaks Of The Voltage Wave

Current Wave
Dry Type Distribution Transformers

HARMONICS
GAS PUMP ANALOGY
NON-LINEAR TRANSFORMERS
WHAT ARE HARMONICS?

<table>
<thead>
<tr>
<th>Harmonic</th>
<th>Frequency in Hz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fundamental</td>
<td>60</td>
</tr>
<tr>
<td>3rd</td>
<td>180</td>
</tr>
<tr>
<td>5th</td>
<td>300</td>
</tr>
<tr>
<td>7th</td>
<td>420</td>
</tr>
<tr>
<td>9th</td>
<td>540</td>
</tr>
<tr>
<td>11th</td>
<td>660</td>
</tr>
<tr>
<td>etc.</td>
<td>etc.</td>
</tr>
</tbody>
</table>
Dry Type Distribution Transformers

RECENT HISTORY

1990 ITC Introduces “K-Factor” Transformer

Nov. 1990 - ITC Receives UL Listing

UL Standard 1561
 Effective 1992
 Much Discussion
Dry Type Distribution Transformers

NON-LINEAR TRANSFORMERS
Pertinent Facts

- Rated by K Factor
- K Factor Related to Heat
- Band Aid - Don’t Solve the Problem
- Tolerate Intolerable Condition
Dry Type Distribution Transformers

KEY DESIGN FEATURES

1. Reduced Induction Core
2. Properly Sized Winding Conductors
3. Oversized Neutral
NON-LINEAR TRANSFORMERS
WHAT IS K FACTOR?

\[K = \sum (I_h)^2 (h)^2 \]

Ih = Percent Current at Harmonic h

h = Harmonic Order, i.e. 3rd, 5th, 7th, etc.
K FACTOR CALCULATION

<table>
<thead>
<tr>
<th>h</th>
<th>Ih</th>
<th>(Ih)^2</th>
<th>h^2</th>
<th>(Ih)^2h^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>0.1000</td>
<td>0.0100</td>
<td>9</td>
<td>0.0900</td>
</tr>
<tr>
<td>5</td>
<td>0.1500</td>
<td>0.0225</td>
<td>25</td>
<td>0.5625</td>
</tr>
<tr>
<td>7</td>
<td>0.1000</td>
<td>0.0100</td>
<td>49</td>
<td>0.4900</td>
</tr>
<tr>
<td>9</td>
<td>0.1000</td>
<td>0.0100</td>
<td>81</td>
<td>0.8100</td>
</tr>
<tr>
<td>11</td>
<td>0.1400</td>
<td>0.0196</td>
<td>121</td>
<td>2.3716</td>
</tr>
<tr>
<td>13</td>
<td>0.2000</td>
<td>0.0400</td>
<td>169</td>
<td>6.7600</td>
</tr>
<tr>
<td>15</td>
<td>0.0200</td>
<td>0.0004</td>
<td>225</td>
<td>0.0900</td>
</tr>
<tr>
<td>17</td>
<td>0.0500</td>
<td>0.0025</td>
<td>289</td>
<td>0.7225</td>
</tr>
<tr>
<td>19</td>
<td>0.0075</td>
<td>0.0001</td>
<td>361</td>
<td>0.0203</td>
</tr>
<tr>
<td>21</td>
<td>0.0050</td>
<td>0.0000</td>
<td>441</td>
<td>0.0110</td>
</tr>
<tr>
<td>SUM</td>
<td></td>
<td>1.1151</td>
<td></td>
<td>12.9279</td>
</tr>
</tbody>
</table>

K FACTOR
A common industry term for the amount of harmonics produced by a given load is the **K Factor**.

The larger the **K Factor**, the more harmonics are present. Linear loads, for example, have a **K Factor** of 1.

Transformers may carry a **K Factor** rating to define the transformer’s ability to withstand the additional heating generated by the harmonic currents.

Standard Industry K FACTOR Transformer Ratings:

<table>
<thead>
<tr>
<th>K-4</th>
<th>K-30</th>
</tr>
</thead>
<tbody>
<tr>
<td>K-9</td>
<td>K-40</td>
</tr>
<tr>
<td>K-13</td>
<td>K-50</td>
</tr>
<tr>
<td>K-20</td>
<td></td>
</tr>
</tbody>
</table>
K-FACTOR REDUCTION
Multiple Loads

- Harmonic Cancellation
- 3rd Harmonic Reduction in Delta-Wye Transformer
- Source Impedance Effects
- Linear Load Dilution
Dry Type Distribution Transformers

HARMONIC CANCELLATION

Compaq 386/33L
K = 12.1

Compaq Portable
K = 13.6

Packard Bell
K = 9.5

K = 7.8
Dry Type Distribution Transformers

NON-LINEAR TRANSFORMERS
UL LISTING

- No UL listing for K Factor means transformer is rated only for linear loads.

- UL listing requires label stating: “Suitable for non-sinusoidal current loads with K Factor not to exceed ___”.

- K Factors can be 4, 9, 13, 20, 30, 40, or 50.
FEATURES AT A GLANCE

- Three phase 480 delta - 208Y / 120 standard. Other voltage combinations are available.
- Class 220 deg C insulation system.
- Available with 150, 115, or 80 deg C winding rise.
- Aluminum windings are standard (copper optional).
- NEMA 2 ventilated enclosure.
- An electrostatic shield and 200% neutral are standard features.